用户名: 密码: 验证码:
弓形虫CDPKs核酸疫苗及重组亚单位疫苗的免疫保护性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弓形虫病是呈世界性分布的一种重要的人兽共患寄生虫病。该病由专性细胞内寄生的弓形虫所引起,可以导致婴儿脑炎、孕妇和家畜的流产以及免疫功能低下者的脑弓形虫病甚至死亡。由于药物治疗无法彻底治愈弓形虫病,因此免疫预防成为控制该病的首选。但目前为止,尚未有有效、安全的疫苗用来预防人类弓形虫病。
     钙依赖蛋白激酶(Calcium-dependent protein kinases,CDPKs)是接收并传导胞外Ca2+信号的效应分子之一,广泛存在于各种植物、绿藻和顶复门原虫中。在弓形虫中,CDPKs参与调控虫体入侵和逸出细胞、蛋白分泌、运动和分化等多种生物学功能,是一类重要的信号通路调控分子。
     为研究弓形虫CDPKs基因家族作为抗弓形虫疫苗的候选抗原的可行性和为下一步研制商用型抗弓形虫疫苗寻找思路,本研究首先通过分析TgCDPK2基因在不同宿主和地域来源的13株弓形虫虫株的遗传变异情况。发现TgCDPK2基因的基因组变异率为1.42%,cDNA序列变异率为0.66%,但基于此基因构建的系统发育树发现,该基因无法区分不同基因型的弓形虫虫株。同时对弓形虫CDPKs家族成员的的遗传变异情况研究发现,在弓形虫不同基因型虫株中,12个CDPKs家族成员基因均较保守,其变异率均很低,约在0-1.4%之间。因此,该研究结果提示我们弓形虫CDPKs基因家族成员较为保守,适合作为抗弓形虫疫苗的候选抗原分子,并可产生抵抗不同基因型弓形虫感染的免疫保护效果。
     然后选取其中的TgCDPK3,TgCDPK5和TgCDPK6基因翻译成氨基酸序列利用生物信息学方法进行结构分析和抗原表位预测,结果表明在三个蛋白结构中含有数量不等的α-螺旋,β-折叠和无规则卷曲。同时通过综合分析三个蛋白的柔性区域和表面氨基酸序列等,预测三个蛋白中分别含有17、17和14个B淋巴细胞表位,提示其可能具有良好的免疫原性,能作为抗弓形虫疫苗的候选抗原。
     分别将TgCDPK3,TgCDPK5和TgCDPK6三个基因连接真核表达载体pVAX I后制备核酸疫苗免疫小鼠,于三免后检测其诱导小鼠产生的免疫应答反应。结果表明,三种疫苗均可以引发免疫小鼠Th1型体液和细胞免疫应答反应。经弓形虫RH株致死性和PRU株慢性攻击感染后,TgCDPK3,TgCDPK5和TgCDPK6免疫小鼠,能显著延长小鼠的存活时间,分别为13.5d,9d和12.2d,脑包囊数量减少率分别为51.93%,46.81%和71.1%。说明三个抗原具有良好的免疫原性,能诱导小鼠产生较强的免疫应答以抵抗弓形虫的感染。
     最后将弓形虫ROP18基因和CDPK6基因进行原核表达并纯化,混合后分别用206和聚D,L-乳酸-co-乙醇酸(PLG)为佐剂制备蛋白疫苗免疫小鼠。蛋白疫苗可以在二免后6周刺激机体产生较强的体液和细胞免疫应答反应和抗弓形虫感染效果,且以PLG为佐剂的疫苗效果优于用206为佐剂制备的疫苗。说明用PLG制备的微颗粒可以缓慢释放蛋白抗原,长时间刺激机体产生特异性免疫应答。本研究筛选的三个候选抗原和PLG缓释颗粒的应用,为下一步研制实用性抗弓形虫疫苗奠定基础。
Toxoplasmosis is an important zoonosis having a worldwide distribution. The disease is caused byToxoplasma gondii, an obligate intracellular parasite, which may lead to encephalitis in children,abortion and neonatal loss in pregnant women and in sheep and goats, and cerebral toxoplasmosis oreven death in immunodeficiency individuals. No available chemical treatments could completelyeliminate the parasite in vivo, thus T. gondii vaccine should be an optimal option for controlling thedisease. However, no available one could be used in humans until now.
     Calcium-dependent protein kinases (CDPKs) are known as key effectors in regulating calciumrelated signaling pathways, which exist in plants, algae and apicomplexan protozoans. In T. gondii,CDPKs are recognized as significant signaling mediators, involved in control a diverse array offunctions including gliding motility, cell invasion, egress and some other developmental processes thatoccur at distinct stages in its complex life.
     To evaluate whether T. gondii CDPKs could be used as vaccine candidates and provide the baselinedata for commercial vaccines against the parasite, we firstly examined the sequence variation inTgCDPK2genes among13T. gondii strains from different hosts and geographical locations in thepresent study. Results showed that the sequence variation of complete TgCDPK2DNA and cDNA were1.42%and0.66%, respectively, suggesting that the gene cannot be used as a proper marker for studyingthe genetic diversity among different T. gondii genotypes. Furthermore, the family of CDPKs was alsoquite conservative, and the low sequences variation ranging from0to1.40%.
     We then translated TgCDPK3, TgCDPK5and TgCDPK6gene sequences into amino acidsequences and analyzed the structure and its potential epitopes using multiple bioinformatics approaches.The results showed that all the three proteins contained numbers of α-helixes, β-folds and random coils.A total of17,17and14potential epitopes were predicted in TgCDPK3, TgCDPK5and TgCDPK6proteins, suggesting that these three antigens are potential vaccine candidates.
     T. gondii CDPK3, CDPK5and CDPK6genes were then amplified and linked into the eukaryoticexpression vector pVAX I to construct the DNA vaccines, respectively. After the third immunization, theprotective efficacy against T. gondii infection in Kunming mice was evaluated. The results showed thatall the three vaccines could develop Th1type response with a high level of specific antibodies andstrong lymphoproliferative responses. The mice immunized with TgCDPK3, TgCDPK5and TgCDPK6genes were prolonged the survival time to13.5d,9d and12.2d compared to the controls which diedwithin7.2days after lethal challenge with the tachyzoites of the virulent T. gondii RH strain. In chronicinfection, the numbers of brain cysts of the mice immunized with TgCDPK3, TgCDPK5and TgCDPK6were reduced significantly when compared with those in control groups (P <0.05), and the rate ofreduction could reach to51.93%,46.81%and71.1%, suggesting that TgCDPK3, TgCDPK5andTgCDPK6are promising vaccine candidates against T. gondii infection.
     In the end, we amplified the TgROP18and TgCDPK6genes and ligated to pET-30a for prokaryotic expression. The purified ROP18protein and CDPK6protein were mixed and emulsifiedwith206and poly (lactide-co-glycolide)(PLG). The protein vaccines were used to immunize Kunmingmice. At6weeks after the last immunization, the vaccines could induce strong humoral and cellularimmune responses and generate protective immunity against acute and chronic T. gondii infection.Furthermore, protein plus PLG could elicit better protective efficacy compared to the protein plus the206adjuvant. The identification of the three new vaccine candidates and the evaluation of antigensencapsulated in PLG microparticles provide a valuable basis for developing new vaccines against T.gondii for future use in humans and animals.
引文
1.才学鹏,等.动物疫苗学[M].北京:中国农业科学技术出版社,2009.
    2.畅文君.番茄钙依赖性蛋白激酶的生化鉴定和功能分析[畅文君硕士学位论文].海南:海南大学,2010.
    3.陈佳.弓形虫几个新基因的免疫保护作用的研究[陈佳博士学位论文].广州:华南农业大学,2012.
    4.陈锐钊,等.弓形虫致密颗粒蛋白14基因的克隆及序列分析[J].中国兽医科学,2013,43:238-242.
    5. F.奥斯伯,等.精编分子生物学实验指南(颜子颖,王海林,译).北京:科学出版社,2001,358-360.
    6.郭玲,等.大熊猫轮状病毒CH-1株VP1基因的克隆和生物信息学分析[J].中国兽医科学,2014,44:27-32.
    7.姜鑫.生物信息学数据库及其利用方法[J].现代情报,2005,6:185-187.
    8.孔春林,等.柔嫩艾美耳球虫钙依赖蛋白激酶3基因在毕赤酵母中的表达及分析[J].生物技术通报,2012,4:108-112.
    9.李佳缘,等.鸡蛔虫线粒体cox1基因的克隆及序列分析[J].中国畜牧兽医,2012,39(5):41-43.
    10.李文妹,等.弓形虫病核酸疫苗研究进展[J].中国人兽共患病杂志,2004,20(5):435-437.
    11.李洋.柔嫩艾美耳球虫钙依赖蛋白激酶的研究[李洋硕士学位论文].北京:中国农业科学院研究生院,2010.
    12.李中原.昆明鼠白介素15、21基因的克隆及抗弓形虫感染免疫佐剂效果的研究[李中原硕士学位论文].广州:华南农业大学,2012.
    13.刘强,等.鸭乙型肝炎病毒CHv株PreS/S基因的克隆及分子特征分析[J].中国兽医科学,2013,43:225-232.
    14.路静,等.弓形虫RH株热应激蛋白40基因的克隆与原核表达[J].中国兽医科学,2014,44:73-77.
    15.蒲元华,等.抗弓形虫药物及机理研究进展[J].中国人兽共患病学报,2012,28(4):389-392.
    16.戚南山,等.顶复门原虫入侵相关因子的研究进展[J].畜牧兽医学报,2012,43(2):167-174.
    17.邱昌庆,等.动物疫病基因工程疫苗研究与进展[M].北京:中国农业科学技术出版社,2005.
    18.沈继龙.细胞因子在弓形虫病治疗中的应用[J].中国人兽共患病杂志,1993,9:48-55.
    19.徐颖,等.弓形虫RH株ROP38基因的原核表达及其反应原性研究[J].中国兽医科学,2014,44:83-87.
    20.剡海阔,等.抗弓形虫核酸疫苗的研究进展[J].中国人兽共患病学报,2009,25(10):1004-1007.
    21.杨翠萍.弓形虫疫苗研究的现状与展望[J].中国病原生物学杂志,2006,1:232-234.
    22.于恩庶.弓形虫病学(第二版)[M].北京:人民卫生出版社,1992:102-105.
    23.詹希美.人体寄生虫学[M].北京:人民卫生出版社,2005.
    24.张念章,等.顶复门原虫钙依赖蛋白激酶的研究进展[J].畜牧兽医学报,2013,44:1-6.
    25.郑伟国,等.生物信息学的现状与未来[J].口岸卫生控制,2004,9:40-43.
    26.周东辉.不同基因型弓形虫的microRNA、蛋白质组及其感染宿主的蛋白质组比较研究[周东辉博士学位论文].广州:华南农业大学,2011.
    27.周光炎.免疫学原理[M].上海:上海科学出版社,2007.
    28.周建华,等.FMDV OA/58病毒株VP1蛋白结构构建与B细胞抗原表位的预测[J].华北农学报,2007,22(4):176-179.
    29.周建民,等.柔嫩艾美耳球虫甘肃株钙调域蛋白激酶基因的克隆与表达[J].畜牧兽医学报,2005,36(7):711-714.
    30.朱杰.生物信息学的研究现状及其发展问题的探讨[J].生物信息学,2005,3:185-188.
    31. Azzouz S, et al. Toxoplasma gondii: Identification and immune response against a group ofproteins involved in cellular invasion [J]. Exp Parasitol,2012,130(1):63-68.
    32. Beghetto E, et al. A combination of antigenic regions of Toxoplasma gondii microneme proteinsinduces protective immunity against oral infection with parasite cysts [J]. J Infect Dis,2005,191(4):637-645.
    33. Billker O, et al. Calcium and a calcium-dependent protein kinase regulate gamete formation andmosquito transmission in a malaria parasite [J]. Cell,2004,117:503-514.
    34. Billker O, et al. Calcium-dependent signaling and kinases in apicomplexan parasites [J]. Cell HostMicrobe,2009,5(6):612-622.
    35. Brown CR, et al. Class I MHC genes and CD8+T cells determine cyst number in Toxoplasmagondii infection [J]. J Immunol,1990,145:3438-3441.
    36. Bumstead JM, et al. Nitrocellulose immunoblotting for identification and molecular gene cloningof Eimeria maxima antigens that stimulate lymphocyte proliferation [J]. Clin Diagn Lab Immunol,1995,2(5):86-98.
    37. Buxton D, et al. A commercial vaccine for ovine toxoplasmosis [J]. Parasitology,1995,110:11-16.
    38. Casciotti L, et al. CD8(+)-T-cell immunity against Toxoplasma gondii can be induced but notmaintained in mice lacking conventional CD4(+) T cells [J]. Infect Immun,2002,70(2):434-443.
    39. Cavagnino A, et al. The potent antiplasmodial calmodulin-antagonist trifluoperazine inhibitsPlasmodium falciparum calcium-dependent protein kinase4[J]. Protein Peptide Lett,2011,18(12):1273-1279.
    40. Chen J, et al. Protective immunity induced by a DNA vaccine expressing eIF4A of Toxoplasmagondii against acute toxoplasmosis in mice [J]. Vaccine,2013,31:1734-1739.
    41. Chuang SC, et al. Induction of long-lasting protective immunity against Toxoplasma gondii inBALB/c mice by recombinant surface antigen1protein encapsulated in poly (lactide-co-glycolide)microparticles [J]. Parasit Vectors,2013a,6:34.
    42. Chuang SC, et al. Encapsulation of chimeric protein rSAG1/2into poly (lactide-co-glycolide)microparticles induces long-term peotective immunity against Toxoplasma gondii in mice [J]. ExpParasitol,2013b,134(4):430-437.
    43. Cong H, et al. Toxoplasma gondii HLA-B*0702-restricted GRA720-28peptide with adjuvants and auniversal helper T cell epitope elicits CD8+T cells producing interferon-γ and reduces parasiteburden in HLA-B*0702mice [J]. Hum Immunol,2012,73(1):1-10.
    44. Cong H, et al. Towards an immunosense vaccine to prevent toxoplasmosis: Protective Toxoplasmagondii epitopes restricted by HLA-A*0201[J]. Vaccine,2011,29(4):754-762.
    45. Cong W, et al. First report of Toxoplasma gondii infection in market-sold adult chickens, ducks andpigeons in northwest China [J]. Parasit Vectors,2012,5:110.
    46. Coppi A, et al. Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stopmigrating and productively invade host cells [J]. Cell Host Microbe,2007,2(5):316-327.
    47. Cui X, et al. Toxoplasma gondii immune mapped protein-1(TgIMP1) is a novel vaccine candidateagainst toxoplasmosis [J]. Vaccine,2012,30(13):2282-2287.
    48. Dedicoat M, et al. Management of toxoplasmic encephalitis in HIV-infected adults (with anemphasis on resource-poor settings)[J]. Cochrane Database Syst Rev,2006,19(3): CD005420.
    49. Dobrowolski JM, et al. Participation of myosin in gliding motility and host cell invasion byToxoplasma gondii [J]. Mol Microbiol,1997,26(1):163-173.
    50. Donald RG, et al. Anticoccidial kinase inhibitors: identification of protein kinase targets secondaryto cGMP-dependent protein kinase [J]. Mol Biochem Parasitol,2006,49(1):86-98.
    51. Donnelly JJ, et al. DNA vaccines: progress and challenges [J]. J Immunol,2005,175(2):633-639.
    52. Dubey JP, et al. Prevalence of viable Toxoplasma gondii in beef, chicken, and pork from retailmeat stores in the United States: risk assessment to consumers [J]. J Parasitol,2005,91(5):1082-1093.
    53. Dubey JP, et al. Toxoplasma gondii infection in humans and animals in the United States [J]. Int JParasitol,2008,38(11):1257-1278.
    54. Dubey JP. Toxoplasmosis of animals and humans [M]. Boca Raton, New York: CRC Press Inc,Second,2010:1-313.
    55. Dunn PP, et al. Sequence, expression and localization of calmodulin-domain protein kinases inEimeria tenella and Eimeria maxima [J]. Parasitology,1996,113:439-448.
    56. Dvorin JD, et al. A plant-like kinase in Plasmodium falciparum regulates parasite egress fromerythrocytes [J]. Science,2010,328(5980):910-912.
    57. El Hajj H, et al. ROP18is a rhoptry kinase controlling the intracellular proliferation of Toxoplasmagondii [J]. PLoS Pathog,2007,3:14.
    58. El Kouni MH. Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy [J].Curr pharm Des,2007,13:581-597.
    59. Fentress SJ, et al. Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secretedkinase promotes macrophage survival and virulence [J]. Cell Host Microbe,2010,8:484-495.
    60. Garrison E, et al. A forward genetic screen reveals that calcium-dependent protein kinase3regulates egress in Toxoplasma [J]. PLoS Pathog,2012,8:1003049.
    61. Gazzinelli R, et al. Simultaneous depletion of CD4+and CD8+T lymphocytes is required toreactivate chronic infection with Toxoplasma gondii [J]. J Immunol,1992,149:175-180.
    62. Gazzinelli R, et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasmagondii succumb to a lethal immune response dependent on CD4+T cells and accompanied byoverproduction of IL-12, IFN-gamma and TNF-alpha [J]. J Immunol,1996,157:798-805.
    63. Ghaderi R, et al. Biological activity of lysozyme after entrapment in poly(d,l-lactide-co-glycolide)-microspheres [J]. Pharm Res,1997,14:1556-1562.
    64. Gong P, et al. The protective effect of a DNA vaccine encoding the Toxoplasma gondii cyclophilingene in BALB/c mice [J]. Parasite Immunol,2013,35(3-4):140-146.
    65. Green JL, et al. The motor complex of Plasmodium falciparum: phosphorylation by acalcium-dependent protein kinase [J]. J Biol Chem,2008,283(45):30980-30989.
    66. Gurunathan S, et al. DNA vaccines: a key for inducing long-term cellular immunity [J]. Curr OpinImmunol,2000,12(4):442-447.
    67. Harmon AC, et al. CDPKs-a kinase for every Ca2+signal?[J]. Trends Plant Sci,2000,5(4):154-159.
    68. Harmon AC, et al. A calcium-dependent but calmodulin-independent protein kinase from soybean[J]. Plant Physiol,1987,83(4):830-837.
    69. Harper JF, et al. A calcium-dependent protein kinase with a regulatory domain similar tocalmodulin [J]. Science,1991,252(5008):951-954.
    70. Henriquez FL, et al. Immunogenetics of Toxoplasma gondii informs vaccine design [J]. TrendsParasitol,2010,26(11):550-555.
    71. Hill DE, et al. Biology and epidemiology of Toxoplasma gondii in man and animals [J]. AnimHealth Res Rev,2005,6(1):41-61.
    72. Holder AA, et al. Calcium dependent protein kinase1and calcium fluxes in the malaria parasite [J].Microbes Infect,2012,14(10):825-830.
    73. Holec-Gasior L, et al. GRA2and ROP1recombinant antigens as potential markers for detection ofToxoplasma gondii-specific immunoglobulin G in humans with acute toxoplasmosis [J]. ClinVaccine Immunol,2009,16(4):510-514.
    74. Huang X, et al. Toxoplasma gondii: Protective immunity against toxoplasmosis with recombinantactin depolymerizing factor protein in BALB/c mice [J]. Exp Parasitol,2012,130(3):218-222.
    75. Innes EA. Vaccination against Toxoplasma gondii: an increasing priority for collaborative research?[J]. Expert Rev Vaccines,2010,9(10):1117-1119.
    76. Ishino T, et al. A calcium-dependent protein kinase regulates Plasmodium ookinete access to themidgut epithelial cell [J]. Mol Microbiol,2006,59(4):1175-1184.
    77. Jeffery H, et al. The preparation and characterization of poly (lactide-co-glycolide) microparticles.II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporationtechnique [J]. Pharm Res,1993,10:362-368.
    78. Jiang HH, et al. Genetic characterization of Toxoplasma gondii from pigs from different localitiesin China by PCR-RFLP [J]. Parasit Vectors,2013,6:227.
    79. Jongert E, et al. An enhanced GRA1-GRA7cocktail DNA vaccine primes anti-Toxoplasmaimmune responses in pigs [J]. Vaccine,2008,26(8):1025-1031.
    80. Jongert E, et al. Vaccines against Toxoplasma gondii: challenges and opportunities [J]. Mem InstOswaldo Cruz,2009,104(2):252-266.
    81. Jordan KA, et al. Regulation of CD8+T cell responses to infection with parasitic protozoa. ExpParasitol,2010,126:318-325.
    82. Kang H, et al. Decreased resistance of B cell deficient mice to infection with Toxoplasma gondiidespite unimpaired expression of IFN-gamma, TNF-alpha and inducible nitric oxide synthase[J]. JImmunol,2000,164:2629-2634.
    83. Karplus PA, et al. Prediction of chain flexibility in proteins [J]. Naturwissenschaften,1985,72:212-213.
    84. Kato K, et al. Characterization of Plasmodium falciparum calcium-dependent protein kinase4[J].Parasitol Int,2009,58(4):394-400.
    85. Kato N, et al. Gene expression signatures and small-molecule compounds link a protein kinase toPlasmodium falciparum motility [J]. Nat Chem Biol,2008,4(6):347-356.
    86. Kiefer F, et al. The SWISS-MODEL repository and associated resources [J]. Nucleic Acids Res,2009,37:387-392.
    87. Kieschnick H, et al. Toxoplasma gondii attachment to host cells is regulated by a calmodulin-likedomain protein kinase [J]. J Biol Chem,2001,276(15):12369-12377.
    88. Kravetz JD, et al. Toxoplasmosis in pregnancy [J]. Am J Med,2005,118(3):212-216.
    89. Kur J, et al. Current status of toxoplasmosis vaccine development [J]. Expert Rev Vaccines,2009,8(6):791-808.
    90. Labesse G, et al. ROP2from Toxoplasma gondii: a virulence factor with a protein-kinase fold andno enzymatic activity [J]. Structure,2009,17(1):139-146.
    91. Li J, et al. Toxoplasma gondii rhomboid protein1(TgROM1) is a potential vaccine candidateagainst toxoplasmosis [J]. Vet Parasitol,2012,184(2-4):154-160.
    92. Li J, et al. Immune response and protective efficacy against homologous challenge in BALB/cmice vaccinated with DNA vaccine encoding Toxoplasma gondii actin depolymerizing factor gene[J]. Vet Parasitol,2011,179(1-3):1-6.
    93. Lim DC, et al. Toxoplasma and Plasmodium protein kinases: roles in invasion and host cellremodeling [J]. Int J Parasitol,2012,42(1):21-32.
    94. Liu MM, et al. Toxoplasma gondii microneme protein8(MIC8) is a potential vaccine candidateagainst toxoplasmosis [J]. Parasitol Res,2010,106(5):1079-1084.
    95. Liu S, et al. Evaluation of protective effect of multi-epitope DNA vaccine encoding six antigensegments of Toxoplasma gondii in mice [J]. Parasitol Res,2009,105(1):67-274.
    96. Liu XS, et al. Cloning, codon-optimized expression and homology modeling of structural proteinVP1from foot and mouth disease virus [J]. Afr J Microbiol Res,2011,5:486-495.
    97. Louren o EV, et al. Immunization with MIC1and MIC4induces protective immunity againstToxoplasma gondii [J]. Microbes Infect,2006,8(5):1244-1251.
    98. Lourido S, et al. Calcium-dependent protein kinase1is an essential regulator of exocytosis inToxoplasma [J]. Nature,2010,465(7296):359-362.
    99. MacMicking JD. Interferon-inducible effector mechanisms in cell-autonomous immunity [J]. NatRev Immunol,2012,12:367-382.
    100. Makino M, et al. Innate immunity in DNA vaccine with Toxoplasma gondii-heat shock protein70gene that induces DC activation and Th1polarization [J]. Vaccine,2011,29(10):1899-1905.
    101. Marciani DJ, et al. Genetically engineered subunit vaccine against feline leukaemia virus:protective immune response in cats [J]. Vaccine,1991,9:89-96.
    102. Matowicka-Karna J, et al. Does Toxoplasma gondii infection affect the levels of IgE and cytokines(IL-5, IL-6, IL-10, IL-12, and TNF-alpha)?[J]. Clin Dev Immunol,2009:374696.
    103. McCoy JM, et al. TgCDPK3regulates calcium-dependent egress of Toxoplasma gondii from hostcells [J]. PLoS Pathog,2012,8:1003066.
    104. Meng M, et al. Evaluation of protective immune responses induced by DNA vaccines encodingToxoplasma gondii surface antigen1(SAG1) and14-3-3protein in BALB/c mice [J]. ParasitVectors,2012,5:273.
    105. Montoya JG, et al. Toxoplasmosis [J]. Lancet,2004,363(9425):1965-1976.
    106. Morlon-Guyot J, et al. The Toxoplasma gondii calcium-dependent protein kinase7is involved inearly steps of parasite division and is crucial for parasite survival [J]. Cell Microbiol,2014,16:95-114.
    107. Naqamune K, et al. Comparative genomic and phylogenetic analyses of calcium ATPases andcalcium-regulated proteins in the apicomplexa [J]. Mol Biol Evol,2006,23(8):1613-1627.
    108. Ojo KK, et al. Toxoplasma gondii calcium-dependent protein kinase1is a target for selectivekinase inhibitors [J]. Nat Struct Mol Biol,2010,17(5):602-607.
    109. Peng GH, et al. Toxoplasma gondii microneme protein6(MIC6) is a potential vaccine candidateagainst toxoplasmosis in mice [J]. Vaccine,2009,27(47):6570-6574.
    110. Qu D, et al. Enhancement of protective immune response to recombinant Toxoplasma gondiiROP18antigen by ginsenoside Re [J]. Exp Parasitol,2013,135:234-239.
    111. Qu DF, et al. Ginsenoside Rg1enhances immune response induced by recombinant Toxoplasmagondii SAG1antigen [J]. Vet Parasitol,2011,179(1-3):28-34.
    112. Rajarshi B, et al. Absence of both IL7and IL15severely impairs the development of CD8+T cellresponse against Toxoplasma gondii [J]. PLoS One,2010,5(26):1-12.
    113. Ren D, et al. Sequence variation in Toxoplasma gondii MIC13gene among isolates from differenthosts and geographical locations [J]. Afr J of Microbiol Res,2012,6(6):1333-1337.
    114. Ridzuan MA, et al. Subcellular location, phosphorylation and assembly into the motor complex ofGAP45during Plasmodium falciparum schizont development [J]. PLoS One,2012,7(3):33854.
    115. Robert-Gangneux F, et al. Epidemiology of and diagnostic strategies for toxoplasmosis [J]. ClinMicrobiol Rev,2012,25(2):264-296.
    116. Robinson HL. DNA vaccines: basic mechanism and immune responses [J]. Int J Mol Med,1999,4(5):549-555.
    117. Romano P, et al. Tools and collaborative environments for bioinformatics research [J]. Briefings inBioinformatics,2011,12:549-561.
    118. Rosenberg C, et al. Induction of partial protection against infection with Toxoplasma gondiigenotype II by DNA vaccination with recombinant chimeric tachyzoite antigens [J]. Vaccine,2009,27(18):2489-2498.
    119. Rost B, et al. The PredictProtein server [J]. Nucleic Acids Res,2004,32:321-326.
    120. Schwede T, et al. SWISS-MODEL: an automated protein homology-modeling server [J]. NucleicAcids Res,2003,31:3381-3385.
    121. Shang L, et al. Protection in mice immunized with a heterologous prime-boost regime using DNAand recombinant pseudorabies expressing TgSAG1against Toxoplasma gondii challenge [J].Vaccine,2009,27(21):2741-2745.
    122. Sibley LD, et al. Macrophage interactions in toxoplasmosis [J]. Res Immunol,1993,144:38-40.
    123. Siden-kiamos I, et al. Plasmodium berghei calcium-dependent protein kinase3is required forookinete gliding motility and mosquito midgut invasion [J]. Mol Microbiol,2006,60(6):1355-1363.
    124. Smith AT, et al. MYST family histone acetyltransferases in the protozoan parasite Toxoplasmagondii [J]. Eukaryot Cell,2005,4(12):2057-2065.
    125. Sturge CR, et al. TLR-independent neutrophil-derived IFN-γ is important for host resistance tointracellular pathogens [J]. Proc Natl Acad Sci U S A,2013,110:10711-10716.
    126. Su C, et al. Moving towards an integrated approach to molecular detection and identification ofToxoplasma gondii [J]. Parasitology,2010,137:1.
    127. Su C, et al. Genotyping of Toxoplasma gondii by multilocus PCR-RFLP markers:a high resolutionand simple method for identification of parasites [J]. Int J Parasitol,2006,36(7):841-848.
    128. Suqi T, et al. Molecular analyses of Toxoplasma gondii calmodulin-like domain protein kinaseisoform3[J]. Parasitol Int,2009,58(4):416-423.
    129. Tan F, et al. Induction of protective Th1immune responses in mice by vaccination withrecombinant Toxoplasma gondii nucleoside triphosphate hydrolase-II [J]. Vaccine,2011,29(15):2742-2748.
    130. Tan TG, et al. Identification of Toxoplasma gondii epitopes, adjuvants, and host genetic factors thatinfluence protection of mice and humans [J]. Vaccine,2010,28(23):3977-3989.
    131. Tzen M, et al. A novel Toxoplasma gondii calcium-dependent protein kinase [J]. Parasite,2007,14(2):141-147.
    132. Vercruysse J, et al. Veterinary parasitic vaccines: pitfalls and future directions [J]. Trends Parasitol,2004,20(10):488-492.
    133. Wang H, et al. Immune response induced by recombinant Mycobacterium bovis BCG expressingROP2gene of Toxoplasma gondii [J]. Parasitol Int,2007,56:263-268.
    134. Wang M, et al. Toxoplasma gondii infection in Bactrian camel (Camelus bactrianus) in China [J].Vet Parasitol,2013,192:288-289.
    135. Wang M, et al. Serological survey of Toxoplasma gondii in Tibetan mastiffs (Canis lupus familiaris)and yaks (Bos grunniens) in Qinghai, China [J]. Parasit Vectors,2012,5:35.
    136. Wang Y, et al. Increased survival time in mice vaccinated with a branched lysine multipleantigenic peptides containing B-and T-cell epitopes from Toxoplasma gondii antigens [J]. Vaccine,2011,29(47):8619-8623.
    137. Weiss LM, et al. Toxoplasmosis: a history of clinical observations [J]. Int J Parasitol,2009,39(8):895-901.
    138. Wernimont AK, et al. Structures of parasitic CDPK domains point to a common mechanism ofactivation [J]. Proteins,2011,79(3):803-820.
    139. Wu SM, et al. Seroprevalence of Toxoplasma gondii infection in pet dogs in Lanzhou, NorthwestChina[J]. Parasit Vectors,2011a,4:64.
    140. Wu SM, et al. Seroprevalence of Toxoplasma gondii infection in household and stray cats inLanzhou, northwest China [J]. Parasit Vectors,2011b,4:214.
    141. Wu XN, et al. Multicomponent DNA vaccine-encoding Toxoplasma gondii GRA1and SAG1primes: anti-Toxoplasma immune response in mice [J]. Parasitol Res,2012,111(5):2001-2009.
    142. Yan HK, et al. Toxoplasma gondii: Protective immunity against experimental toxoplasmosisinduced by a DNA vaccine encoding the perforin-like protein1[J]. Exp Parasitol,2011,128(1):38-43.
    143. Yang X, et al. Evaluation of the adjuvant properties of Astragalus membranaceus and Scutellariabaicalensis GEORGI in the immune protection induced by UV-attenuated Toxoplasma gondii inmouse models [J]. Vaccine,2010,28(3):737-743.
    144. Yuan ZG, et al. Protective immunity induced by Toxoplasma gondii rhoptry protein16againsttoxoplasmosis in mice [J]. Clin Vaccine Immunol,2011a,18(1):119-124.
    145. Yuan ZG, et al. Protective effect against toxoplasmosis in mice induced by DNA immunizationwith gene encoding Toxoplasma gondii ROP18[J]. Vaccine,2011b,29(38):6614-6619.
    146. Yuasa T, et al. Ca2+-dependent protein kinase from the halotolerant green alga Dunaliellatertiolecta: partial purification and Ca2+-dependent association of the enzyme to the microsomes [J].Arch Biochem Biophys,1992,296(1):175-182.
    147. Zhang NZ, et al. Vaccines against Toxoplasma gondii: new developments and perspectives [J].Expert Rev Vaccine,2013,12:1287-1299.
    148. Zhang XX, et al. First report of Toxoplasma gondii seroprevalence in pet parrots in China [J].Vector Borne Zoonotic Dis.(accept)
    149. Zhou H, et al. Protective immune response against Toxoplasma gondii elicited by a recombinantDNA vaccine with a novel genetic adjuvant [J]. Vaccine,2012,30(10):1800-1806.
    150. Zhou P, et al. Toxoplasma gondii infection in humans in China [J]. Parasit Vectors,2011,4:165.
    151. Zhou P, et al. Genetic characterization of Toxoplasma gondii isolates from pigs in China [J]. JParasitol,2010,96:1027-1029.
    152. Zhou P, et al. Genetic characterization of Toxoplasma gondii isolates from China [J]. Parasitol Int,2009,58:193-195.
    153. Zou FC, et al. Seroprevalence of Toxoplasma gondii in pigs in Southwestern China [J]. ParasitolInt,2009,58(3):306-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700