用户名: 密码: 验证码:
Shugoshin1对牛卵母细胞成熟、早期胚胎发育及体细胞有丝分裂影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有丝分裂和减数分裂当中染色体分离具有严格的时空性,使细胞如实的将遗传信息传递给后代。姐妹染色单体连接在染色体分离中扮演着重要的角色,这种连接的主要中介是环状多蛋白复合物cohesirin。
     Shugoshin(Sgo/SGO)在果蝇、玉米、水稻、酵母、非洲爪蟾、小鼠及Hela细胞染色体分离当中的作用都有研究报道,该蛋白家族的主要作用是保护着丝粒粘连蛋白cohesin,维持姐妹染色单体的连接,特别是在第一次减数分裂过程中。除此之外,Sgo/SGO在有丝分裂中还有多个作用,对于细胞分裂进程和染色体分离至关重要。目前对SGO在哺乳动物的正常成体细胞及卵母细胞中的研究及其少见,仅在小鼠中进行了有限的探索。
     本研究分析了SGO1/Sgol在牛、大鼠和小鼠组织中的表达水平的变化,对牛体细胞中SGO1的功能进行了初步分析,确定了它在牛卵母细胞减数分裂过程中的分布位置,并进一步用超表达和低表达的方法探讨了SGO1在牛卵母细胞减数分离和早期胚胎发育过程中的作用。实验成果对于明晰脊椎动物特别是哺乳动物中SGO1的作用具有重要的参考价值,主要研究结果如下:
     1.SGO1/Sgol在牛、大鼠和小鼠组织中的表达水平
     通过实时定量PCR方法,检测了三个哺乳动物物种中SGO1/Sgol的mRNA水平。SGO1/Sgol的表达存在物种差异性、组织差异性和性别差异性,但其表达水平有一定的规律可循。SGO1/Sgol在大鼠和小鼠的胰腺、大脑、肾脏、心脏、肝脏、肌肉、延髓和肺等组织中的表达量都相对较低,而在小鼠、雄性大鼠和母牛脾脏中的表达水平较高,SGO1/Sgol在雌性大鼠小肠中的表达量最多,在公牛睾丸组织中高表达。
     2.SGO1在牛胎儿成纤维细胞中的作用
     通过向同步化的细胞中转染siRNA的方法来研究SGO1对哺乳动物细胞有丝分裂染色体分离的影响。削减SGO1的表达会引起着丝粒和染色体臂上的姐妹染色单体连接提前消失,造成牛胎儿成纤维细胞的有丝分裂阻滞。成对排列的无连接染色体无法移向细胞的两极,逐渐的凝集成短棒状,最后散在的单个染色体杂乱的分布于细胞中,形成多倍体细胞。
     3.SGO1在牛卵母细胞减数分裂成熟过程中的定位
     通过注射带有标记的外源SGO1mRNA到GV期卵母细胞胞质的方法,来分析SGO1在牛卵母细胞减数分裂染色体上的分布情况。SGO1自第一次减数分裂前中期至第二次减数分裂中期,都定位在染色体上,但并不完全重合,它并不分布于整条染色体臂上,而是在某些部位呈现点状富集。在第一次减数分裂中,每条染色体上都有SGO1信号,进入第二次减数分裂以后,SGO1只在核上有表达并在某些位点显示较强的着色,极体中检测不到SGO1信号。
     4.SGO1对牛卵母细胞减数分裂和早期胚胎发育的影响
     通过显微注射SGO1特异的siRNA或者mRNA到卵母细胞胞质的方法,探讨超表达和低表达SGO1对卵母细胞分裂进程和植入前胚胎发育的影响。SGO1参与调控染色体的分离。外源过表达SGO1不会影响同源染色体的分离,但分开的染色体无法移向细胞的两极,呈现一个不规则的中期样排列。干扰SGO1的表达会引起卵母细胞分裂阻滞,早期胚胎发育受到影响,囊胚率和囊胚细胞数减少。
The chromosomal separation in both mitosis and meiosis is time-dependent and space-dependent; ensuring the faithful delivery of genetic materials.Sister chromatid cohesion plays an important role in chromosomal separation, which is mediated by cohesin, a circular multi-subunit protein complex.
     It is reported that Shugoshin(Sgo/SGO) involves in chromosomal separation in fruit fly,maize,rice,yeast,xenopus,mouse and Hela cells.The major role of such protein family is to protect cohesin at centromere and maintain the cohesion between sister chromatids,especially in meiosis I.Besides,Sgo/SGO functions in several other process and is essential for cell division and chromosomal separation.It is hard to see the relevant researches about mammalian Sgo/SGO in normal somatic cells and oocytes, if any, just in mouse.
     In this research, the amount of SGO1/Sgo1mRNA in different tissues of bovine, rat and mouse was detected firstly. The roles of SGO1was proved in bovine somatic cells subsequently.We also confirmed the distribution of SGO1during oocytes meiotic maturation.The roles of SGO1during bovine oocyte meiosis and early embryo development were further discussed via its over expression and low expression. The results as follows provide an important reference for researches in vertebrate animals, especially for mammals.
     1. The expression levels of SGO1/Sgol in bovine, rat and mouse tissues
     The mRNA levels of SGO1/Sgol in three species were detected by real time RT PCR. The expression of SGO1/Sgol was different among species, tissues and genders, but regularities were drawed The expression levels of SGO1/Sgol were lower in pancreas, brain, kidney, heart, liver, muscle, medulla oblongata and lung of rat and mouse, but higher in spleen of mouse, male rat and female bovine, as well as the most detection in small intestine of female rat and testis of male bovine.
     2. Roles of SGO1in bovine embryonic fibroblasts
     siRNA was transfected to the synchronized cells to clarify the function of SGO1in mitosis of mammalian cells.Depletion of SGO1promoted the premature loss of sister chromatid cohesion along chromosome arms and at centromeres and caused mitotic arrestment.The chromosome aligned in pair although with no cohesion.Then they hypercondensed and turned to short and thick rods dispersed disorderly without being pulled to the opposite spindle poles. Such polyploid cells failed to enter anaphase increased over time.
     3. Localization of SGO1during bovine oocyte meiotic maturation
     The localization of SGO1on meiotic chromosomes was analysed by injection of marked SGO1mRNA to the cytoplasm of GV oocytes. SGO1anchored on chromosomes from prometaphase I to metaphase II, however, not lapped entirely, with several enrichment spots. SGO1signals were detected on every chromosome in meiosis Ⅰ, but appeared only at nucleus and presented some strong staining spots when entry to meiosis Ⅱ, not detected in polar body.
     4. Effect of SGO1on bovine oocyte meiosis and early embryo development
     SGO specific siRNA or mRNA was microinjected to oocyte cytoplasm in order to explore the influence of over expression and depletion of SGO1on oocyte meiotic division and early embryo development. SGOl was involved in chromosomal separation. The homologous chromosomes could separate apart from each other after exogenous overexpression of SGO1but not be pulled to the opposite poles of the spindle, resulting a metaphase-like appearance. Depletion of SGO1at GV stage caused oocyte division arrestment, lower blastocyst rate and blastocyst with fewer cells.
引文
[1]Rajagopalan H, Lengauer C. Aneuploidy and cancer. Nature [J],2004,432:338-341.
    [2]Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and cancer. Oncogene [J],2004,23:2016-2027.
    [3]Malmanche N, Maia A, Sunkel CE. The spindle assembly checkpoint:preventing chromosome mis-segregation during mitosis and meiosis. FEBS Lett [J],2006,580:2888-2895.
    [4]Weaver BA, Cleveland DW. Does aneuploidy cause cancer? Curr Opin Cell Biol [J],2006,18:658-667.
    [5]Tanaka T, Fuchs J, Loidl J, et al. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat Cell Biol [J],2000,2:492-499.
    [6]Sumara I, Vorlaufer E, Stukenberg PT, et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell [J],2002,9:515-525.
    [7]Gruber S, Haering CH, Nasmyth K. Chromosomal cohesin forms a ring. Cell [J],2003,112:765-77.
    [8]Michaelis C, Ciosk R, Nasmyth K. Cohesins:Chromosomal proteins that prevent premature separation of sister chromatids. Cell [J],1997,91:35-^5.
    [9]Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through analysis of MCD1 in S. cerevisiae. Cell [J],1997,91:47-57.
    [10]Toth A, Ciosk R, Uhlmann F, et al. Yeast Cohesin complex requires a conserved protein, Ecolp (Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev [J],1999,13:320-333.
    [11]Vass S, Cotterill S, Valdeolmillos AM, et al. Depletion of drad21/sccl in Drosophila cells leads to instability of the cohesin complex and disruption of mitotic progression. Curr Biol [J],2003,13:208-218.
    [12]Chan RC, Chan A, Jeon M, et al. Chromosome cohesion is regulated by a clock gene paralogue TIM-1. Nature [J],2003,423:1002-1009.
    [13]Losada A, Hirano M, Hirano T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev [J],1998,12:1986-1997.
    [14]Darwiche N, Freeman LA, Strunnikov A. Characterization of the components of the putative mammalian sister chromatid cohesion complex. Gene [J],1999,233:39-47.
    [15]Buonomo SBC, Clyne RK, Fuchs J, et al. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by Separin. Cell [J],2000,103:387-398.
    [16]Waizenegger IC, Hauf S, Meinke A, et al. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell [J],2000,103:399-410.
    [17]Hauf S, Roitinger E, Koch B, et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol [J],2005,3(3):e69.
    [18]Nakajima M, Kumada K, Hatakeyama K, et al. The complete removal of cohesin from chromosome arms depends on separase. Cell Science [J],2007,120:4188-4196.
    [19]Waizenegger IC, Hauf S, Meinke A, et al. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell [J],2000,103:399-410.
    [20]Page SL, Hawley RS. Chromosome choreography:the meiotic ballet. Science 2003,301:785-789.
    [21]Watanabe Y. Modifying sister chromatid cohesion for meiosis. J Cell Sci [J],2004,117:4017-4023.
    [22]Salic A, Waters JC, Mitchison TJ. Vertebrate Shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell [J],2004,118:567-578.
    [23]Kitajima TS, Kawashima SA, Watanabe Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature [J],2004,427:510-517.
    [24]Rabitsch KP, Gregan J, Schleiffer A, et al. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr Biol [J],2004,14:287-301.
    [25]Katis VL, Galova M, Rabitsch KP, et al. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol [J],2004,14:560-572.
    [26]Pouwels J, Kukkonen AM, Lan WJ, et al. Shugoshin 1 plays a central role in kinetochore assembly and is required for kinetochore targeting of Plkl. Cell Cycle [J],2007,6:1579-1585.
    [27]Hamant O, Golubovskaya I, Meeley R, et al. A Rec8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol [J],2005,15:948-954.
    [28]Tang Z, Sun Y, Harley SE, et al. Human Bubl protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. PNAS [J],2004,101:18012-18017.
    [29]Kerrebrock AW, Moore DP, Wu JS, et al. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell [J],1995,83:247-256.
    [30]Wang M, Tang D, Wang K, et al. OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. Plant J [J],2011,67:583-594.
    [31]Kiburz BM, Amon A, Marston AL. Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Mole Biol Cell [J],2008,19:1199-1209.
    [32]Fernius J, Hardwick KG. Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis. PLoS Genet [J],2007,3:e213.
    [33]Suzuk H, Akiyama N, Tsuji M, et al. Human Shugoshin mediates kinetochore-driven formation of kinetochore microtubules. Cell Cycle [J],2006,5:1094-1101.
    [34]Hanks S, Rahman N. Aneuploidy-cancer predisposition syndromes:a new link between the mitotic spindle checkpoint and cancer. Cell Cycle [J],2005,4(2):225-227.
    [35]Scully R.The spindle-assembly checkpoint, aneuploidy, and gastrointestinal cancer. N Engl J Med [J],2010, 363:2665-2666.
    [1]Watanabe Y.Shugoshin:guardian spirit at the centromere. Curr Opin Cell Biol [J],2005,17:590-595.
    [2]Gutie'rrez-Caballero C, Cebollero LR, Penda's AM. Shugoshins:from protectors of cohesion to versatile adaptors at the centromereTrends in Genetics [J],2012,28(7):351-360.
    [3]Wang X, Dai W.Shugoshin, a guardian for sister chromatid segregation. Exp Cell Res [J],2005,310:1-9.
    [4]Macy B, Wang M, Yu HG. The many faces of shugoshin, the "guardian spirit," in chromosome segregation. Cell Cycle [J],2009,8(1):35-37.
    [5]Gregan J, Spirek M, Rumpf C. Solving the shugoshin puzzle. Trends in genetics [J],2008,24:205-207.
    [6]Clift D, Marston AL.The Role of Shugoshin in Meiotic Chromosome Segregation. Cytogenet Genome Res [J], 2011,133:234-242.
    [7]Lee JY, Hayashi-Hagihara A, Orr-Weaver TL.Roles and regulation of the Drosophila centromere cohesion protein MEI-S332 family. Philos Trans R Soc Lond B Biol Sci [J],2005,360:543-552.
    [8]Pouwels J, Kukkonen AM, Lan WJ, et al. Shugoshin 1 plays a central role in kinetochore assembly and is required for kinetochore targeting of Plkl. Cell Cycle [J],2007,6:1579-1585.
    [9]Hamant O, Golubovskaya I, Meeley R, et al. A Rec8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol [J],2005,15:948-954.
    [10]Salic A, Waters JC, Mitchison TJ. Vertebrate Shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell [J],2004,118:567-578.
    [11]Tang Z, Sun Y, Harley SE, et al. Human Bubl protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. PNAS [J],2004,101:18012-18017.
    [12]Kerrebrock AW, Moore DP, Wu JS, et al. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell [J],1995,83:247-256.
    [13]Kitajima TS, Kawashima SA, Watanabe Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature [J],2004,427:510-517.
    [14]Wang M, Tang D, Wang K, et al. OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. Plant J [J],2011,67:583-594.
    [15]Kiburz BM, Amon A, Marston AL. Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Mole Biol Cell [J],2008,19:1199-1209.
    [16]Fernius J, Hardwick KG. Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis. PLoS Genet [J],2007,3:e213.
    [17]Suzuk H, Akiyama N, Tsuji M, et al. Human Shugoshin mediates kinetochore-driven formation of kinetochore microtubules. Cell Cycle [J],2006,5:1094-1101.
    [18]Scanlan MJ, Gout I, Gordon CM, et al. Humoral immunity to human breast cancer:antigen definition and quantitative analysis of mRNA expression. Cancer Immun [J],2001,1:4.
    [19]Yin S, Ai JS, Shi LH, et al.Shugoshinl may play important roles in separation of homologous chromosomes and sister chromatids during mouse oocyte meiosis. PLos One [J],2008,3(10):e3516.
    [20]ParralMT, Go'mezl R, Viera A, et al.Sequential assembly of centromeric proteins in male mouse meiosis. PLos Genet [J],2009,5(3):el000417.
    [21]Llano E, Gomez R, Gutierrez-Caballero C, et al.Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes Dev [J],2008,22:2400-2413.
    [22]Lee J, Kitajima TS, Tanno Y, et al. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol [J],2008,10:42-52.
    [23]Keene JD. Minireview:global regulation and dynamics of ribonucleic Acid.Endocrinology [J],2010, 151(4):1391-1397.
    [24]Zhang J, Cashman JR. Quantitative analysis of FMO gene mRNA levels in human tissues. Drug metab dispos [J],2006,34:19-26.
    [1]Nicklas RB, Ward SC. Elements of error correction in mitosis:Microtubule capture, release, and tension. J Cell Biol [J],1994,126:1241-1253.
    [2]Hopfoer KP, Karcher A, Shin DS, et al. Structural biology of Rad50 ATPase:ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell [J],2000,101:789-800.
    [3]Haering CH, Schoffnegger D, Nishino T, et al. Structure and stability of cohesin's Smcl-kleisin interaction. Mol Cell [J],2004,15:951-964.
    [4]Melby TE, Ciampaglio CN, Briscoe G, et al. The symmetrical structure of structural maintainance of chromosomes (SMC) and MukB proteins:Long, antiparallel coiled coils, folded at a flexible hinge. J Cell Biol [J], 1998,142:1595-1604.
    [5]Haering CH, Lowe J, HochwagenA, et al. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell [J],2002,9:773-788.
    [6]Uhlmann F, Wernic D, Poupart MA, et al. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell [J],2000,103:375-386.
    [7]Uhlmann F, Lottspeich F, Nasmyth K. Sister chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scclp. Nature [J],1999,400:37-42.
    [8]Ciosk R, Zachariae W, Michaelis C, et al. An Espl/Pdsl complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell [J],1998,93:1067-1076.
    [9]Zou H, McGarry TJ, Bernal T, et al. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science [J],1999,285:418-422.
    [10]Stemmann O, Zou H, Gerber SA, et al. Dual inhibition of sister chromatid separation at metaphase. Cell [J], 2001,107:715-726.
    [11]Cohen-Fix O, Peters J-M, Kirschner MW, et al. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev [J],1996,10:3081-3093.
    [12]Funabiki H, Yamano H, Kumada K, et al. Cut2 proteolysis required for sister-chromatid seperation in fission yeast. Nature [J],1996,381:438-441.
    [13]Cleveland DW, Mao Y, Sullivan KF. Centromeres and kinetochores:From epigenetics to mitotic checkpoint signaling. Cell [J],2003,112:407-421.
    [14]Tanaka T, Fuchs J, Loidl J, et al. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat Cell Biol [J],2000,2:492-499.
    [15]Sonoda E, Matsusaka T, Morrison C, et al. Sccl/Rad21/Mcdl is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev Cell [J],2001,1:759-770.
    [16]Waizenegger I, Hauf S, Meinke A, Peters JM.Two distinct pathways remove mammalian cohesin from chromosome arms inprophase and from centromeres in anaphase. Cell [J],2000,103:399-410.
    [17]Losada A, Hirano M, Hirano T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev [J],2002,16:3004-3016.
    [18]Sumara I, Vorlaufer E, Stukenberg PT, et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell [J],2002,9:515-525.
    [19]Hauf S, Vorlaufer E, Koch B, et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during prophase depends on phosphorylation of SA2. PLoS Biol [J],2005,3:e69.
    [20]McGuinness BE, Hirota T, Kudo NR, et al. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol [J],2005,3:e86.
    [21]Perera D, Taylor SS.Sgol establishes the centromeric cohesion protection mechanism in G2 before subsequent Bub 1-dependent recruitment in mitosis. J Cell Sci [J],2010,123:653-659.
    [22]Salic A, Waters JC, Mitchison TJ. Vertebrate Shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell [J],2004,118:567-578.
    [23]Kitajima TS, Kawashima SA, Watanabe Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature [J],2004,427:510-517.
    [24]Katis VL, Galova M, Rabitsch KP,et al. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol [J],2004,14:560-572.
    [25]Resnick TD, Satinover DL, Maclsaac F, et al. INCENP and Aurora B promote meiotic sister chromatid cohesion through localization of the Shugoshin MEI-S332 in Drosophila. Dev Cell [J],2006,11:57-68.
    [26]Kerrebrock AW, Moore DP, Wu JS, et al.Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions, Cell [J],1995,83:247-256.
    [27]Kawashima SA, Tsukahara T, Langegger M, et al. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev [J],2007,21:420-435.
    [28]Suzuk H, Akiyama N, Tsuji M, et al. Human Shugoshin mediates kinetochore-driven formation of kinetochore microtubules. Cell Cycle [J],2006,5:1094-1101.
    [29]Rivera T, Losada A. Shugoshin regulates cohesion by driving relocalization of PP2A in Xenopus extracts. Chromosoma [J],2008,118:223-233
    [30]LeBlanc HN, Tang TT, Wu JS, et al. The mitotic centromeric protein MEI-S332 and its role in sister-chromatid cohesion. Chromosoma [J],1999,108:401-411.
    [1]Kaltschmidt JA, Brand AH. Asymmetric cell division:microtubule dynamics and spindle asymmetry. J Cell Sci [J],2002,115:2257-2264.
    [2]Lu B, Jan L, Jan YN. Control of cell divisions in the nervous system:symmetry and asymmetry. Annu Rev Neurosci [J],2000,23:531-556.
    [3]Horvitz HR, Herskowitz I. Mechanisms in asymmetric cell division:two Bs or not two Bs that is the question. Cell [J],1992,68:237-255.
    [4]Eppig JJ, Schultz RM, O'Brien M, et al. Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes.Dev Biol [J],1994,164(l):1-9.
    [5]Matoba S, Fair T, Lonergan P. Maturation, fertilisation and culture of bovine oocytes and embryos in an individually identifiable manner:a tool for studying oocyte developmental competence. Reprod Fertil Dev [J], 2010,22(5):839-51.
    [6]Wolfe SL. Molecular and Cellular Biology [M]. Belmont, California:Wadsworth Publishing Company,1993. 1050-1062
    [7]Jones KT. Meiosis in oocytes:predisposition to aneuploidy and its increased incidence with age. Human Reproduction Update [J],2008,14:143-158.
    [8]Malmanche N, Maia A, Sunkel CE. The spindle assembly checkpoint:preventing chromosome mis-segregation during mitosis and meiosis. FEBS Lett [J],2006,580:2888-2895.
    [9]Kitajima TS, Kawashima SA, Watanabe Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature [J],2004,427:510-517.
    [10]Kerrebrock AW, Moore DP, Wu JS, et al. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell [J],1995,83:247-256.
    [11]Salic A, Waters JC, Mitchison TJ. Vertebrate Shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell [J],2004,118:567-578.
    [12]Gruber S, Haering CH, Nasmyth K. Chromosomal cohesin forms a ring. Cell [J],112:765-77.
    [13]Remeseiro S, Losada A.2012.Cohesin, a chromatin engagement ring. Curr Opin Cell Biol [J],2003,25:1-9.
    [14]Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through analysis of MCD1 in S. cerevisiae. Cell [J],1997,91:47-57.
    [15]Toth A, Ciosk R, Uhlmann F, et al. Yeast Cohesin complex requires a conserved protein, Ecolp (Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev [J],1999,13:320-333.
    [16]Darwiche N, Freeman LA, Strunnikov A. Characterization of the components of the putative mammalian sister chromatid cohesion complex. Gene [J],1999,233:39-47.
    [17]Losada A, Hirano M, Hirano T, Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev [J],1998,12:1986-1997.
    [18]Michaelis C, Ciosk R, Nasmyth K. Cohesins:Chromosomal proteins that prevent premature separation of sister chromatids. Cell [J],1997,91:35-45.
    [19]Garcia-Cruz R, Brieno MA, Roig I, et al. Dynamics of cohesin proteins REC8, STAG3, SMClb and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes. Hum Reprod [J],2010, 25:2316-2327.
    [20]Buonomo SBC, Clyne RK, Fuchs J, et al. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by Separin. Cell [J],2000,103:387-398.
    [21]Revenkoval E, Jessberger R. Keeping sister chromatids together:cohesins in meiosis. Reproduction [J],2005, 130:783-790.
    [22]Watanabe Y.Shugoshin:guardian spirit at the centromere. Curr Opin Cell Biol [J],2005,17:590-595.
    [23]Kawashima SA, Tsukahara T, Langegger M, et al. Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev [J],2007,21:420-435.
    [24]Pouwels J, Kukkonen AM, Lan WJ, et al. Shugoshin 1 plays a central role in kinetochore assembly and is required for kinetochore targeting of Plkl. Cell Cycle [J],2007,6:1579-1585.
    [25]Dudas A, Ahmad S, Gregan J. Sgo1 is required for co-segregation of sister chromatids during achiasmate meiosis I. Cell Cycle [J],2011,10(6):951-955.
    [26]Kiburz BM, Amon A, Marston AL. Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Mole Biol Cell [J],2008,19:1199-1209.
    [27]Suzuk H, Akiyama N, Tsuji M, et al. Human Shugoshin mediates kinetochore-driven formation of kinetochore microtubules. Cell Cycle [J],2006,5:1094-1101.
    [28]Wang X, Yang Y, Duan Q, et al. sSgol, a major splice variant of Sgol, functions in centriole cohesion where it is regulated by Plkl. Dev Cell [J],2008,14(3):331-341.
    [29]Yin S, Ai JS, Shi LH, et al. Shugoshinl may play important roles in separation of homologous chromosomes and sister chromatids during mouse oocyte meiosis. PLos One [J],2008,3:e3516.
    [30]Lee J, Kitajima TS, Tanno Y, et al. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol [J],2008,10:42-52.
    [31]Nicklas RB. The forces that move chromosomes in mitosis. Annu Rev Biophys Biophys Chem [J],1988, 17:431-449.
    [32]Miyazaki WY, Orr-Weaver TL. Sister chromatid cohesion in mitosis and meiosis. Annu Rev Genet [J],1994, 28:167-187.
    [33]Watanabe Y, Nurse P.Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature [J], 1999,400:461-464.
    [34]Lee J, Okada K, Ogushi S, et al. Loss of Rec8 from chromosome arm and centromere region is required for homologous chromosome separation and sister chromatid separation, respectively, in mammalian meiosis. Cell Cycle [J],2006,5(13):1448-1455.
    [35]Lee J, Iwai T, YokotaT, et al. Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J Cell Sci [J],2003,116:2781-2790.
    [36]Xu H, Beasley MD, Warren WD, et al. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell [J],20058:949-961.
    [1]Wolfe SL. Molecular and Cellular Biology [M]. Belmont, California:Wadsworth Publishing Company,1993. 1050-1062
    [2]Rajagopalan H, Lengauer C. Aneuploidy and cancer. Nature [J],2004,432:338-341.
    [3]Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and cancer. Oncogene [J],2004,23:2016-2027.
    [4]Malmanche N, Maia A, Sunkel CE. The spindle assembly checkpoint:preventing chromosome mis-segregation during mitosis and meiosis. FEBS Lett [J],2006,580:2888-2895.
    [5]Weaver BA, Cleveland DW. Does aneuploidy cause cancer? Curr Opin Cell Biol [J],2006,18:658-667.
    [6]Hawkins T, Mirigian M, Selcuk Yasar M, et al. Mechanics of microtubules. J Biomech [J],2010,43(l):23-30.
    [7]Pereira AJ, Maiato H. Maturation of the kinetochore-microtubule interface and the meaning of metaphase. Chromosome Res [J],2012,20(5):563-577.
    [8]Nicklas RB, Ward SC. Elements of error correction in mitosis:Microtubule capture, release, and tension. J Cell Biol [J],1994,126:1241-1253.
    [9]Gruber S, Haering CH, Nasmyth K. Chromosomal cohesin forms a ring. Cell [J],2003,112:765-77.
    [10]Michaelis C, Ciosk R, Nasmyth K. Cohesins:Chromosomal proteins that prevent premature separation of sister chromatids. Cell [J],1997,91:35-45.
    [11]Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through analysis of MCD1 in S. cerevisiae. Cell [J],1997,91:47-57.
    [12]Toth A, Ciosk R, Uhlmann F, et al. Yeast Cohesin complex requires a conserved protein, Ecolp (Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev [J],1999,13:320-333.
    [13]Vass S, Cotterill S, Valdeolmillos AM, et al. Depletion of drad21/sccl in Drosophila cells leads to instability of the cohesin complex and disruption of mitotic progression. Curr Biol [J],2003,13:208-218.
    [14]Chan RC, Chan A, Jeon M, et al. Chromosome cohesion is regulated by a clock gene paralogue TIM-1. Nature [J],2003,423:1002-1009.
    [15]Losada A, Hirano M, Hirano T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev [J],1998,12:1986-1997.
    [16]Darwiche N, Freeman LA, Strunnikov A. Characterization of the components of the putative mammalian sister chromatid cohesion complex. Gene [J],1999,233:39-47.
    [17]Haering CH, Schoffnegger D, Nishino T, et al. Structure and stability of cohesin's Smcl-kleisin interaction. Mol Cell [J],2004,15:951-964.
    [18]Garcia-Cruz R, Brieno MA, Roig I, et al. Dynamics of cohesin proteins REC8, STAG3, SMClb and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes. Hum Reprod [J],2010, 25:2316-2327.
    [19]Remeseiro S, Losada A. Cohesin, a chromatin engagement ring. Curr Opin Cell Biol [J],2012,25:1-9.
    [20]Buonomo SBC, Clyne RK, Fuchs J, et al. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by Separin. Cell [J],2000,103:387-398.
    [21]Waizenegger IC, Hauf S, Meinke A, et al. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell [J],2000,103:399-410.
    [22]Hauf S, Roitinger E, Koch B, et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol [J],2005,3(3):e69.
    [23]Pouwels J, Kukkonen AM, Lan WJ, et al. Shugoshin 1 plays a central role in kinetochore assembly and is required for kinetochore targeting of Plkl. Cell Cycle [J],2007,6:1579-1585.
    [24]Hamant O, Golubovskaya I, Meeley R, et al. A Rec8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol [J],2005,15:948-954.
    [25]Salic A, Waters JC, Mitchison TJ. Vertebrate Shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell [J],2004,118:567-578.
    [26]Tang Z, Sun Y, Harley SE, et al. Human Bubl protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. PNAS [J],2004,101:18012-18017.
    [27]Kerrebrock AW, Moore DP, Wu JS, et al. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell [J],1995,83:247-256.
    [28]Kitajima TS, Kawashima SA, Watanabe Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature [J],2004,427:510-517.
    [29]Wang M, Tang D, Wang K, et al. OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. Plant J [J],2011,67:583-594.
    [30]Tang Z, Shu H, Qi W, et al. PP2A is required for centromeric localization of Sgol and proper chromosome segregation. Dev Cell [J],2006,10:575-585.
    [31]McGuinness BE, Hirota T, Kudo NR, et al. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLos Biol [J],2005,3:e86.
    [32]Rabitsch KP, Gfegan J, Schleiffer A, et al. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis Ⅰ and Ⅱ. Curr Biol [J],2004,14:287-301.
    [33]Katis VL, Galova M, Rabitsch KP, et al. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol [J],2004,14:560-572.
    [34]Dudas A, Ahmad S, Gregan J. Sgol is required for co-segregation of sister chromatids during achiasmate meiosis I. Cell Cycle [J],2011,10(6):951-955.
    [35]Kiburz BM, Amon A, Marston AL. Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Mole Biol Cell [J],2008,19:1199-1209.
    [36]Fernius J, Hardwick KG. Bubl kinase targets Sgol to ensure efficient chromosome biorientation in budding yeast mitosis. PLoS Genet [J],2007,3:e213.
    [37]Suzuk H, Akiyama N, Tsuji M, et al. Human Shugoshin mediates kinetochore-driven formation of kinetochore microtubules. Cell Cycle [J],2006,5:1094-1101.
    [38]Indjeian VB, Stern BM, Murray AW.The centromeric protein Sgol is required to sense lack of tension on mitotic chromosomes. Science [J],2005,307:130-133.
    [39]Yin S, Ai JS, Shi LH, et al. Shugoshinl may play important roles in separation of homologous chromosomes and sister chromatids during mouse oocyte meiosis. PLos One [J],2008,3:e3516.
    [40]Kerrebrock AW, Miyazaki WY, Birnbyt D, et al. The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation. Genetics [J],1992,130:827-841.
    [41]Prather RS. Basic mechanisms of fertilization and parthenogenesis in pigs reproduction. Supplement [J], 2001,58:105-112.
    [42]Forlani S, Bonnerot C, Capgra S, et al. Relief of a repressed gene expression state in the mouse 1-cell embryo requires DNA replication. Development [J],1998,125:3153-3166.
    [1]Kerrebrock AW, Miyazaki WY, Birnby D, et al.The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation, Genetics [J],1992,130:827-841.
    [2]Shonn MA, McCarroll R, Murray AW.Spo13 protects meiotic cohesin at centromeres in meiosis Ⅰ. Genes Dev [J],2002,16:1659-1671.
    [3]Lee BH, Amon A, Prinz S.Spo13 regulates cohesin cleavage. Genes Dev [J],2002,16:1672-1681.
    [4]Bernard P, Maure JF, Javerzat JP.Fission yeast Bubl is essential in setting up the meiotic pattern of chromosome segregation. Nat Cell Biol [J],2001,3:522-526.
    [5]Nasmyth K.Disseminating the genome:joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet [J],2001,35:673-745.
    [6]Lee JY, Orr-Weaver TL.The molecular basis of sister-chromatid cohesion. Annu Rev Cell Dev Biol [J],2001, 17:753-777.
    [7]Page SL, Hawley RS. Chromosome choreography:the meiotic ballet. Science [J],2003,301:785-789.
    [8]Watanabe Y.Modifying sister chromatid cohesion for meiosis. J Cell Sci [J],2004,117:4017-4023.
    [9]Clift D, Marston AL.The Role of Shugoshin in meiotic chromosome segregation. Cytogenet Genome Res [J], 2011,133:234-242.
    [10]Kitajima TS, Yokobayashi S, Yamamoto M, et al. Distinct cohesin complexes organize meiotic chromosome domains. Science [J],2003,300:1152-1155.
    [11]Gutie'rrez-Caballero C, Cebollero LR, Penda's AM. Shugoshins:from protectors of cohesion to versatile adaptors at the centromere.Trends in Genetics [J],2012,28(7):351-360.
    [12]Kitajima TS, Kawashima SA, Watanabe Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature [J],2004,427:510-517.
    [13]Rabitsch KP, Gregan J, Schleiffer A, et al. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis Ⅰ and Ⅱ. Curr Biol [J],2004,14:287-301.
    [14]Davis BK.Genetic analysis of a meiotic mutant resulting in precocious sister-centromere separation in Drosophila melanogaster, Mol Gen Genet [J],1971,113:251-272.
    [15]Goldstein LS.Mechanisms of chromosome orientation revealed by two meiotic mutants in Drosophila melanogaster, Chromosoma [J],1980,78:79-111.
    [16]Kerrebrock AW, Moore DP, Wu JS, et al.Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions, Cell [J],1995,83:247-256.
    [17]Lee JY, Dej KJ, Lopez JM, et al. Control of centromere localization of the MEI-S332 cohesion protection protein, Curr Biol [J],2004,14:1277-1283.
    [18]Tang TT, Bickel SE, Young LM, et al. Maintenance of sister-chromatid cohesion at the centromere by the Drosophila MEIS332 protein. Genes Dev [J],1998,12:3843-3856.
    [19]Moore DP, Page AW, Tang TT, et al.The cohesion protein MEI-S332 localizes to condensed meiotic and mitotic centromeres until sister chromatids separate, J Cell Biol [J],1998,140:1003-1012.
    [20]LeBlanc HN, Tang TT, Wu JS, et al. The mitotic centromeric protein MEI-S332 and its role in sister-chromatid cohesion. Chromosoma [J],1999,108:401-411.
    [21]Lopez JM, Karpen GH, Orr-Weaver TL. Sister-chromatid cohesion via MEI-S332 and kinetochore assembly are separable functions of the Drosophila centromere, Curr Biol [J],2000,10:997-1000.
    [22]Bickel SE, Moore DP, Lai C, et al. Genetic interactions between mei-S332 and ord in the control of sister-chromatid cohesion. Genetics [J],1998,150:1467-1476.
    [23]Lee JY, Hayashi-Hagihara A, Orr-Weaver TL.Roles and regulation of the Drosophila centromere cohesion protein MEI-S332 family. Philos Trans R Soc Lond B Biol Sci [J],2005,360:543-552.
    [24]Blagden SP, Glover DM. Polar expeditions—provisioning the centrosome for mitosis. Nat Cell Biol [J],2003, 5:505-511.
    [25]Glover DM, Hagan IM, Tavares AA. Polo-like kinases:a team that plays throughout mitosis. Genes Dev [J], 1998,12:3777-3787.
    [26]Ohi R, Gould KL. Regulating the onset of mitosis.Curr Opin Cell Biol [J],1999,11:267-273.
    [27]Clyne RK, Katis VL, Jessop L, et al. Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nat Cell Biol [J],2003,5:480-485.
    [28]Lee BH, Amon A. Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science [J],2003,300:482-486.
    [29]Clarke AS, Tang TT, Ooi DL, et al. POLO kinase regulates the Drosophila centromere cohesion protein MEI-S332. Dev Cell [J],2005,8:53-64.
    [30]Resnick TD, Satinover DL, Maclsaac F, et al. INCENP and Aurora B promote meiotic sister chromatid cohesion through localization of the Shugoshin MEI-S332 in Drosophila. Dev Cell [J],2006,11:57-68.
    [31]Blower MD, Karpen GH.The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol [J],2001,3:730-739.
    [32]Indjeian VB, Stern BM, Murray AW. The centromeric protein Sgol is required to sense lack of tension on mitotic chromosomes. Science [J],2005,307:130-133.
    [33]Katis VL, Galova M, Rabitsch KP,et al. Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol [J],2004,14:560-572.
    [34]Vaur S, Cubizolles F, Plane G, et al. Control of Shugoshin function during fission-yeast meiosis. Curr Biol [J],2005,15:2263-2270.
    [35]Dudas A, Ahmad S, Gregan J. Sgol is required for co-segregation of sister chromatids during achiasmate meiosis I. Cell Cycle [J],2011,10(6):951-955.
    [36]Pidoux AL, Allshire RC. The role of heterochromatin in centromere function. Phil. Trans. R. Soc. B [J],2005, 360:569-579.
    [37]Grewal SI, Jia S.Heterochromatin revisited. Nature Rev Genet [J],2007,8:35-46.
    [38]Folco HD, Pidoux AL, Urano T,et al. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science [J],2008,319:94-97.
    [39]Nonaka N, Kitajima T, Yokobayashi S, et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biol [J],2002,4:89-93.
    [40]Bernard P,Maure JF, Partridge JF, et al. Requirement of heterochromatin for cohesion at centromeres.Science [J],2001,294:2539-2542.
    [41]Yamagishi Y, Sakuno T, Shimura M, et al. Heterochromatin links to centromeric protection by recruiting shugoshin.Nature [J],2008,455:251-256.
    [42]Gregan J, Rumpf C, Li Z, et al. What makes centromeric cohesion resistant to separase cleavage during meiosis I but not during meiosis II? Cell Cycle [J],2008,7(2):151-153.
    [43]Gregan J, Spirek M, Rumpf C. Solving the shugoshin puzzle. Trends in genetics [J],2008,24:205-207.
    [44]Marston AL, Tham WH, Shah H, et al. A genome-wide screen identifies genes required for centromeric cohesion. Science [J],2004,303:1367-1370.
    [45]Kiburz BM, Reynolds DB, Megee PC, et al.The core centromere and Sgol establish a 50-kb cohesin-protected domain around centromeres during meiosis I. Genes Dev [J],2005,19:3017-3030.
    [46]Clift D, Bizzari F, Marston AL. Shugoshin prevents cohesin cleavage by PP2ACdc55-dependent inhibition of separase. Genes Dev [J],2009,23:766-780.
    [47]Fernius J, Hardwick KG. Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis. PLoS Genet [J],2007,3(11):e213.
    [48]Kiburz BM, Amon A, Marston AL. Shugoshin promotes sister kinetochore biorientation in Saccharomyces cerevisiae. Mol Biol Cell [J],2008,19:1199-1209.
    [49]Shonn MA, Murray AL, Murray AW. Spindle checkpoint component Mad2 contributes to bi-orientation of homologous chromosomes. Curr Biol [J],2003,13:1979-1984.
    [50]Xu Z, Cetin B, Anger M, et al. Structure and function of the PP2A-shugoshin interaction. Mol Cell [J],2009, 35:426-441.
    [51]Brar GA, Kiburz BM, Zhang Y, et al. Rec8 phosphorylation and recombination promote the step-wise loss of cohesins in meiosis. Nature [J],2006,441:532-536.
    [52]Alexandru G, Uhlmann F, Mechtler K, et al. Phosphorylation of the cohesin subunit Sccl by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell [J],2001,105:459-472.
    [53]Gillett ES, Espelin CW, Sorger PK. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J Cell Biol [J],2004,164:535-546.
    [54]Scho"ckel L, Mockel M, Mayer B, et al. Cleavage of cohesin rings coordinates the separation of centrioles and chromatids. Nat Cell Biol [J],2011,13:966-972.
    [55]Li R, Murray AW. Feedback control of mitosis in budding yeast. Cell [J],1991,66:519-531.
    [56]Hoyt MA, Totis L, Roberts BT. S.cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell [J],1991,66:507-517.
    [57]Haase J, Stephens A, Verdaasdonk J, et al. Bubl kinase and Sgol modulate pericentric chromatin in response to altered microtubule dynamics. Curr Biol [J],2012,22:471^481.
    [58]Yu HG, Koshland D.The Aurora kinase Ipll maintains the centromeric localization of PP2A to protect cohesin during meiosis. J Cell Biol [J],2007,176:911-918.
    [59]Tang Z, Sun Y, Harley SE, et al. Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. PNAS [J],2004,101:18012-18017.
    [60]Golubovskaya IN, Sheridan WF, Harper LC, et al. Novel meiotic mutants of maize identified from Mu transposon and EMS mutant screens. MNL [J],2003,77:10-13.
    [61]Hamant O, Golubovskaya I, Meeley R, et al. Zacheus Cande.A Rec8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol [J],2005,15: 948-954.
    [62]Han F, GAO Z, Yu W, et al. Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize.Plant Cell [J],2007,19:3853-3863.
    [63]Kitajima TS, Yokobayashi S, Yamamoto M, et al. Distinct cohesin complexes organize meiotic chro mosome domains. Science [J],2003,300:1152-1155.
    [64]Wang M, Tang D, Wang K, et al. OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. Plant J [J],2011,67:583-594.
    [65]Cai X, Dong F, Edelmann RE, et al. The ArabidopsisSYNl cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci [J],2003,116:2999-3007.
    [66]Rieder CL, Cole R. Chromatid cohesion during mitosis:lessons from meiosis. J Cell Sci [J],1999, 112:2607-2613.
    [67]Watanabe Y.Shugoshin:guardian spirit at the centromere. Curr Opin Cell Biol [J],2005,17:590-595.
    [68]Hauf S, Vorlaufer E, Koch B, et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol [J],2005,3:e69.
    [69]Waizenegger IC, Hauf S, Meinke A, et al. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell [J],2000,103:399-410
    [70]Warren WD, Steffensen S, Lin E, et al. The Drosophila RAD21 cohesin persists at the centromere region in mitosis. Curr Biol [J],2000,10:1463-1466.
    [71]Sumara I, Vorlaufer E, Stukenberg PT, et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol Cell [J],2002,9:515-525.
    [72]Karamysheva Z, Diaz-Martinez LA, Crow SE, et al. Multiple Anaphase-promoting Complex/Cyclosome degrons mediate the degradation of human Sgol. Biol Chem [J],2009,284 (3):1772-1780.
    [73]Hauf S, Waizenegger IC, Peters JM. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science [J],2001,293:1320-1323.
    [74]Lee J, Okada K, Ogushi S, et al. Loss of Rec8 from chromosome arm and centromere region is required for homologous chromosome separation and sister chromatid separation, respectively, in mammalian meiosis. Cell Cycle [J],2006,5(13):1448-1455.
    [75]Buonomo SBC, Clyne RK, Fuchs J, et al. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by Separin. Cell [J],2000,103:387-398.
    [76]Garcia-Cruz R, Brien-o MA, Roig I,et al. Dynamics of cohesin proteins REC8, STAG3, SMClb and SMC3 are consistent with a role in sister chromatid cohesion during meiosis in human oocytes. Hum Reprod [J],2010, 25(9):2316-2327.
    [77]Salic A, Waters JC, Mitchison TJ. Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell [J],2004,118:567-578.
    [78]McGuinness BE, Hirota T, Kudo NR, et al. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol [J],2005,3:e86.
    [79]Rivera T, Losada A. Shugoshin regulates cohesion by driving relocalization of PP2A in Xenopus extracts. Chromosoma [J],2008,118:223-233
    [80]Shintomi K, Hirano T. Releasing cohesin from chromosome arms in early mitosis:opposing actions of Wapl-Pds5 and Sgol. Genes Dev [J],2009,23:2224-2236.
    [81]Vagnarelli P, Earnshaw WC. Chromosomal passengers:the fourdimensional regulation of mitotic events. Chromosoma [J],2004,113:211-222.
    [82]Boyarchuk Y, Salic A, Dasso M, et al. Bubl is essential for assembly of the functional inner centromere. J Cell Biol [J],2007,176:919-928.
    [83]Andrews PD, Ovechkina Y, Morrice N, et al. Aurora B regulates MCAK at the mitotic centromere. Dev Cell [J],2004,6:253-268.
    [84]Lan W, Zhang X, Kline-Smith SL, et al. Stukenberg. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol [J],2004,14:273-286.
    [85]Lee J, Kitajima TS, Tanno Y, et al. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol [J],2008,10:42-52.
    [86]Yin S, Ai J, Shi L, et al. Shugoshinl may play important roles in separation of homologous chromosomes and sister chromatids during mouse oocyte meiosis. PLos One [J],2008,3:e3516.
    [87]Perera D, Taylor SS.Sgol establishes the centromeric cohesion protection mechanism in G2 before subsequent Bubl-dependent recruitment in mitosis. J Cell Sci [J],2010,123:653-659.
    [88]Hu D, Valentine M, Kidd VJ, et al. CDK1 Ip58 is required for the maintenance of sister chromatid cohesion.J cell sci [J],2007,120:2424-2434.
    [89]Yamada HY, Yao Y, Wang X, et al. Haploinsufficiency of SGO1 results in deregulated centrosome dynamics, enhanced chromosomal instability and colon tumorigenesis, cell cycle [J],2012,11(3):479-488.
    [90]Wang X, Yang Y, Duan Q, et al. sSgol, a major splice variant of Sgol, functions in centriole cohesion where it is regulated by Plkl. Dev Cell [J],2008,14:331-341.
    [91]Wang X, Dai W.Shugoshin, a guardian for sister chromatid segregation. Exp Cell Res [J],2005,310:1-9.
    [92]Scanlan MJ, Gout I, Gordon CM, et al. Humoral immunity to human breast cancer:antigen definition and quantitative analysis of mRNA expression. Cancer Immun [J],2001,1:4.
    [93]Suzuk H, Akiyama N, Tsuji M, et al. Human Shugoshin mediates kinetochore-driven formation of kinetochore microtubules. Cell Cycle [J],2006,5:1094-1101.
    [94]Wang X, Yang Y, Dai W.Differential subcellular localizations of two human Sgol isoforms implications in regulation of sister chromatid cohesion and microtubule dynamics. Cell Cycle [J],2006,5(6):635-640.
    [95]Kitajima TS, Hauf S, Ohsugi M,et al. Human Bubl defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr Biol [J],2005,15:353-359
    [96]McEwen BF, Hsieh CH, Mattheyses AL, et al. A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution. Chromosoma [J],1998,107:366-375.
    [97]Pouwels J, Kukkonen AM, Lan WJ, et al. Shugoshin 1 plays a central role in kinetochore assembly and is required for kinetochore targeting of Plkl. Cell Cycle [J],2007,6:1579-1585.
    [98]Nakajima M, Kumada K, Hatakeyama K, et al. The complete removal of cohesin from chromosome arms depends on separase. J Cell Sci [J],2007,120:4188-4196.
    [99]Kitajima TS, Sakuno T, Ishiguro K, et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature [J],2006,441:46-52.
    [100]Huang H, Feng J, Famulsk J, et al. Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J Cell Biol [J],2007,177:413-424.
    [101]Gime'nez-Abian JF, Sumara I, Hirota T, et al. Regulation of sister chromatid cohesion between chromosome arms. Curr Biol [J],2004,14:1187-1193
    [102]Waters JC, Skibbens RV, Salmon ED. Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push. J Cell Sci [J],1996,109:2823-2831.
    [103]DeLuca JG, Moree B, Hickey JM, et al. hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J Cell Biol [J],2002,159:549-555.
    [104]Waters JC, Chen RH, Murray AW, et al. Mad2 binding by phosphorylated kinetochores links error detection and checkpoint action in mitosis. Curr Biol [J],1999,9:649-652.
    [105]Kueng S, Hegemann B, Peters BH, et al. Wapl controls the dynamic association of cohesin with chromatin. Cell [J],2006,127:955-967.
    [106]Lipp JJ, Hirota T, Poser I, et al. Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J Cell Sci [J],2007,120:1245-1255.
    [107]Tang Z, Shu H, Qi W, et al. PP2A is required for centromeric localization of Sgol and proper chromosome segregation. Dev Cell [J],2006,10:575-585.
    [108]Fu G, Ding X, Yuan K, et al. Phosphorylation of human Sgol by NEK2A is essential for chromosome congression in mitosis. Cell Res [J],2007,17:608-618.
    [109]Yao X, Abrieu A, Zheng Y, et al. CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol [J],2000,2:484-491.
    [110]Rattner JB, Rao A, Fritzler MJ, et al. CENP-F is a.ca 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization. Cell Motil Cytoskel [J],1993,26:214-226.
    [111]Hanks S, Rahman N. Aneuploidy-cancer predisposition syndromes:a new link between the mitotic spindle checkpoint and cancer. Cell Cycle [J],2005,4(2):225-227.
    [112]Bharadwaj R, Yu H.The spindle checkpoint, aneuploidy, and cancer. Oncogene [J],2004,23:2016-2027.
    [113]Ralph Scully. The spindle-assembly checkpoint, aneuploidy, and gastrointestinal cancer. N Engl J Med [J], 2010,363:2665-2666.
    [114]Iwaizumi M, Shinmura K, Mori H, et al. Human Sgol downregulation leads to chromosomal instability in colorectal cancer. Gut [J],2009,58:249-260.
    [115]Yang Y, Wang X, Dai W. Human Sgol is an excellent target for induction of apoptosis of transformed cells. Cell Cycle [J],2006,5(8):896-901.
    [116]Yang J, Dcezoe T, Nishioka C, et al. A novel treatment strategy targeting shugoshin 1 in hematological malignancies. Leuk Res [J],2012,4734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700