用户名: 密码: 验证码:
落叶松人工林生物量和碳储量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生物量是陆地生物量的主要组成部分,如何准确地估算森林的生物量和碳储量是森林生态系统研究的主要内容之一。本研究以全国6个落叶松人工林主产区的209块标准地的310株单木生物量实测数据为基础,对落叶松人工林生物量预估模型的技术方法和精确估算碳储量进行系统的研究。详细阐述贝叶斯原理在生物量建模中的运用,比较了贝叶斯方法和贝叶斯分层方法,为生物量建模提供了一种新的可行的技术方法;基于贝叶斯分层方法建立单木及各组分生物量模型,分析了区域间单木生物量的变化规律;并结合二类资源调查数据,利用生物量转换因子连续函数估算林分生物量;以实测单木各组分的碳系数估算各区域单木和林分的碳储量,分析它们的差异变化,为全国性落叶松生物量和碳储量建模与监测提供可靠的理论和技术支持。
     通过本项研究得出以下主要结论:
     (1)收集了80篇文献,共计304个关于地上部分生物量的异速生物量模型。虽然这些模型具有广泛的分布范围,而且是对不同树种或者不同区域相同树种的模拟,但模型参数a、b值变化范围较小,符合二元正态分布。将80篇文献按照不同的属对其模型参数a、b进行方差分析,参数a在属间差异不显著,参数b存在显著性差异。
     (2)以异速生物量方程为基础,比较贝叶斯方法和最小二乘法的建模效果,在此基础上分析贝叶斯方法和贝叶斯分层方法的建模效果。结果表明,在拟合样本≥50时,最小二乘法和贝叶斯方法的拟合效果无显著差异;当拟合样本<50时,贝叶斯方法的拟合效果优于最小二乘法。进一步分析贝叶斯方法和分层方法的建模效果发现,贝叶斯分层方法建模的偏差信息准则DIC明显低于贝叶斯方法,且其决定系数R2均有所提高。通过F值来检验两种方法建模的差异性,表明贝叶斯方法和贝叶斯分层方法在单木生物量、干材生物量、树根生物量、树枝生物量和树叶生物量模型中均存在显著差异。因此,贝叶斯分层方法优于贝叶斯方法。
     (3)基于贝叶斯方法建立的单木及各组分生物量模型,结合胸径和树高生长方程,分析树龄对生物量分配格局的影响。干材生物量占单木生物量的比例呈现逐年上升趋势,树根、树叶、树皮和树枝生物量占单木生物量的比例均成逐年下降趋势。比较6个区域间单木生物量和各组分生物量的变化规律,结果表明,单木生物量和干材生物量为湖北的日本落叶松﹥甘肃的日本落叶松﹥辽宁的日本落叶松﹥黑龙江的长白落叶松﹥河北的华北落叶松﹥内蒙的兴安落叶松,其它组分在区域间也无明显规律。
     (4)以贝叶斯分层方法为基础,建立生物量转换因子方程,并结合湖北、甘肃和辽宁3个区域的二类资源调查数据,估算落叶松林分生物量,区域内林分每公顷生物量的平均增长量均呈现为中龄林﹥幼龄林﹥近熟林﹥成熟林的规律,区域间的生物量呈现为湖北日本落叶松﹥甘肃日本落叶松﹥辽宁日本落叶松的规律。3个区域的落叶松人工林生物量的平均值分别为61.34t/hm2、54.91t/hm2和50.51t/hm2;林分总生物量分别为723941.83t、984962.26t和8263708.41t。
     (5)通过实测不同区域落叶松各组分的碳系数,通过方差分析,表明碳系数在不同组分和不同区域间存在显著差异。因此,以区域为单位确定了区域间各组分的碳系数,并以各组分生物量占单木生物量的比值为权重,得出不同区域落叶松单木的碳系数。
     (6)基于单木生物量模型、生物量转换因子方程和实测碳系数,计算不同区域落叶松人工林的碳储量。区域间单木和干材的碳储量的变化规律为湖北的日本落叶松﹥甘肃的日本落叶松﹥辽宁的日本落叶松﹥黑龙江的长白落叶松﹥河北的华北落叶松﹥内蒙的兴安落叶松,其它各组分的碳储量在区域间的变化规律不明显。湖北省、甘肃省和辽宁省3个区域林分每公顷碳储量在不同龄组间的变化规律为湖北日本落叶松﹥甘肃日本落叶松﹥辽宁日本落叶松;3个区域林分每公顷的碳储量和总的碳储量分别为33.19t/hm2、26.30t/hm2、23.79t/hm2和391652.52t、471796.92t和3909044.37t。
     (7)根据单木、林分的生物量和碳储量的年增长变化规律,确定了单木、林分生物量和碳储量增长量的峰值。落叶松单木生物量的年增长量在23年之前逐渐增大,23-26年之间年增长量达到最大,26年之后增长量逐年减少。林分生物量和碳储量的年增长量的峰值在中龄林,其变化规律为中龄林﹥幼龄林﹥近熟林﹥成熟林。
Forest ecosystem is a mainly body of the earth's terrestrial biosphere,and accuratelyestimate the forest biomass and carbon sequestration plays an important role in global carboncycle. In this study, data of tree biomass were obtained from destructive sampling of310treesin six different regions of larch plantation in China. Technical and precies for estimating andpredicting the biomass and carbon storage for larch plantation conducted a study of a system inthe paper. Bayesian approach was used to establish the biomass model for comparing theBayesian no-hierarchical and Bayesian hierarchical approach. Bayesian hierarchical approachprovided a new method to establish the biomass modeles. Baesd Bayesian hierarchicalapproach, the continuous biomass expansion factor (BEF) method was used to estimate thestand biomass which combined National Forest Resource Inventory Data. The carbon storageof trees and stands were estimated under measured carbon content from the each componentsamples. The variation in different regions of the biomass and carbon storage were alsoanalyzed. These provided technical and theorical support for accounting and monitoring theChinese forest biomass and carbon stocking.
     The mainly conclusions were as foollows:
     (1)304functions of80papers was collectted which represented the allometryaboveground biomass model. Although these models have a broad distribution which are thesame species or different species in different regions, but the values of parameters a and b werea small range of variation. It found the distribution of the parameters a and b were wellapproximated by a bivariate normal. ANOVA was tested to parameters in different Genus. Theresult showed that there was only significant difference in parameter b.
     (2) Allometric biomass equations of the total and each component were fitted used byminimum-least-square regression and Bayesian approach. Meanwhile the Bayesianno-hierarchicaland and Bayesian hierarchical approaches was also used to built and compared the biomass model. The result showed that with sample size was more than50, both bayesianmethod and minimum-least-square regression was no significant difference in the meanabsolute error. And it was less than50, bayesian method was better than minimum-least-squareregression. Compared to Bayesian no-hierarchical and Bayesian hierarchical approaches,Deviance information criterion (DIC) reduced and the coefficient of determination (R2)elevated when used Bayesian hierarchical approach. F test was used to analyze the differencesof effect models in the two methods. There were a significantly differences except theallometric equations of skin. Therefore, Bayesian hierarchical approach was a better approachthan Bayesian no-hierarchical when they used to estimate the biomass in large scales.
     (3) Based Bayesian hierarchical approaches to build the bioamss model of the total andeach component, and the diameter and height growth equations was also built for predicted thetree’s total and each component biomass. The proportions of each component biomass werecalculatedand analyzed the changing order with ages in six regions. The result showed that theproportion of stem biomass was a rising trend, and the proportions of root, skin, branch andleaf biomass exhibited a declining trend. The each component and total biomass were alsoanalyzed the changing with the ages. The result showed that root, skin, branch and leaf biomasshad not a significant trend. But stem and total biomass had a consistent variation whichfollowed L. kaempferi of Hubei province﹥L. kaempferi of Gansu province﹥L. kaempferi ofLiaoning province﹥L. olgensis of Heilongjiang province﹥L. principis—rupprechtii of Hebeiprovince﹥L. gmelinii of Inner Mongolia.
     (4) Continuous biomass expansion factor of stand biomass were built that used byBayesian hierarchical approach. Combined National Forest Resource Inventory Data toestimated the standing biomass of different regions. The biomass of per hectare in each regionwas followed middle stands﹥young stands﹥pre-mature stands﹥mature stands, and thebiomass of per hectare in different regions was followed L. kaempferi of Hubei province﹥L.kaempferi of Gansu province﹥L. kaempferi of Liaoning province.The biomass of per hectare were respectively61.34t/hm2,54.91t/hm2and50.51t/hm2, and the total standing biomasswere respectively723941.83t,984962.26t and8263708.41t.
     (5) The carbon content of each component was measured in different regions whichplayed an important role in accurately estimate the carbon stocking. ANOVA was tested tocarbon content of each component. It found that there was significant variation in differentregions of each component. Therefore, The carbon content of each component was determinedin every region,and the carbon content of tree was calculated by the weighted whose based onthe proportions of each component biomass.
     (6) The carbon storage of larch plantation was calculated which based on trees models,standing models and carbon content. The tree’s carbon stocking were also analyzed thechanging with the age in six regions. These showed that stem, skin, branch and leaf carbonstorage had not a significant trend. But total and stem carbon storage had a consistent variation,the followed order was L. kaempferi of Hubei province﹥L. kaempferi of Gansu province﹥L.kaempferi of Liaoning province﹥L. olgensis of Heilongjiang province﹥L.principis—rupprechtii of Hebei province﹥L. gmelinii of Inner Mongolia. The carbon storageof per hectare was followed order: L. kaempferi of Hubei province﹥L. kaempferi of Gansuprovince﹥L. kaempferi of Liaoning province. The carbon storage of per hectare wererespectively33.19t/hm2,26.30t/hm2,23.79t/hm2, and thetotal standing carbon storage wererespectively391652.52t、471796.92t and3909044.37t。
     (7) The growth inflections of trees and stands were determined from analyzed the biomassand carbon storage growth in each year. Annual biomass and carbon storage growth of treeswere increased before23years, and the increasement reached maximum between23-26years,and Annual increasing growth decreased after26years. The growth inflection of stands wasmidel stand. Annual biomass and carbon storage growth of per hectare were followed middlestands﹥young stands﹥pre-mature stands﹥mature stands
引文
白文明,程维信,李凌浩.微根窗技术及其在植物根系研究中的应用[J].生态学报,2005,25(11):3076-3081.
    曹吉鑫,田赟,王小平,等.森林碳汇的估算方法及其发展趋势[J].生态环境学报,2009,18(5):2001-2005.
    崔崧.基于微气象学方法的落叶松人工林CO2通量研究[D].东北林业大学,2007.
    董利虎,刘福香,王鹤智,等.含度量误差的黑龙江省主要树种生物量相容性模型应用[J].生态学报,2011,22(10):2653-2661.
    党永峰,曾伟生,王雪.东北落叶松不同器官的含碳系数分析[J].林业资源管理,2011,47(4):33-39.
    方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638.
    方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等science一文(Science,2001,2320-2322)的若干说明[J].植物生态学报,2002,26(2):243-249.
    方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967-973.
    方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508.
    方晰,田大伦,项文化.速生阶段杉木人工林碳素密度贮量和分布[J].林业科学,2002,38(3):14-20.
    方运霆,莫江明,黄忠良,等.鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征[J].热带亚热带植物学报,2003,11(l):47-52.
    冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述[J].自然资源学报,2004,19(3):369-378.
    冯宗炜,王效科,吴刚.中国森林生态系统的生物量与生产力[M].北京:科学出版社1999.
    符利勇,曾伟生,唐守正.利用混合模型分析地域对国内马尾松生物量的影响[J].生态学报,2011,31(19):5797-5808.
    耿丽君,许中旗,张兴锐,等.燕山北部山地华北落叶松人工林生物碳贮量[J].东北林业大学报,2010,38(6):43-52.
    康冰,刘世荣,蔡道雄,等.南亚热带杉木生态系统生物量和碳素积累及其空间分布特征[J].林业科学,2009,45(8):147-153.
    康惠宁,马钦彦,袁嘉祖.中国森林碳汇功能基本估计[J].应用生态学报,1996,7(3):230-23.
    李春平,吴斌,张宇清,等.山东郓城农田防护林杨树器官含碳率分析[J].北京林业大学学报,2010,32(2):74-78.
    李铭红,于明坚,陈启常,等.青冈常绿阔叶林的碳素动态[J].生态学报,1996,16(6):645-651
    李海涛,王姗娜,高鲁鹏,等.赣中亚热带森林植被碳储量[J].生态学报,2007,27(2):693-704.
    刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740
    骆期邦,曾伟生,贺东北,等.单木地上生物量模型的建立及其应用研究[J].自然资源学报,1999,14(3):271-277
    罗云建,张小全,侯振宏,等.我国落叶松林生物量碳计量参数的初步研究[J].植物生态学报,2007,31(6):1111-1118.
    马钦彦,谢征鸣.中国油松林储碳量基本估计[J].北京林业大学学报,1996,18(3):107-112.
    马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5):96-100.
    孟宪宇.测树学[M].中国林业出版社,2006.
    聂道平,徐德应.全球碳循环与森林关系的研究:问题与进展[J].世界林业研究,1997,10(5):33-40.
    阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究——含量与分布规律[J].生态学杂志,1997,16(6):17-21.
    盛炜彤,范少辉.杉木及其人工林自身特性对长期立地生产力的影响[J].林业科学研究,2002,15(6):629-636.
    盛炜彤,范少辉,马详庆,等.杉木人工林长期生产力保持机制研究[M].北京:科学出版社,2005:111-135.
    沈亚洲,孙晓梅,张江涛,等.甘肃小陇山林区日本落叶松人工林单木生物量研究[J].林业科学研究,2011,24(4):517-522.
    孙玉军,张俊,韩爱惠,等.兴安落叶松幼中龄林的生物量与碳汇功能[J].生态学报,2007,27(5):1756-1762.
    唐守正,李勇.生物数学模型的统计学基础[M].北京:科学出版社,2002.
    唐守正,张会儒,胥辉.生物量相容性模型的建立及其估计方法研究[J].林业科学,2000,36(专刊1):19-27.
    唐宵,黄从德,张健,等.四川主要针叶树种含碳率测定分析[J].四川林业科技,2007,28(2):20-23.
    王宏全.基于标准地和遥感数据的北亚热带高山区日本落叶松林生物量模型研究[D].中国林业科学研究院,2010.
    王宏全,孙晓梅,张灿明等.北亚热带高山区日本落叶松林生物量相容性模型研究[J].东北农业大学学报2011,42(2):131-138.
    王宏全,孙晓梅,张灿明,等.基于TM的北亚热带高山区日本落叶松林生物量模型[J].中南林业科技大学,2010,30(10):10-17.
    王宏星.不同发育阶段日本落叶松人工林养分特征的研究[D].中国林业科学研究院,2012.
    王金叶,车克钧,蒋志荣.祁连山青海云杉林碳平衡研究[J].西北林学院学报,2000,5(1):9-14.
    王秀云.不同年龄长白落叶松人工林碳储量分布特征[D].北京林业大学,2011.
    王绍强,周成虎,李克让,等.中国土壤有机碳库及其空间分布特征分析[J].地理学报,2000,55(5):533-544.
    王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展,1999,18(3):238-244.
    王仲锋.森林生物量建模与精度分析[M].北京林业大学,2006
    王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    吴冬秀,书文姗,宋创业,等.陆地生态系统生物观测规范[M].北京中国环境科学出版社,2007.
    项文化,田大伦,闫文德.森林生物量与生产力研究综述[J].中南林业调查规划,2003,22(3):57-60.
    薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    杨承栋.造林树种土壤质量演化与调控机理[M].北京:科学出版社,2009
    姚延梼,陈建中,胡建芳.华北落叶松[J].中国农业科学技术出版社,2013.
    于贵瑞,伏玉林,孙晓敏,等.中国陆地生态系统通量观测研究网络(China FLUX)的研究进展及其发展思路[J].中国科学D辑,2006,36(增2):1-21.
    胥辉,刘伟平.兼容性生物量模型的研究[J].福建林学院学报,2001,21(1):18-23
    胥辉.林木生物量模型研究综述[J].林业资源管理,1997,5:33-36.
    胥辉.单木生物量模型构建及估计方法研究[D].北京林业大学,1998.
    胥辉.生物量模型方差非齐性研究[J].西北林学院学报,1999a,19(2):73-77.
    胥辉.一种与蓄积相容的生物量模型[J].北京林业大学学报,1999b,21(5):32-36.
    胥辉,张会儒.林木生物量模型研究[M].昆明:云南科学技术出版社,2002.
    张会儒,唐守正,王奉瑜.与蓄积相容的生物量模型的建立及其估计方法研究[J].林业科学研究.1999,12(1):53-59.
    张会儒,唐守正,胥辉.生物量模型中的方差问题[J].林业资源管理.1999,1:46-69
    张会儒,赵有贤,王学力,等.应用线性联立方程组建立相容性模型研究[J].林业资源管理,1999,6:63-67.
    赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势[J].应用生态报,2004,15(8):1468-1472.
    周本智.基于小观察窗技术的竹林地下系统动态研究[D].中国林业科学研究院,2006.
    周玉荣.我国主要森林生态系统碳储量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    周玉荣,于振良,赵士洞.我国主要森林生态系统碳储量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    曾伟生.全国林木生物量建模方法研究[D].中国林业科学研究院,2011.
    曾伟生,唐守正.利用混合模型方法建立全国和区域兼容性单木生物量方程[J].中南林业调查规划,2010,29(4):1-6.
    曾伟生,夏忠胜,朱松,等.贵州人工杉木相容性单木蓄积和地上生物量方程的建立[J].北京林业大学学报,2011,33(4):1-6
    曾伟生,骆期邦,贺东北.加权回归和建模[J].林业科学,1999,35(5):5-11.
    曾伟生,唐守正,夏忠胜,等.利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程[J].林业科学研究,2011,24(3):285-291.
    曾伟生,张会儒,唐守正.单木生物量建模方法[M].中国林业出版社,2011.
    朱桂林,韦文珊,张淑敏,植物地下生物量测定方法概述及新技术介绍[J].中国草地学报,2005,30(5):94-99.
    Angelsen A. Moving Ahead with REDD: Issues, Option and Implications[M]. CIFOR Bogor Indonesia,2008.
    Alexeyev V, Birdsey R, Stakanov V, et al. Carbon in vegetation of Russian forests: methods to estimatestorage and geographical distribution[J]. Water, Air and Soil Pollution,1995,82:271-282.
    Ash J, Helman C. Floristics and vegetation biomass of a forest catchment, Kioloa, south coastal New SouthWales[D]. Cunninghamia,1990,2:167-182.
    Ashi Q, Pariva R, Badola R, et al.. A review of protocols used for assessment of carbon stock in forestedlandscapes[J]. Ebviromental Science&Policy,2012,6:81-89.
    Asner G P. Cloud cover in Landsat observations of the Brazilian Amazon[J]. International Journal of RemoteSensing,2001,22:3855-3862.
    Ares A, Fownes J H. Comparisons between generalized and specific tree biomass functions as applies totropical ash (Fraxinus uhdei). New Forest,2000,20(3):277-286.
    ASTM. Standard Methods for Moisture, Ash and Organic Matter of Peat and Other Organic Soils[M].American Society for Testing and Material, West Conshohocken, USA.2000.
    Baldocchi, D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates ofecosystems: past, present and future[J]. Global Change Biology.2003,9:479-492.
    Biederbeck B O, Zentner R P. Labile soil organic matt er asinfluenced by cropping pract ices in a naredenvironment[J]. Soil Biology&Biochemistry,1994,26(12):1647-1656.
    Bi H, Turner J, Lambert M J. Additive biomass equations for native eucalypt forest trees of temperateAustralia[J].Trees,2004,18:467-479.
    Birdsey R A, Plantinga A G, Heath L S. Past and prospective carbon storage in United States forests[J].Forest Ecology and Management,1993,59:33-40
    Bond-Lamberty B, Wang B C, Gower S T. Aboveground and belowground biomass and sapwood areaallometric equations for six boreal tree species of northern Manitoba[J]. Canadian Journal of ForestResearch,2002,32:1441-1450.
    Booth J G, Hobert JP. Maximizing generalized linear mixed model likelihoods with an automated MonteCarlo EM algorithm[J]. J. R. Stat. Soc. Ser. B Methodological1999,61:265-285.
    Brown S. Estimating biomass and biomass change of tropical forests: a primer FAO Forestry Paperno.134,Rome. Brown S, Lugo A E. Aboveground biomass estimates for tropical moist forestsof the BrazilianAmazon[J]. Interciencia1992,17(1),8–18.
    Brown S, Gillespie A, Lugo A E. Biomass estimation methods for tropical forests with applicationsto forestinventory data[J]. Forest Science,1989,35(4):881–902.
    Brown S. Measuring carbon in forests: current status and future challenges[J]. Environmental Pollution,2002,116:363-372.
    Brown S. Lugo A E. The storage and product ion of organic matter in tropical forests and their role in theglobal carbon cycle[J]. Biotropica,1982,14:161-187.
    Brown S, Lugo A E. Biomass of tropical forests: A new estimate based on forest volumes[J]. Science,1984,223:1290-1293.
    Brown S L, Schroeder P, Kern J S. Spatial distribution of biomass in forests of the eastern USA[J].ForestEcology and Management,1999,123:81-90.
    Brooks S P. Gelman A. General methods for monitoring convergence of iterative simulations[J]. J. Comput.Graph. Statist.1998,7:434-455.
    Bullock B P, Boone E L Deriving tree diameter distributions using Bayesian model averaging[J]. ForestEcology and Management,2007,242:127–132.
    Busing R T, Clebsch E C, White P S. Biomass and production of southern Appalachian cove forestsre-examined[J]. Canadian Journal of Forest Research,1992,23:760-765
    Busch J, Strassburg B, Cattaneo A, et al.. Comparing climate and cost impacts of reference levels of reducingemissions from deforestation[C]. Environmental Research Letters,2009.
    Cairns M A, Brown S, Helmer E H, et al.. Root biomass allocation in the world’s upland forests[J].Oecologia1997,111(1):1–11.
    Carlin B P, Clark J S, Gelfand AE. Elements of hierarchical Bayesian inference. In Hierarchical Modellingfor the Environmental Sciences: Statistical Methods and Applications (Clark, J.S. and Gelfand, A.E.,eds)[M]. Oxford University Press,2006.
    Case B, Hall R J. Assessing prediction errors of generalized tree biomass and volume equations for theboreal forest region of west-central Canada[J]. Canadian Journal of Forest Research,2008,38:878-889.
    Chave J, Andalo C, Brown, S, et al.. Biomass and stem volume equations for tree species in Europe[R]. SilvaFennica, Monographs,2005,4:10-15.
    Chen J M, Chen W, Liu J, et al.. Annual carbon balance of Canadian forests During1895-1996[J]. GlobalBiogeochemical Cycles,2000.14:839-850.
    Chen J M, Ju W, Cihlar J, et al.. Spatial distribution of carbon sources and sinks in Canada’s forests[J]. Tellus2003,55(2):622–641.
    Chesson P. Mechanisms of maintenance of species diversity[J]. Annual Review Ecology Systerm,2000,31:343-366.
    Cihlar J, Chen J M, Li Z, et al.. GeoComp-N, an advanced system for the processing of coarse and mediumresolution satellite data[R]. Part2. Biophysical products for Northern ecosystems. Canadian Journal ofRemote Sensing,2002,28(1):21-44.
    Claeskens G, Hjort N L. Model Selection and Model Averaging[M]. Cambridge,2008.
    Clark J S, Wolosin M, Dietze M, et al. Tree growth inference and prediction from diameter censuses and ringwidths. Ecology Application,2007,17:1942-1953.
    Cowles M K, Carlin B P. Markov chain Monte Carlo convergence diagnostics: a comparative review[J]. J.Am. Stat. Assoc.1996,91:883-904.
    DeFries R, Achard F, Brown S, et al.. Earth observations for estimating greenhouse gas emissions fromdeforestation in developing countries[J]. Environmental Science and Policy,2007,10(4):385–394.
    DeFries R, Hansen M, Townshend J R G, et al.. A new global1-km data set of percent tree cover derivedfrom remote sensing[J]. Global Change Biology,2000,6:247-254.
    DeGryze S, Six J, Paustian K, et al.. Soil organic carbon pool change following land-use conversion[J].Global Change Biology,2004,10:1120-1132.
    Djomo A N, Knohl A, Gravenhorst G.. Estimation of total ecosystem carbon pools distribution and carbonbiomass current annual increment of moist tropical forest[J]. Forest Ecology and Management,2011,261:1448-1459.
    Drake J B, Knox R G, Dubayah R.O, et al.. Above-ground biomass estimation in closed canopy Neotropicalforests using lidar remote sensing: factors affecting the generality of relationships[J]. Global Ecologyand Biogeography,2003,12:147-159.
    Ebermeyr E.·Die gesamte Lehre der Waldstreu mit Rucksicht auf die chemische statik desWaldbaues[M].·Belin Springer,1876.
    Fang J Y, Wang G G., Liu G H, et al.. Forest biomass of China: an estimate based on the biomass–volumerelationships[J]. Ecological Applications.1998,8(4):1084-1091.
    Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between1949and1998[J]. Science,2001,292:2320-2322
    Fang J Y, Wang Z M. Forest biomass estimation at regional and global levels, with special reference toChina’s forest biomass[J]. Ecological Research,2001,16:587-592.
    Fang J Y, Guo Z D, Piao S L, et al.. Terrestrial vegetation carbon sinks in China,1981-2000[J]. Science inChina Series D,2007,50:1341-1350.
    FAO. Global Forest Resources Assessment2005: Progress Towards Sustainable Forest Management. FAOForestry Paper[R]. Food and AgricultureOrganization of theUnited Nations, Rome,2006:12-13
    Flower-Ellis J G K, Persson H. Investigation of structural properties and dynamics of Scots pine stands[J].Ecological Bulletins.1980,32:125-138.
    Gibbs H K, Brown S, Niles J O, et al.. Monitoring and estimating tropical forest carbon stocks: makingREDD a reality[J]. Environmental Research Letters,2007,2:1-13.
    Goetz S J, Baccini A, Laporte N, et al.. Mapping and monitoring carbon stocks with satellite observations: acomparison of methods[J]. Carbon Balance and Management,2009,4(2):1-7.
    Green E J, Roesch F A A, Smith F M, et al.. Bayesian estimation for the three-parameter Weibull distributionwith tree diameter data[J]. Biometrics,1994,50:54–269.
    Green E J, Strawderman W E. Predictive posterior distributions from a Bayesian version of a slash pine yieldmodel[J]. Forest Science,1996,42:456–464.
    Gustavsen H S, Heinonen R., Paavilainen E., et al.. Growth and yield models for forest stands on drainedpeatland sites in southern Finland[J]. Forest Ecology and Management.1998.107:1-17.
    Hansen M. Volume and biomass estimation in FIA: National consistency vs. regional accuracy. In:Proceedings of the third annual forest inventory and analysis symposium[C]. GTRNC-230, NorthCentral Research Station, Forest Service USDA,2002:109-120.
    Hendrick R. L, Pregitzer K S. Spatial variation in tree root distribution and growth associated withminirhizotrons[J]. Plant and Soil,1992,143:283–288.
    IPCC. In: Eggleston H S, Buendia L, Miwa K, Ngara T, Tanabe K.(Eds.), IPCC Guidelines for NationalGreenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme[M].IGES, Japan,2006.
    IUFRO. International Guidelines for Forest Monitoring IUFRO World Series Vol.5.Vienna[M].1994.
    Jenkins J C, Chojnacky D C, Heath L S, et al.. National-scale biomass estimators for United States treesspecies[J]. Forest Science,2003,49(1):12-35.
    Jackman S. Bayesian analysis for political research[J]. Ann Rev Political,2004,7:483-505.
    Jackson R B, Mooney H A, Schulze, ED. A global budget for fine root biomass, surface area, andnutrientcontents. Proceedings of the National Academy of Sciences of the United States of America[M].1997,94:7362-7366.
    Jordan C F, Escalante G. Root productivity in an Amazonian rain forest[J]. Ecology,1980,61(1):14-18.
    Kauppi P E, Mielikinen K, Kunsela K. Biomass and carbon budget of European forests,1971to1990[J].Science,1992,256:70-74
    Kira T, Lescure J P, Nelson B W, et al.. Tree allometry and improved estimation of carbon stocks and balancein tropical forests[J]. Forest Ecology and Management,2005,257:427-434.
    Korol R L, Milner K S., Running S W. Testing a mechanistic model for predicting stand and tree growth[J].Forest Science1996,42(2):139-153.
    Laiho R, Laine J. Tree stand biomass and carbon content in an age sequence of drained pine mires insouthern Finland[J]. Forest Ecology and Management,1997,93:161-169.
    Lamlom S H, Savidge RA. A reassessment of carbon content in wood: variation within and between41northAmerican species[J]. Biomass Bioenerg,2003,25:381-388.
    Landsberg J J. Modelling forest ecosystems: state of the art, challenges, and future directions[J]. CanadianJournal of Forest Research.2003,33(3):385-397.
    Lele S R, Dennis B, Lutscher F. Data cloning: easy maximum likelihood estimation for complex ecologicalmodels using Bayesian Markov chain Monte Carlo methods[J]. Ecology Letters,2007,10:551-563.
    Levy P E, Hale SE, Nicoll BC. Biomass expansion factors and root: shoot ratios for coniferous tree speciesin Great Britain[J]. Forestry,2004,77(5):421-430.
    Li R, Stewart B, Weiskittel A. A Bayesian approach for modelling nonlinear longitudinal/hierarchical datawith random effects in forestry. Forestry,2012,85:17-25.
    Liu J, Chen J M, Cihlar J, et al.. A process-based boreal ecosystem productivity simulator using remotesensing inputs[J]. Remote Sensing of Environment,1997,62(2):158-175.
    Lu X T, Yin J X, Jepsen M R, et al.. Ecosystem carbon storage and partioning in a tropical seasonal forest inSouthwestern China[J]. Forest Ecology and Management,2010,260(10):1798-1803.
    Lynch S M. Introduction to Applied Bayesian Statistics and Estimation for Social Scientists[M]. New York:Springer,2007.
    Majdi H, Ohrvik J. Interactive effect of soil warming and fertilization on root production, mortality, andlongevity in a Norway spruce stand in Northern Sweden[J]. Global Change Biology,2004,10:182~188.
    Majdi H, Pregitzer K, Moren A, et al.. Measuring fine root turnover in forest ecosystems[J]. Plant and Soil,2005,276:1–8.
    Mauricio ZC, Carlos AS, Lauren A. Probability distribution of allometric coefficients and Bayesianestimation of aboveground tree biomass[J]. Forest Ecology and Management2012,,277:173-179.
    McCarthy M. Bayesian Methods for Ecology[M]. Cambridge University Press,2007.
    Meng S X, Huang S, Lieffers V J, et al. Wind Speed and Crown Class Influence the Height–DiameterRelationship of Lodgepole Pine: Nonlinear Mixed Effects Modeling[J]. Forest Ecology andManagement,2008,256:570-577.
    Metcalf C J E, McMahon S M, Clark J S. Overcoming data sparseness and parametric constraints inmodeling of tree mortality: a new nonparametric Bayesian model[J]. Canadian Journal of ForestResearch,2009,39:1677-1687.
    Monserud R A. Evaluating forest models in a sustainable forest management context. Forest Biometry[J],Modelling and Information Science,2003,1:35-47.
    Muller-Landau H C, Condit R S, Chave J, et al.. Testing metabolic ecology theory for allometric scaling oftree size, growth and mortality in tropical forests[J]. Ecology Letters,2006,9:575-588.
    Murray B C, Lubowski R, Sohngen B. Including International Forest Carbon Incentives in a United StatesClimate Policy: Understanding the Economics[M]. Nicholas Institute for Environmental PolicySolutions, Duke University,2009.
    Navar J. Allometric equations for tree species and carbon stock for forests of northwestern[M].Springer,2009.
    Nelson D W, Sommers L E. Total carbon, organic carbon and organic matter, Methods of Soil Analysis, Part2.2nd ed. Agronomy, vol.9. Am. Soc. Of Agron, Inc., Madison, W I[C],1996pp.961-1010.
    Nguyen, T.T., Janik, L.J., Raupach, M.,. Diffuse reflectance infrared Fouriers transform (DRIFT)spectroscopy in soil studies[J]. Australian Journal of Soil Research1991,29(1),49-67.
    Nordh N E, Verwijst T. Above-ground biomass assessments and first cutting cycle production in willow(Salix sp.) coppice–a comparison between destructive and non-destructive methods[J]. Biomass andBioenergy,2004,27(1):1-8.
    O’Neill E G. Responses of soil biota to elevated atmospheric carbon dioxide[J]. Plant and Soil,1994,165:55-65.
    Parker C, Mitchell A, Trivedi M, et al.. The Little REDD Book: A Guide to Governmental andNongovernmental Proposals for Reducing Emissions from Deforestations and Degradation[M]. GlobalCanopy Programme, Oxford, UK,2008.
    Parresol B R. Additivity of nonlinear biomass equations[J]. Canadian Journal of ForestResearch,2001,31:865-878.
    Pettersen R C. The chemical composition of wood. In: Rowel R M.(Ed.). The Chemistry of Wood. Advancesin Chemistry Series207, American Chemical Society, Washington, DC, USA[C].1984, pp.57-126.
    Phillips D L, Malhi Y, Higuchi N, et al.. Changes in the carbon balance of tropical forests: evidence fromlong-term plots[J]. Science,1998,282;439-442.
    Phillips D L, Brown S L, Schroeder P E, et al.. Toward error analysis of large-scale forest carbon budgets[J].Global Ecology Biogeogr,2000,9,305-313.
    Piao S R, Fang J Y, Ciais P, et al.. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458:1009-1013.
    Paap R. What are the advantages of MCMC based inference in latent variable models[J]? Stat. Neerl.2002,56:2-22.
    Raich J W, Nadelhoffer KJ. Belowground carbon allocation in forest ecosystems: global trends[J]. Ecology1989,70:1346-1354.
    Ravindranath N H, Ostwald M. Carbon inventory methods. Handbook for Greenhouse Gas Inventory,Carbon Mitigation and Roundwood Production Projects[M]. Advances in Global Change Research,Springer, Heidelberg,2008.
    Repola J, Ojansuu R, Kukkola M. Biomass functions for Scots pine, Norway spruce and birch in Finland[D].Working Papers of the Finnish Forest Research Institute,2007.
    Ritson P, Sochacki S. Measurement and prediction of biomass and carbon content of Pinus pinaster trees infarm forestry plantations, southwestern Australia[J]. Forest Ecology and Management,2003,175:103-117.
    Robinson WO. The determination of organic matter in soils by means of hydrogen peroxide[J]. Journal ofAgricultural Research,1997,34:339-356.
    Rouder J N, Lu J, Speckman P, et al.. A hierarchical model for estimating response time distributions[J].Psychon Bull Review,2005,12:195-223.
    Saatchi S, Harris N, Brown S. et al.. Benchmark map of forest carbon stocks in tropical regions across threecontinents[M]. Proceedings of the National Academy of Sciences of the United States of America2011,108,9899-9904.
    Saatchi S S, Houghton R A, Dos Santos Alvala RC. et al.. Distribution of aboveground live biomass in theAmazon basin[J]. Global Change Biology,2007,13:816-837.
    Sala O E, Biondini M.E, Lauenroth W K. Bias in estimates of primary production: an analytical solution[J].Ecological Modelling,1988,44:43-55.
    Sah J P, Ross M S, Koptur S,et al. Estimating aboveground biomass of broadleaved woody plants in theunderstory of Florida Keys pine forests. Forest Ecology and Management,2004,203:319-329.
    Scholes R J, Noble I R. Storing carbon on land[J]. Science,2001,294:1012-1013.
    Schroeder P, Brown S, Mo J, et al.. Biomass estimation for temperate broadleaf forests of United Statesusing inventory data[J]. Forest Science,1997,43(3):424-434.
    Schumacher B A. Methods for the determination of total organic carbon (TOC) in soil and sediments. U.S.Environmental Protection Agency[C]. Ecological Risk Assessment Support Center,2002.
    Snorrason A, Einarsson S F. Single-tree biomass and stem volume function s for eleven tree species used inIcelandic forestry[J]. Icelandic Agric,2006,19:15-24.
    Stahl G, Lindkvist H, Lindroth A, et al.. Methodological options for quantifying changes in carbon pools inSwedish forests[J]. Studia Forestalia Suecia,2004,214:1-46.
    Stephens P A, Buskirk S W, Hayward G D, et al.. Information theory and hypothesis testing: a call forpluralism[J]. Journal Application Ecology,2005,42:4-12.
    Stern N H. Stern Review on the Economics of Climate Change. HM Treasury, UK. UN,1998. KyotoProtocol to the United Nations Framework, Convention on Climate Change[R],2006.
    Sturtz S, Ligges U, Gelman A. R2WinBUGS: a package for running WinBUGS from R[J]. J. Stat. Softw,2005,12:1-16.
    Tan K, Piao S R, Peng C. et al.. Satellite-based estimation of biomass carbon stocks for northeast China’sforests between1982and1999[J]. Forest Ecology and Management,2006;240,114-121.
    Ter-Mikaelian M T, Korzukhin M D. Biomass equat ion s for sixty-five North American tree species[J].Forest Ecology and Management,1997,97:1-24.
    Tang S Z, Li Y, Wang Y H. Simultaneous equations, error-in-varia-blemodels, andmodel integration insystems ecology[J]. Ecological Modelling,2001,142:285-294.
    Tang S Z, WangYH. A parameter estimation program for the error-in-variablemodel[J]. EcologicalModelling,2002,156:225-236.
    Thomas S C, Malczewski G. Wood carbon content of tree species in eastern China: interspecific variabilityand the importance of the volatile fraction[J]. Journal of Environmental Management,2007,85:659-662.
    Turner D P, Koepper G J, Harmon ME, et al. A carbon budget for forest s of the conterminous UnitedStates[J]. Ecological Applications,1995,5:421-436.
    UNFCCC, Good practice guidance and adjustments under Article5, paragraph2, of the Kyoto ProtocolFCCC/KP/CMP/2005/8/Add.3Decision20/CMP.1[R].2006.
    Usuga J C, Toro J A R, Alzate M V R, et al.. Estimation of biomass and carbon stock in plants, soil and forestfloor in different tropical forests[J]. Forest Ecology and Management2010,260(10):1906-1913.
    Vallet P, Dhote J F, Le Moguedec G, et al.. Development of total aboveground volume equations for sevenimportant forest tree species in France[J]. Forest Ecology and Management,2006,229:98-110.
    Van der Werf G R, Morton D.C, DeFries R.S, et al.. CO2emissions from forest loss[J]. Nature Geoscience,2009,2:737-738.
    Vogt K A, Persson H. Measuring growth and development of roots[M]. In: Lassoie, J.P., Hinckley, T.M.(Eds.), Techniques and Approaches in Forest Tree Ecophysiology.CRC Press, Boca Raton, pp.1991:477-501.
    Vogt K A, Vogt D J, Bloomfield J. Analysis of some direct and indirect methods for estimating root biomassand production of forests at an ecosystem level[J]. Plant and Soil,1998,200:71-89.
    Vogt K A, Vogt D J, Palmiotto P A, et al.. Asbjornsen, H.,. Review of root dynamics in forest ecosystemsgrouped by climate, climatic forest type and species[J]. Plant and Soil,2002,187:159–219.
    Wyckoff P, Clark J S. Predicting tree mortality from diameter growth: a comparison of maximum likelihoodand Bayesian approaches[J]. Canadian Journal of Forest Research,2000,30:156-167.
    Westlake D F. The biomass and productivity of Glyceria maxima: I. Seasonal changes in biomass[J]. Journalof Ecology,1966,54:745-753.
    Whittaker R H, Likens G E. Primary productivity: the biosphere and man[J]. Human Ecology1973,1(4):357-369.
    Whittaker RH, Likens G E. Methods of Assessing Terrestrial Productivity[M]. New York: Springer-Verlag,1975:305-328
    Wielopolski L, Orion I, Hendrey G, et al.. Soil carbon measurements using inelastic neutron scattering[J].IEEE Transactions on Nuclear Science,2000,47:914-917.
    Yao X L, Li C J, Ming Y L. A Nonlinear Mixed-Effects Model to Predict Stem Cumulative Biomass ofStanding Trees[D].3rd International Conference on Environmental Science and InformationApplication Technology,2010.
    Malhi Y, Baldocchi D D, Jarvis P G. The carbon balance of tropical,temperate and borealforests[J]. PlantCell Environ,1999,22:715-740.
    Zapata-Cuartas M, Carlos A. Alleman S L. Probability distribution of allometric coefficients and Bayesianestimation of aboveground tree biomass[J]. Forest Ecology and Management,2012,277:173-179.
    Zianis D. Mencuccini, M. On simplifying allometric analyses of forest biomass[J]. Forest Ecology andManagement,2004,187:311-332.
    Zianis D,Muukkonen P,Makipaa R,et al. Biomass and stem volume equations for tree species in Europe.Silva Fennica monographs,2005,4:1-63.
    Zianis D. Predicting mean aboveground forest biomass and its associated variance[J]. Forest Ecology andManagement,2008,256:1400-1407.
    Zhang Q Z, Wang C K, Wang X C, et al.. Carbon concentration variability of10Chinese temperate treespecies[J]. Forest Ecology and Management2009,258:722-727.
    Zhang X Q, Duan A G, Zhang J G. Tree Biomass Estimation of Chinese fir (Cunningh amia lance olata)Based on Bayesian Method[J]. PLoS One,2013,8(11):1-7.
    Zhou G, Wang Y H, Jiang Y, et al.. Estimating biomass and net primary production from forest
    inventory data: a case study of China’s larix forests[J]. Forest Ecology and Management,2002,169:149-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700