用户名: 密码: 验证码:
北方寒地春大豆抗旱高产产量性能特征及关键技术调控效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究拟通过对黑龙江省78份大豆材料进行芽期和苗期抗旱鉴定与筛选,依据作物产量性能理论,重点对黑龙江省大豆抗旱品种和高产栽培模式下光合与产量性能指标定量化分析,研究产量性能定量方程主要参数变化特点、相互作用关系及其对产量形成的贡献;同时探讨化学调控和土壤深松对大豆光合指标、土壤指标及产量构成因素的影响。以期明确北方寒地大豆抗旱高产群体性能优化途径,进一步挖掘春大豆产量潜力。研究结果如下:
     1.利用20%PEG-6000溶液和干旱反复法分别对黑龙江省78份大豆材料进行芽期和苗期抗旱鉴定与筛选,结果表明:芽期耐旱(较耐旱)性品种主要集中在黑农号、绥农号、垦丰号、合丰号和龙小粒豆品种类型;苗期耐旱(较耐旱)品种主要集中黑河号、抗线号、合丰号、绥农号、黑农号;芽期和苗期共同耐旱品种有绥农30和合丰48;较耐旱品种为抗线7、黑农62、黑农65、龙小粒1号、绥农15、垦丰11。
     2.以筛选的黑龙江省7个大豆抗旱品种为试材,研究不同品种的单株叶面积、干物质积累、净同化率及产量构成因素的变化,结果表明:供试品种单株叶面积从苗期到鼓粒期逐渐增加,鼓粒期达高峰,此后呈下降趋势,品种间差异显著,其中合丰48叶面积最大为3264.1cm2,龙小粒1号最小为1426.3cm2;7个品种生长发育期净同化率呈“高低高”型变化规律,其中以黑农65在结荚期至鼓粒期时期最高为16.8g/(m2·d);供试品种干物质积累从苗期到灌浆期逐渐增加,且不同品种间干物质积累差异达极显著水平,不同生育期品种干物质高低没有规律性;抗旱品种间粒数/株、百粒重、单株重及产量均达差异极显著水平,其中2011年黑农65产量最高,达2440.5kg/hm2其次为绥农30、垦丰11、抗线7,绥农15和龙小粒1号产量最低(1053kg/hm2)。以产量作为抗旱性衡量指标,黑农65和绥农30为抗旱高产品种,垦丰11为抗旱中产品种,抗线7、合丰48、绥农15及龙小粒1号为抗旱低产品种。
     3.研究六种栽培模式(常规垄作、垄三栽培、原垄卡种、大垄密植、小垄密植和平播密植)下大豆群体冠层结构特征,结果表明:小垄密植和大垄密植在不同生育时期表现群体叶面积各个方向分布均匀、叶面积指数较高(6.43-6.82)、平均叶倾角适宜(49.59°)、散射穿透系数(0.2)和直接辐射穿透系数较低(0.2)、消光系数较大,产量分别为3834.8kg/hm2和3451.2kg/hm2比对照(常规垄作)提高1.36倍和1.12倍,确定大垄密植、小垄密植可为黑龙江省大豆高产栽培主推模式。
     4.结合田间试验及“三合结构”理论,通过数据归一化处理,建立了适用于大豆的叶面积动态模拟的相对叶面积指数(LAI)动态模型,得到相对LAI动态模型曲线。本研究首次验证了大豆的叶面积动态模拟的相对叶面积指数(LAI)动态模型符合“三合结构”理论。模型的建立为大豆产量“三合结构”定量方程的参数的确定奠定了基础;同时,大豆群体生育期内的LAI模拟数据可作为判断大豆群体发展合理与否以及大豆群体性能优劣的理论依据。
     5.在作物产量分析“三合结构”模式二级结构层各因素的关系基础上,建立了大豆抗旱品种和不同高产栽培模式产量性能定量方程各参数之间的具体函数关系式及各参数之间的具体函数关系式。本研究中,抗旱品种光合参数和产量构成因素之间存在相关性,且有些指标间达显著或极显著相关。产量与MCGR极显著正相关,产量与TGN、和GN呈显著正相关,进一步表明产量主要决定于MCGR,其次为TGN和GN。即大豆抗旱高产品种主要通过提高MCGR促使单位面积TGN和GN增加的结果,以达到高产目标。不同栽培模式各光合参数与产量构成参数相关分析表明,Y与MLAI、MCGR、 EN、TGN、GW呈极显著正相关,Y与GN呈显著正相关表明,根据“三合结构”理论,在进行大豆高产品种栽培技术选择时,首先选择可提高MLAI、MCGR、EN、TGN、GW的栽培措施,然后在考虑提高GN的栽培措施。
     6.研究六种栽培模式(常规垄作、垄三栽培、原垄卡种、大垄密植、小垄密植和平播密植)、土壤深松和化控技术对土壤含水量、土壤容重及产量影响,结果表明,垄三栽培、原垄卡种和大垄密植模式、深松处理比对照(常规垄作)全生育期土壤含水量高0.76%-1.46%;土壤容重保持在0.90-1.33g/cm3,比对照降低0.1-0.2g/cm3;土壤水分利用率高低依次为小垄密植>大垄密植>原垄卡种、平播密植、垄三栽培>常规垄作,分别为1.3‰、1.2‰、1.1‰及1.0‰;产量/m2水平为小垄密植>大垄密植>原垄卡种>平播密植>垄三栽培>常规垄作(对照),分别比对照增产1.36倍、1.12倍、79.4%、50.1%和14.7%;深松和化控分别比常规垄作(对照)增产25.5%和15.2%。
     7.以黑龙江省大豆高产区的大垄密植和垄三栽培模式为基础,综合分析两种高产模式下早熟和中熟大豆品种产量构成因素特征及北方寒地大豆高产地区大豆高产实践中存在的突出问题,探讨了大豆产量变化中的易变因素和实现产量突破的可能方向,提出了北方寒地春大豆进一步高产的关键是:品种具有抗逆、耐密矮杆抗倒性,以窄行密植栽培模式为主,增加群体收获株数,土壤深松和化学调控农艺措施为辅,重点降低大豆落花落荚数,保证单株有效粒数,实现株数和单株粒数同步提高是进一步高产的重要途径。
Proposed by this study of Heilongjiang province78portion soybean materials for bud and seedling drought resistance identification and selection. Based on the theory of "three and structure", one focus of Heilongjiang province soybean drought types and high-yield cultivation mode of yield and photosynthetic performance indicators quantitative analysis. Research the characteristic of change of main parameter of production performance quantitative equation, interactions and its contribution to the yield formation. And discusse the effects of photosynthesis, soil index and yield components in chemical regulation and soil deep loosening of soybean. In order to clear the north cold and drought resistance and high yield soybean group performance optimization approaches. Further excavate the spring soybean yield potential. The results are as follows:
     1.20%respectively using PEG-6000solution and method of repeated drought of78portion soybean materials in Heilongjiang province for bud and seedling drought resistance identification and selection. The result showed that bud drought (the drought-tolerant) is mainly concentrated in the heinong, suinong, ken fung, hefeng and longxiaolidou varieties types. Seedling drought resistance varieties are mainly concentrated in heihe, kangxian, hefeng, suinong, heinong varieties types. Bud and seedling drought resistance varieties are suinong30and hefeng48. The drought-tolerant cultivars are tokangxian7, heinong62, heinong65, longxiaolil, suinongl51and Kenfeng11.
     2. Use seven soybean drought resistance varieties filtered in heilongjiang province as test materials, studied different kinds of plant leaf area. Dry matter accumulated and net assimilation rate and yield components. The results showed that the leaf area per plant were increased from seedling stage to drum grains gradually, drum period of peak, then a downward trend, the significant difference between varieties, hefeng48maxim leaf area of3264.1cm2, longxiaolil is1426.3cm2. Seven varieties are developing the net assimilation rate change rule is "high level" type. heinong65with black farmers in podding stage to drum grain stage period up to16.8g/(m2·d). Dry matter accumulation of varieties tested were gradually increased from seedling stage to filling stage, and dry matter accumulation amount to a significant difference between different varieties. Different growth period varieties has no regularity of dry matter. Drought-resistant varieties grain number per plant and hundred grain weight, weight per plant and yield were extremely significant difference of level. Heinong65yield was highest in2011, up to162.7kg/亩.followed by suinong30, Kenfeng11, kangxian7, suinong15. The lowest yield is longxiaolil (70.2kg/亩). Yield and drought resistance as the measure, the result shows heinong65, suinong30and Ken feng11for drought resistance and high yield varieties.kangxian7, hefeng48and suinongl5for drought-resistant varieties of middle region agriculture.longxiaolil for drought-resistant varieties of low yield.
     3. The study of six kinds of cultivation mode (ORP, TPCR, ORCP, BRHD, SRHD, FPHD)peace of soybean canopy structure characteristics. The results show that the small ridge planting density and big ridge performance in different growth period population leaf area distributed evenly in all directions, high leaf area index (6.43-6.82), mean leaf Angle is appropriate (49.59°), the penetration coefficient (0.2) and the direct of scattering radiation penetration coefficient is lower (0.2), the extinction coefficient is larger. Yields were3834.8kg/hm2, and3451.2kg/hm2, than controls (normal)) increased by1.36times and1.12times. The big ridge planting density, small ridge can be applied for high yielding cultivation patterns in heilongjiang province.
     4. Combined with field experiment and the "three combination structure" theory, through the data normalization process, the establishment of suitable soy leaf area dynamic simulation of relative leaf area index (LAI) dynamic model. Through the days of LAI and emergence to maturity normalized processing, respectively namely the biggest LAI (LAImax) and the whole growth period (emergence to mature) days as1.Reproductive period with soybean LAI value of each period and the period the number of days from the seedling stage respectively divided by LAImax and the number of days in the whole stages, for each period corresponding relative LAI (range of [0,1]) and relative time (the range [0,1]). With relatively LAI (y) and relative time (x) as a parameter simulation, get relatively LAI dynamic model y=(a+bx)/(1+cx+dx2). This model since seedling stage can be according to the determination of leaf area data throughout the reproductive period of soybean LAI dynamic change are accurately simulated. Using this model can estimate the soybean childbearing period the average gross LAI and photosynthetic potential. At each time point and LAI and photosynthetic potential at any period of time; Combined with field investigation data, also available during soybean growth of average net assimilation rate and the average production of soybean growth rate and other important physiological parameters related. This is the first study to validate the soybean leaf area dynamic simulation of relative leaf area index (LAI) dynamic model in line with the "three combination structure" theory. The establishment of the model for soybean production "three combination structure" the determination of quantitative equations of parameters laid a foundation. At the same time, the soybean population childbearing period LAI analog data can be used as judgment soybean group development is reasonable or not and the theory basis of group performance.
     5." Three combination structure " mode in crop yield analysis secondary structure based on the relation of the factors, established the drought-resistant varieties and different cultivation mode of high yield soybean quantitative equation " three combination structure ", a specific function relation between the parameters and the specific function of relation between each parameter. In this study, drought-resistant varieties photosynthetic parameters and the correlation between yield components, and some indicators of significant or extremely significant correlation. Production apart from EN was not significant and negative correlation with MLAI correlation is not big. The production and MCGR, HI, MNAR was a positive correlation. The TGN and designed. The GN and GW, and yield mainly depends on the MCGR, HI, followed by MNAR, TGN and GW. The drought resistance and high yield soybean varieties mainly by improving the MCGR prompted the TGN per unit area increased as a result, a higher harvest index, in order to achieve high goals. The cultivation mode of different photosynthetic parameters related to the parameters of yield components analysis show that Y and MLAI, MCGR, EN were very significant positive correlation, the TGN, GW, but no significant designed. The GN and positive correlation; MCGR with EN, TGN and GW reached extremely significant positive correlation, and designed. The GN show no significant positive correlation; HI and MNAR, EN, the TGN show no significant negative correlation. EN were very significant positive correlation with the TGN and GW. Designed the GN were very significant positive correlation with GW. Show that according to the three combination structure theory, the soybean high yield breeding and cultivation technology choice, can choose high MLAI, MCGR, EN, TGN, GW and lower HI index. MLAI soybean production performance quantitative equation MLAIxD xMNARxHI=ENxGN×GW is designed. The GN group parameters and yield formation of the quantitative relationship, clear key restrictive factors of increase production and crop production technical guidance control of provides the certain theory basis and data support.
     6. Study six kinds of cultivation mode (ORP, TPCR, ORCP, BRHD, SRHD, FPHD) peace, soil deep loosening and control techniques of soil water content, soil bulk density and yield influence. Results show that the TPCR, ORCP and BRHD deep loosening treatment than in control (ORP) high soil moisture content of0.76%to1.46%in the whole stages; Keep the soil bulk density in0.90to1.33g/cm3, compared with0.10.2g/cm3, and reduce Soil water use efficiency high and low respectively the SRHD> BRHD> ORCP. FPHD, TPCR> ORP), were1.3‰,1.2‰,1.1‰and1.0‰; Production/m2level for SRHD> BRHD> ORCP> FPHD> TPCR> ORP, the increase in production, respectively1.36times,1.12times and79.4%,50.1%and14.7%;Compared with ORP, Deep loosening and chemical treatment the yield increased by25.5%and15.2%(control) respectively.
     7. On the basis of BRHD and TPCR in heilongjiang province soybean cultivation mode of high yield and planting area, comprehensive analysis of two kinds of early maturity and mid-maturity yield components and cold northern soybean high yield of problems existing in the practicein soybean high yield area. Probes into the soybean yield change of variable factors and the possible direction of a breakthrough in production. Proposed the northern cold spring soybean high yield is the key to further:varieties have adversity resistance, densely short rod and lodging resistance art, give priority to with the cultivation mode of planting narrow line, increase the group number. Agronomic measures, soil deep loosening and chemical regulation focus on reduce the fallen petal fall soybean pod number. Guarantee the effective grain number per plant, grain number per plant and number of the synchronous improve is an important way of promoting the further high yield.
引文
1.蔡典雄,等.1993.关于持续性保护性耕作体系的探讨.土壤学进展,21(1):1-8.
    2.陈丽萍,何道一.2010.植物抗旱耐盐基因的研究进展[J].基因组学与应用生物学,29(3):542-549.
    3.陈素英,等.2002.玉米秸秆覆盖麦田下的土壤温度和土壤水分动态规律[J].中国农业气象,23(4):34-37.
    4.陈雪珍,等.2005.干旱胁迫下20个大豆品种芽期抗旱性鉴定初报[J].北京农学院学报,20(3):54-56.
    5.陈焱丽,等.2007.大豆源·库·流的研究进展[J].安徽农业科学,35(8):2251-2252.
    6.程建峰,等.2005.水稻抗旱性鉴定的形态指标,生态学报,25(11):3117-3126.
    7.褚旭东,等.不同干旱胁迫条件下水稻品种的抗旱性比较研究中国稻米,2006,5:45-34
    8.董钻.大豆产量生理[M].北京:中国农业出版社,2000.
    9.动态和增产机理研究[J].应用气象学报2000,11(9):137-143.
    10.傅金民,等.1998.大豆产量形成期光合速率和库源调节效应[J].中国油料作物学报,20(1):51-56.
    11.傅兆麟,刘东华.2005.小麦源·库关系的研究[J].安徽农业科学,33(8):1477-1479.
    12.富健,等.1994.大豆苗期抗旱性与根系生长的研究.吉林农业科学,5(4):21-22.
    13.高焕文,等.1995.旱地深松试验研究[J].干旱地区农业研究,13(4):126-133.
    14.高蕾,等.2009.干旱胁迫对大豆幼苗叶片生理生化特性的影响.东北农业大学学报,40(8):1-4
    15.龚吉蕊,等.2004.干旱胁迫下几种荒漠植物抗氧化能力的比较研究.西北植物学报,24(9):1570-1577.
    16.管春英.2005.改变源、库关系对大豆产量与品质的影响[D].长春:吉林农业大学出版社.112-115
    17.郭数进,李贵全.2009.干旱胁迫下不同大豆品系生理指标变化与抗旱性关系的研究.中国种业,21(6):38-40.
    18.郭新荣,2005.土壤深松技术的应用研究[J].山西农业大学学报,(1):74-77.
    19.郭屹立,等.2009.干旱处理对大豆光合生理特性及生物量的影响[J].中山大学研究生学刊,30(1):25-34.
    20.何进,等.2006.中国北方保护性耕作条件下深松效应与经济效益研究[J].农业工程学报,22(10):62-67.
    21.洪春来,等.2003.秸秆全量直接还田对土壤肥力及农田生态环境的影响研究[J].浙江大学学报(农业与生命科学版),29(6):627-633.
    22.胡国华.2008.我国大豆栽培学科发展展望[J].大豆通报,(3):5-8.
    23.胡立成.黑龙江省大豆栽培技术研究的回顾与展望[J].黑龙江省农业科学,2006,(12):55-58.
    24.胡立峰,等.2005不同土壤耕作法对作物产量及土壤硝态氮淋失的影响[J].水土保持学报,19(6):186-189.
    25.胡荣海,昌小平.反复干旱法的生理基础及其应用[J]1华北农学报,1996,11(3):51-56.
    26.黄升谋.2008.库源关系对杂交水稻根系活力的影响[J].安徽农业科学,36(21):8971-8972.
    27.籍增顺,等.1998.旱地玉米免耕系统土壤养分研究[J].华北农学报,13(3):62-67.
    28.贾强生,等.2006.大豆幼苗期根系特性和抗旱性关系初探.陕西农业科学,2(3):12-13.
    29.贾彦宙,等.2002.土壤保护性耕作技术研究[J].内蒙古农业科技.(6):12-13.
    30.姜勇,等.2004.免耕对农田土壤生物学特性的影响[J].土壤通报,35(3):347-351.
    31.张建平.2004.节水抗早种衣剂对冬小麦生理调节作用研究.硕士论文.
    32.金剑,等.2004.不同熟期大豆R4-R5期冠层某些生理生态性状与产量的关系[J].中国农业科学,37(9):1293-1300.
    33.金剑,等.2003.大豆高产群体的生态生理特征[J].中国油料作物学报,25(3):109-114.
    34.景蕊莲作物抗旱研究的现状与思考[J]1干早地区农业研究,1999,17(2):79285.
    35.康绍忠.2002.关于西北旱区农业与生态节水基本理论和关键技术研究领域若干问题的思考.中国科学基金,(9):23-26.
    36.孔照胜,等.2001.不同大豆品种抗旱性生理指标综合分析[J].华北农学报,16(3):40-45.
    37.黎裕.1993.作物抗旱鉴定方法与指标.干旱地区农业研究,11(1):91-99.
    38.李洪文,陈君达.1997.旱地农三种耕作措施的对比研究[J].干旱地区农业研究,15(1):7-11.
    39.李爱卿,等.2000.退化红壤植被恢复中土壤微团聚体及其有机碳的分布变化[J].土壤通报,31(5):193-196.
    40.李贵全,等.2000.不同大豆品种抗旱生理生态的研究[J].山西农业大学学报,20(3):197-200.
    41.李贵全,等.2006.不同大豆品种抗旱性综合评价.应用生态学报,17(12):2408-2412.
    42.李建东,等.2010.辽宁省野生大豆种子资源的SSR遗传多样性分析[J].大豆科学,29(1):28-32.
    43.李立科.1999.小麦留茬少耕秸秆全程覆盖新技术[J].陕西农业科学,4:40-41
    44.李明,杨克军,涂奉军等.2004.寒地高产玉米籽粒营业品质形成规律.玉米科学,12(增刊):11-13.
    45.李青苗,杨文玉.2003.烯效唑浸种对玉米壮苗的形态效应.玉米科学,11(3):66-69.
    46.李少昆,姜振东.1994.玉米化控技术及其应用.新疆农业科技.(4):8-9.
    47.李少昆,刘景德,李保成.作物产量源库性能模式及其应用的探索(下)[J].新疆农垦科技,1999,(2):9-11.
    48.李少昆,等.1994.玉米健壮素对玉米的生理效应.石河子农学院学报,12(1):7-8.
    49.李少昆,等.1991.乙烯利对玉米株型和产量的影响及其在生产上的应用.耕作与栽培,(5):25-28.
    50.李生秀,等.2005.窄行密植对大豆群体冠层结构及光分布的影响。新疆农业科学,42(6):412-414
    51.李舒凡,邵桂花.1992.大豆抗旱性鉴定方法的探讨与评价.作物杂志,(1):30-31.
    52.李新民,等.1991.亚有限大豆源库关系的研究[J].大豆科学,10(4):63-73.
    53.梁成第.1990.大豆生态、形态及产量性状与抗旱性研究.辽宁农业科学,1(2):3-7.
    54.林汉明,等.2009.中国大豆耐逆研究[M].北京:中国农业出版社,26-35.
    55.刘建国,等.2003.大豆群体冠层结构及光合特性的研究[J].石河子大学学报(自然科学版)7(3):189-190.
    56.刘建国,等.2003.单位叶面积负荷量对大豆源库调节效应的研究[J].石河子大学学报,7(4):259-262.
    57.刘金印,等.1987.大豆种植密度和群体结构指标的研究[J].大豆科学,6(1):1-9.
    58.刘良舟,等.1989.江淮下游大豆地方品种抗旱性鉴定的初步研究.南京农州大学学报,2(1):15-21.
    59.刘晓冰,等.2006.增加光照及其与改变源库互作对大豆产量构成因素的影响[J].大豆科学,25(1):6-10.
    60.刘晓冰,宋春雨.2001.美国大豆产量生理研究的进展[J].大豆科学,20(2):141-145.
    61.刘秀红,等.2008.不同施肥处理对大豆植株根系及产量的影响山西农业大学学报,28(1):7-10
    62.刘绪军,荣建东.2009.深松耕法对土壤结构性能的影响水土保持应用技术,1:9-12
    63.刘学义,等.1996.大豆成苗期根毛与抗旱性的关系研究.山西农业科学,24(1):27-30.
    64.刘学义,张小虎.1993.黄淮海地区大豆种质资源抗旱性鉴定及其研究[J],山西农业科学,21(1):19-24.
    65.刘学义.1986.大豆抗旱性评定方法探讨.中国油料作物学报,(4):23-26.
    66.刘学义.1995.黄土高原半干旱区旱作大豆研究进展[J].大豆通报,6:6-7.
    67.刘学义.1988.试论大豆抗旱育种[J].黄土高原半干旱区旱作大豆研究,23-41.
    68.刘莹,等.2003.大豆苗期根系与抗旱性基因差异的研究.作物杂志,(4):12-15.
    69.刘颖,等.2011.干旱胁迫下钾对大豆叶片保护酶活性及产量的影响[J].大豆科学,30(2):341-343.
    70.刘玉平,等.2009.密度与施胞对春大豆农艺性状及产量的影响[J].大豆科技,(2):24-26.
    71.刘玉平,等.2010.栽培模式与密度对大豆冠层结构及产量的影响大豆科学,29(5):797-802.
    72.刘忠堂.2002.大豆窄行密植高产栽培技术的研究[J].大豆科学,21(2):117-122.
    73.陆卫平.1997.玉米高产群体质量指标及其调控途径.北京农业大学[博士学位论文].
    74.罗教芬.1991.大豆种质资源抗旱性鉴定简报[J].大豆科学,4(10):342.
    75.罗永藩.1991.我国少耕与免耕技术推广应用情况与发展前景[J].耕作与栽培,2:1-7.
    76.吕军杰,等.2003.不同耕作方式对坡耕地土壤水分及养分生产效率的影响,农业气象,34(1):74--76.
    77.吕世霖,程舜华.1984.大豆子粒性状生态分布与育种.大豆科学,3(3):201-207.
    78.马兴林.1998.密度对玉米籽粒及秸秆产量的影响.作物杂志,6:12-13.
    79.门旗,等.2003.地膜覆盖对土壤棵间蒸发影响的研究[J].灌溉排水学报,22(4):17-20.
    80.苗保河,等.2007.波浪冠层群体微生态环境对高油大豆产量和品质的影响农业工程学报,23(12):230-235.
    81.苗保河.1997.大豆高产栽培模式的研究进展[J].大豆通报,(4):25-26.
    82.苗果园,等.1997.小麦旱地降水年型与氮素供应对产量的互作效应与土壤动态的研究[J].作物学报,23(3):263-270.
    83.宁淑香,姜敏.1999.多效唑处理对玉米抗旱能力的影响.辽宁农业科学,(2):12-14.
    84.秦胜华,等.2010.大豆源库流关系研究浅析.湖南农业科学,(17):54-56.
    85.邱丽娟,常汝镇.2006.大豆种子资源描述规范和数据标准[M].北京:中国农业出版社.
    86.饶春富.1993.春玉米大面积亩产吨粮田的产量构成因素浅析.玉米科学,1:13-16.
    87.任冬莲,等.1993.大豆成苗期抗旱性与根系生长的关系.中国油料,11(1):37-39.
    88.任海祥,等.2011.结荚鼓粒期土壤水分胁迫对不同大豆品种形态和生理特性的影响.中国油料作物学报,33(4):362-367.
    89.任书杰,等.2003.半干旱农田生态系统覆膜进程和施肥对春小麦耗水量及水分利用效率的影响[J].西北农林科技大学学报(自然科学版),31(4):1-5.
    90.山仑,陈培元.1998.旱地农业生理生态基础.北京:科学出版社.
    91.沈玉芳,等.2002.水分胁迫下磷营养对玉米苗期根系导水率的影响[J].西北农林科技大学学报,30(5):11-15.
    92.师江澜,等.2006.保护性耕作研究进展与评述[J].干旱地区农业研究,24(01):205-212.
    93.石绍河,等.2011.不同栽培技术对大豆土壤水分、容重及产量的影响.大豆科学,30(5):781-784.
    94.孙彩霞,等.2002.作物抗旱性生理生化机制的研究现状和进展.杂粮作物,22(5):285-288.
    95.孙彩霞,沈秀英.作物抗旱性鉴定指标及数量分析方法的研究进展.中国农学通报,2002,18(1):49-51.
    96.孙继颖,等.2007.不同品种大豆抗旱性能比较研究.华北农学报,22(6):91-97.
    97.孙继颖,等.2007.不同覆膜方式对旱作大豆生理特性及水分利用效率的影响.大豆科学,27(2):251-254.
    98.孙进,王义炳.2001.稻草覆盖对旱地小麦产量与土壤环境影响[J].农业工程学报,17(6):53-55.
    99.陈乐梅.2006.免耕覆盖对春小麦灌浆期干物质积累特性及最终产量的影响[J].干旱地区农业研究,24(6):21-24.
    100.孙星,等.2008.长期秸秆还田对剖面土壤肥力质量的影响[J].中国农学通报,16(3):587-592.
    101.孙祖东,等.2002.苗期干旱胁迫对大豆生长发育的影响与耐旱材料的筛选[J].广西农业科学,1:11-13.
    102.陶继哲,等.2004.少(免)耕保护性耕作机理及应用[J].农机化研究,5:59-60.
    103.王敏,等.2005.植物生长调节剂对干旱胁迫下大豆幼苗生长的影响.水土保持学报,19(4):34-36.
    104.王光华,刘晓冰,杨恕平,等.生殖生长期源库改变对大豆籽粒产量和品质的影响[J].大豆科学,1999,16(3):236-241.
    105.王金陵.1955.大豆根系的初步观察.农业科学,6(3):331-334.
    106.王晶.2007.不同耕作措施对土壤质量的影响[D].兰州:甘肃农业大学.
    107.王景文.1982.大豆株型数学模型与冠层中光的垂直分布[J].东北农学院学报,(3):24-26.
    108.王岚,等.2007.大豆超高产育种研究[J].大豆科学,26(3):407-411.
    109.王磊,等.2006.干旱和复水对大豆光合生理生态特性的影响.生态学报,26(7):2073-2078.
    110.王敏,等.2004.大豆品种苗期抗旱性研究.中国油料作物学报,26(3):29-32.
    111.王瑞云,等.2001.大豆抗旱的生理生态基础[J].山西农业大学学报,21(3):305-307.
    112.王仕新,等.1996.辽西半干旱地区深松中耕对作物产量的影响及其作用机理研究.应用生态学报,7(3):267-272.
    113.王四清,等.2005.大豆源、库关系的研究[J].华北农学报,20(12):1-4.
    114.王滔,等.1983.大豆叶一荚关系与产量的研究初报[J].大豆科学,2(1):63-73.
    115.王喜庆,等.1998.地膜覆盖对旱地春玉米生理生态和产量的影响[J].作物学报,24(3):348-353.
    116.王旭清,等.1996.干旱条件下氮营养对小麦不同抗旱品种生长的影响.作物学报,22(4):483-489.
    117.王艳士.2005.晋北地区不同耕作方式的生态效应研究[D].硕士论文.
    118.王以之,等.1986.PEG对大豆(Glycine Max)种子萌发的影响及幼苗生长抑制的研究.大豆科学,5(1):41-46.
    119.王永锋,等.2003.大豆不同生育期去叶对其生长发育及产量的影响[J].安徽农业科学,31(3):440-442.
    120.王之杰,等.2003.王纪华超高产小麦冠层光辐射特征的研究西北植物学报,23(10):1657-1662.
    121.王竹,杨文钰.2009.不同种植密度对套作大豆茎叶形态及产量的影响[J].安徽农业科学,(5):103-106.
    122.魏永霞,等.2007.半干旱区坡耕地抗旱保水技术集成对大豆水分利用效率的影响.灌溉排水学报,26(6):73-76.
    123.魏永霞,赵雨森.2007半干旱区坡耕地大豆抗旱保水技术集成模式对产量的影响.灌溉排水学报,26(5):40-45.
    124.吴佳惠.2010.生物有机复合肥对大豆产量及其构成因素的影响.安徽农业科学,16(17):131-133.
    125.武继承,朱洪勋,杨占平.不同水肥条件下旱地小麦水肥利用率研究.华北农学报.2003,18(4):95-98
    126.肖继兵,等.2011半干旱区中耕深松对土壤水分和作物产量的影响.土壤学报,42(3):609-613.
    127.谢晨,等.2008.大豆抗旱形态和生理生化指标研究进展.北京农学院学报,23(4):74-76.
    128.谢甫绨,等.2000.大豆品种耐旱性的评价.沈阳农业大学学报,31(3):238-241.
    129.辛平.2005.耕作方式与地表覆盖量对苜蓿及小麦地水蚀过程的影响[D].硕士论文.
    130.宿庆瑞,等.2006.大豆抗旱节水生理及水肥一体化栽培技术研究初报中国农学通报,22(8):225-228.
    131.徐学选,穆兴民1999.小麦水肥产量效应研究进展.干旱地区农业研究,17(3)6-12.
    132.许东河,等.1991.大豆百粒重与抗旱性及产量的关系.中国油料,18(3):29-32.
    133.许振柱,等.2004.土壤干旱对小麦叶片光合和氮素水平及其转运效率的影响[J].干旱地区农业研究,22(4):78-80.
    134.许忠仁,张贤泽.1989.大豆生理与生理育种.哈尔滨:黑龙江科学技术出版社,60-63.
    135.严洁,等.2005.保护性耕作对土壤理化性质和作物产量的影响[J].中国农机化,(2):31-34.
    136.杨朝辉,等.2008.浅谈黑龙江省大豆栽培技术的演变.黑龙江农业科学,(5):41-43
    137.杨棋,王金陵.1994.三种不同类型大豆及其杂种后代主要农艺性状的配合力分析.作物学报, 20(4):481-488.
    138.姚卫华.2007.机械化大豆“三垄”栽培技术增产效果及经济效益分析[J].大豆通报,(5):9-11.
    139.姚宇卿,等.2003.保持性耕作技术对旱区坡耕地水土流失的影响.西北农业学报,12(2):41-43.
    140.尹田夫.1986.不同抗旱型大豆茸毛适旱变态与茎形态的研究.大豆科学,5(3):223-226.
    141.张海燕,等.2005.大豆抗旱性鉴定指标评价的研究.大豆科学,24(3):183-188.
    142.张家榕,李贵全.2006.大豆农艺性状与抗旱性研究.山东农业大学学报,26(2):143-145.
    143.张敬涛,等.2009,半矮秆大豆窄行密植超高产栽培产量性状及产量结构研究.大豆科学,28(4):636-640.
    144.张敬涛,等.2002.不同栽培模式对大豆产量及生长发育的影响[J].中国农学通报,18(5):8-10.
    145.张明怡,等.2010.施肥对大豆产量、效益及养分平衡影响的研究.中国土壤与肥料,(3):31-34.
    146.张岁岐,山仑.1997.磷素营养和水分胁迫对春小麦产量及水分利用效率的影响[J].西北农业学报,6(1):22-251.
    147.张雯,等.2006.辽西易旱区不同耕作方式对土壤物理性能的影响[J].干旱区资源与环境,20(3):149-153.
    148.张晓艳,等.2011.密度对大豆群体冠层结构及光合特性的影响.干旱地区农业研究,24(9):76-79
    149.张跃进,等.2003.不同生育期大豆去叶对生长发育的影响[J].大豆通报,(5):12-13.
    150.章建新,胡根海.2002.春大豆高产栽培个体及群体发展动态指标的研究.新疆农业大学学报,25(1):1-4.
    151.章建新,等.2006.密度对高产春大豆生长动态及干物质积累分配的影响[J].大豆科学,25(1):1-5.
    152.赵二龙,等.1998.旱地小麦留茬少耕全程覆盖高产技术体系研究[J].西北农业学报,(4):44-47.
    153.赵婧,等.2011.不同时期喷施多效唑对大豆农艺性状及生理性状的影响[J].大豆科学,30(2):211-214.
    154.赵双进,张孟臣2002.栽培因子对大豆生长发育及群体产量的影响I.播期、密度、行株距(配置方式)对产量的影响[J].中国油料作物学报,(4):29-32.
    155.赵廷祥.2002.农业保护性耕作与生态环境保护[J].农村牧区机械化,(4):7-8.
    156.赵团结,等.2006.超高产大豆育种进展与讨论[J].中国农业科学,39:29-37.
    157.周春霖,等.2002.水作与旱作水稻生物量、籽粒产量及吸磷的比较研究[J].江苏农业科学,5:1-31.
    158.周勋波,等.2008.株行配置对夏大豆光利用特性、干物质积累和产量的影响[J].中国油料作物学报,30(3):322-326.
    159.周勋波,等.2010.不同株行距配置对夏大豆群体结构及光截获的影响.生态学报,30(3):691-697.
    160.朱鹏,等.2008.不同大豆品种苗期抗旱性比较.大豆科学,27(4):711-714.
    161.祝伟江,李圣超.2007.大豆大垄窄行密植栽培技术的几个关键环节.科技资讯,(3):223-224.
    162. Adams P D, Weaver D B.1998. Brachytic stem trait row spacing and plant population effects on soybean yield [J]. Crop Science,38(3):750-755.
    163. Ball R A, Purcell L C, Vories E D.2000. Optimizing soybean plant population for a short-season production sy stem in the southern USA [J]. Crop Science,40:757-764.
    164. Bayer C, Martin-Nito L, Mieliniczuk, Cetretta.2000.Effect of no till cropping systems on soil organic matter in asadyclay loam Acrisol from southern Brazil monitored by electron spin resonance and nuclear magnetic resonance, Soil & tillage research,53:95-104
    165. BENNIE A T P, BOTHA F J P.1986.Effect of deep tillage and controlled traffic on root growth, water-use efficiency and yield of irrigated maize and wheat [J]. Soil &Tillage Research,7(1-2): 85-95.
    166. Blevins R.L, Thomas G.W, Smith M.S, Frey W.W, Comelius P.L.1983.Changes in soil properties afterlO years continuous non-tilled and conventionally tilled [J].Soil and Tillage Research. (3)135-146.
    167. Board J E, Harville B G 1996.Growth dynamics during the vegetative period affects yield of narrow-row, late-planted soybean [J]. Agron. J,88:567-572.
    168. Board J E, Harville B G. 1992. Explanations for greater light interception in narrow-vs. wide-row soybean [J]. Crop Science,32:198-202.
    169. Board J E, Harville B G.1998. Late-planted soybean yield response tore productive source/sink stress [J]. Crop Science,38 (3):763-771.
    170. Board J E, Tan Q.1995. Assimilatory capacity effects on soybean yield components and pod number [J]. Crop Science,35 (3):846-851.
    171. Bouslama M, Schapaugh WT. Tolerance in soybean. I. Evaluation of threes creening techniques for heat and drought tolerance [J]. Crop Science,1984,24 (5):933-937.
    172. Bruce R R. Tillage and crop rotation effect on characteristics of sands surface soil [J]. Soil Sci SocAm,1990,54(6):1744-1747
    173. Brun W A. Soybean Physiology, Agronomy, and Utilization [M]. New York:Academic Press, 1978.45-76.
    174. Buah SSJ. Polito TA, Killorn R., No-tillage soybean response to banded and broascast and direct and residual fertilizer phosphorus and potassium application [J]. Agronomy. Joural 2000,92:657-662
    175. C oop er R L. Influence of soybean production practices on lodging and seed yield in highly production environ ments [J]. Agronomy Journa,1971,63:490-493.
    176. C.M. Hudak, R. P. Patterson, Vegetative Growth Analysis of a Drought-Resistant Soybean Plant Introduction [J]. Crop sci.1995,35:464-4711
    177. Cai S X, Wan g D X. Use value of some characters concerning drought resistance in winter wheat under water stress [J]. ActaAgriculturae Boreali Sinica,1993,8(1):1-6.
    178. Cai S X. Preliminary studies on evaluation of breeding value of trait srelated to drought resistance in wheat [J]. Acta Agriculturae Boreali Occideotal is Sinica,1997,6(1):26-29.
    179. Chan, K.Y and Pratley, J. Soil structural decline-Can the trend be reversed? In:Pratley, J and Robertson, A.(eds), Agriculture and the environmental imperative.1998,130-131
    180. Coop er R L. Influence of early lodging on yield of soybean [J]. Agronomy Journal 1971,63: 449-450.
    181. Eberbach P, Pala M. Crop row spacing and its influence on the partitioning of evapo transpiration by winter-grown wheat in Northern Syria [J]. Plan and Soil 2005,268 (1/2):195-208.
    182. Eduardo A. Tambussi, Salvador Nogues, Jose Luis Araus. Ear of durum wheat under water stress: water relations and photosynthetic metabolism [J]. Planta,2005,221(3) 446-458
    183. Evans L T, Dunstone R L. Some physiological aspects of evolution in wheat [J]. Australian Journal of Biology Sciences,1970,23:725-741.
    184. Evans L T. Crop physiology [M]. London:Cambridge University Press,1975.
    185. Frexio AA, de A. Machado PLO. Dos Santos HP. And Silva CA. and de S. Fadigas F. Soil organic carbon and fraction of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil [J].Soil and Tillage Research.2002,64(3-4):221-230
    186. Gan Y, Stulen I, Keulen HV, et al. Physiological Response of Soybean Genotypes to Plant Density [J]. Field Crop Research,2002,74:231-241.
    187. Ghuman B S. Clearing and use in the humid Nigerian topics:I. Soil physical properties[J].Soil SciSoc Am,1991,55(1):178-183
    188. Giaqunta R T, Quebedeaux B, Sadler N L, et al. Assimilate partitioning in soybean leaves during seed filling [A]. Shibles R. World Soybean Research Conference Ⅲ, Proceedings [C]. West view Press. Boulder, CO.1985.729-738.
    189. Gupta P K, Rustgi S, Kulwal P L. Link age disequilibrium and association studies in higher plants: Present status and future prospects [J].Plant Mol Biol,2005,57:461-485.
    190. Gustafson A. Fleischer S, Joelsson A.A catchments-oriented and cost-effective policy for water Protection [J]. Ecological Engineering,2000,14(4):419-427
    191. Halnlyn G Monitoring Plant and soil water status:established and novel methods Revisited and their relevance to studies of drought tolerance [J]. Joumal of Experimental Botany,2007,58(2):119-130.
    192. Jiang L. Summary on research ways for crop drought resistance [J]. Gui z hou A gri cultural Sciences,1999,27(5):70-72.
    193. Julie C. Naumann, Donald R. Young, John E. Anderson. Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species [J]. Physiologia Plantarum,2007,131 (3):422-433.
    194. Kadhem FA, specht J E, Williams J H1 Soybean irrigation serially, timed daring stages yield component s response [J]. Agron J,1985,77:299-304.
    195. Kay, B.D. Rates of change of soil structure under different cropping systems, In:Stewart, B.A. (eds).Advance in Soil Science.1990,12:1-2
    196. Kozhushko N N. Evaluation of the drought resistance of field crops [J]. Diagnostic ustoichivosti rasteniik stress ovym. Vozdeistviya,1980,10-25.
    197. Kpoghomou B K, Sapra V T, Beyl C A. Sensitivity to drought stress of three soybean cultivars during different growth stages. Journal of Agronomy and Crop Science,1990,164 (2):104-109.
    198. Kristin A. Schreider, Mary E. Brobhers, James D. Kelly. Marker assisted selection to improve drought resistance in common bean [J]. Crop Science,1997, (37):51-60.
    199. Lal R, Griffin M, Apt J. Managing soil carbon [J]. Science,2004,304(4):393
    200. Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004,304(11):1623-1627
    201. Lal, R. and Stewart, B.A. Soil degradation:a global threat, In:Lal, R. and Stewart, B.A.(eds), Soil Degradation. Advance in Soil Science.1990,11:8-17
    202. Lee JD, Smothers SL, Dunn D, et al. Evaluation of a simple method to screen soybean genotypes for salt tolerance[J].Crop Science,2008,48(6):2194-2200.
    203. Liu P, Guo W S, Pu H C et al. Effects of high temperature during grain filling period on antioxidant enzymes and lipid peroxidation in flag leaves of wheat [J]. Sci. Agric. Sin.,2005,38(12):2403-2407
    204. Mian M A R, Bailev D D, et al. Melecular makers associated with water use efficiency and leaf ash in soybean [J]. Crop Science,1996, (36):1252-1257.
    205. Myakushko Yu P, Ivanova O S. Evaluation of a collection of soybean material in the area of inadequate moisture in Rostov province. Nauchno Tekhnicheskii Bulletin Vsesoyuznogo Nauchno Issledovatel skogo Institute Moslichnykh Kultur,1988, (2):20-23.
    206. Niu F X, Hua X X, Guo X D, et al. Studies on several physiological indexes of the drought resistance of sweet potato and it scomprehensive evaluation [J]. Acta Agronomica Snica,1996,22(4):392-398.
    207. Paendiek P, ParrJ F. The way of the future of russet in balladry land agriculture[J].Annals Of aril dozen,1997,36:193-208
    208. Purcell L C, Ball R A, Reaper J D, Vories E D. Radiation use efficiency and biomass production in soybean at different plant population densities[J]. Crop Science,2002,42:172-177.
    209. Riehard R A Physiologieal traits used in the breeding of new eultivars for water-searee environments [J]. Agricultural Water Managemeni 2006,80:197-211.
    210. Roscoe R and Buurman P. Tillage Effects On Soil Organic Matter in Density Fraction of A Cerrado Oxisol [J]. Soil and Tillage Research.2003,70(2):221-228
    211. ROSS C W. The effect of sub soiling and irrigation on potato production [J]. Soil&Tillage Research, 1986,7(4):315-325.
    212. Row se, H. R. and St one, D. A.1980/1981. Deep cultivation of asandyclay 1 oam:1. Effects on gowth, yield and nutrient content of potatoes, broad beans, summer cab age and red beer in 1977.Soil & Tillage Research,1:57-58.
    213. Russell, W. A. Genetic improvement of maize yields. Advances in Agronomy.1991,46:245-298
    214. Shar ma K, Neelu W, S harma K, Wai ia N. Growth and yield of soybean as influenced by light intensity and cytokinin [J]. Indian Agric,1996,39:253-257.
    215. Sahed H, Kirkwood R C. Response of adapted and unadapted soybean cell suspension cultures to water stress [J]. Phyton Horn,1992,32 (2):263-275.
    216. Schobeck M W, Hsu F C, Carlsen T M. Effect of pod number on dry matter and nitrogen accu亩lation and distribution in soybean [J]. Crop Science,1986,26:783-788.
    217. SehulzeED. Biologieal eontrol of the terrestrial carbon sink#Biogeosciences,2006,3:14-16
    218. Shangguan Z P, Shao MA, Ren S Jeral. Effect of nitrogen on root and shoot relations and gas exchange in winter wheat [J]. Botanieal Bulletin of Aeademia Siniea,2004,45:49-54
    219. Silleos N, Perakis K, Petsanis G. Assessment of crop damage using space remote sensing and GIS. 2002,23 (3):417-427
    220. Sinclair T R and Bai Q. Analysis of high wheat yields in northwest China [J]. Agri Systems,1997,53: 373-385
    221. Sinclair T. R., Purcell L. C., and Sneller C. H. Crop transformation and the challenge to increase yield potential [J]. Trends in Plant Science.2004,9 (2):70-75
    222. Slafer G A., Satorre E. H., Andrade F. H.1994. Increase in grain yield in bread wheat from breeding and associated physiological changes, In:Slafer G A. (ed.) Genetic improvement of field crops. New York, Basel, Hong Kong:Marcel Dekker, Inc. pp.1-68
    223. Slafer GA, JL Arausl Improving wheat responses to abiotic2st ress[A]//A E Slinkard (ed)l Proceedings of the 9th International Wheat Genetics Syposium [C]1 Saskatchewan:Can2ada university Extension Press,1998:201-203.
    224. Sloane R J, Ptterson R P, Carter T E Jr. Field drought tolerance of a soybean plant introduction [J]. Crop Science,1990,30 (1):118-123.
    225. Smith W., Jr Haimon H., Jr Harrell, et al. Ontogenetic model of cotton yield [J]. Crop Sci,1976,16 (1):30-36
    226. Solie J B, Whitney R W, Broder M F. Dynamic pattern analysis of two pneumatic granular fertilizer applicators [J]. Applied Engr Agr,1994,10:335-340
    227. Stooksbury D E, Michaels P J. Climate change and large-area corn yield in the southeastern US. Agron. J.1994,86:564-569
    228. Sun C X, Shen X Y. Advances in studies on identification indexes and methods of quantitative analyses for crop drought resistance [J]. Chinese Agricultural Science Bullet in,2002,18(1):49-51
    229. Tebrugge, F. A. Bohrmsen. Farms and experts options in no-tillage in West-Europe and Nebraska, paper presented at I world congress on conservation Agriculture[J].Madrid, Spain, Octoberl-5, ISTROC 2001,774-779
    230. Thomas H., C. J. Howarth. Five ways to stay green [J]. J. Exp. Bot.2000,51:329-337
    231. Todd G W, D L Websterl Effect of repeated drought periods on photosynthesis and survival of cereal seedlings [J]. 1Agron2omy Journal,1965,57:399-404.
    232. Tokatilids I.S., Koutroubas S. D. A review of maize hybrids'dependence on high plant populations and its implications for crop yield stability [J]. Field Crops Research,2004.88:103-114
    233. Tollenaar M, Ahmadzadeh A, Lee E. A.. Physiological basis of heterosis for grain yield in maize [J]. Crop Sci.2004,44 (6):2086-2094
    234. Tollenaar M. Physiological basis of genetic improvement of maize hybrids in Ontario from 1959 to 1988. Crop Sci.1991,31:119-124
    235. Tollenaar M., Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Res, 2002,75:161-169
    236. Tomasz Hura, Katarzyna Hura, Maciej Grzesiak, et al. Effect of long-term drought stress on leafgas exchange and fluorescence parameters in C3 and C4 plants[J].ACTA PHYSIOLOGIAEPLANTARUM,2007,29(2):103-113.
    237. Unger P W. Effect of wheat yield under no-tillage in different rainfall area [J]. Advance in Agronomy, 1981,33:1-8
    238. Unger P W. Qrganic matter, nutrient and PH distribution in no and conventional-tillage semiaria soil [J].A-gron,1991,83(1):186-189
    239. Venkateswarlu B,Visperas R M. Source-sink relationships in crop plants:a review [J]. International Reliability Physics Symposium,1987, (2):125.
    240. Venkateswarlu B., Visperas R. M. Source-sink relationships in crop plants:a review. IRPS,1987,125
    241. Virk P. S., Khush G. S., Peng S. Breeding to enhance yield potential of rice at IRRI:the ideotype approach. IRRN,2004,29 (1):5-9
    242. Vit tal,K. P. R., Vijayalaks hmi,K. and Rao, U. M.B.1983. Effect of deep tillage on dry land crop production in red soil of India [J]. Soil & Tillage Research,3:377-384.
    243. Waddell J T.Weil R R. Water distribution in soil under Ridge-Till and No-till Com[J].Soil Soc Am, 1996,60:230-237
    244. Waddington, S. R., J. k. Ranson, M. Osmanzai, A. Saunderrs. Improvement in the yield potential of breeding wheat adapted to north-west Mexico [J]. Crop Sci.1986,26:698-703
    245. Wang P,Zhang C J,Chen G X et al. Effects of low temperature on lipid peroxidation and fatty acid composition of flag leaf in rice [J]. Acta Agron.Sin.,2006,32(4):568-572
    246. Wang Z Y, Lv J Y, L iF M, Xu B C. Effect of root excision on competitive ability and yield of winter wheat. Journal of Plant Ecology,2007,31(2):300-304.
    247. Wardle D A, Ghani Z L.A critique of the microbial metabolic quotient (qC02) as a bioindicator of sturbance and ecosystem development [J]. Soil Biology and Biochemistry,1995,27,1601-1610
    248. Wardle D A. Impacts of disturbance on detritus food web sinagroeco systems of contracting tillage and weed management practices [J]. Advances in Ecological Research,1995,26:105-185
    249. Wardle D, Bardgett R, Klironmos J. Ecological linkages between aboveground and belowground biota [J]. Science,2004,304:1629-1633.
    250. Watson, D. J. The dependence of net assimilation rate on leaf area index [J]. Ann. Bot. N. S.1958,22: 37-54
    251. Wells R, Burt on JW, Kilen TC. Soybean Growth and Light Interception to Differing Leaf and Stem Morphology [J]. Crop Sci,1993,33:520-524.
    252. Wells R, Meredith WR Jr, Will ford JR. Canopy photosynthesis and its relationship to plant productivity in near isogonics cotton lines differing in leaf morphology [J]. Plant Physiol,1986,82: 635-640.
    253. Wells R. Soy bean growth response t o plant density [J].Crop Science,1991,31(3):755-776.
    254. Wilson J. Photosythesis and energy conversion. In:Warring P. F., Cooper J. P. eds. Potential Crop Production Educationnal Books. Exeter N. H.1971, pp.43-75
    255. Wilson, D. Breeding for morphological and physiological trait. In:Frey K. J. (ed.), Plant Breeding II, 1981,33-290
    256. Wim Van Camp. Yield enhancement genes:seeds for growth. Current Opinion in Biotechnology. 2005,16:147-153
    257. Yang J C,Wang Z Q, Zhu Q S. Drought resistance and its physiological characteristics in rice varieties [J]. Sci entia A g ricu ltura S inica.,1995,28(5):65-72.
    258. Yu J Y, He X H. Data Statistics. Analysis and SPSS Application. Beijing:Pepole's Postal Press,2003.
    259. Zhang JX, Li JS. The effect of sol id seeding on the growth of soybean root in high yield spring soybean [J]. Soybean Science,2007,26 (4):500-505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700