用户名: 密码: 验证码:
科尔沁沙地草原沙化时空变化特征遥感监测及驱动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荒漠化被认为是当今人类面临的最严重的环境与社会问题之一。我国是受荒漠化影响最严重的国家之一,且荒漠化多发生于发展落后、气候环境恶劣的草原区。作为人口众多、耕地资源有限的国家,如何管理和利用好所拥有的全球面积第二大的草地资源,对中国来说有着格外重要的意义。近年来,面对日益严重的荒漠化进程和草地退化形势,国家及各级政府实施了一系列的生态保护及恢复工程,这些政策、工程的实施效果如何以及是否需要调整等问题,迫切需要准确、及时地掌握我国各地区的荒漠化发展变化过程,尤其是治理工程实施前后荒漠化的发展变化差异。对荒漠化进行监测的前提和基础是建立科学、可操作的荒漠化评价体系,但是,目前的荒漠化评价体系仍然存在目的不明确、指标间信息交叉冗余,且多为定性或间接性指标,特别是针对草原沙化的评价指标体系过少,忽略草原类型差异以及基于遥感技术的指标体系发展不足等。
     本研究的主要目的就是,在充分收集、分析、总结前人研究成果的基础上,对目前常用的荒漠化评价指标进行应用、对比、分析,在野外考察的基础上,对各指标的草原沙化信息提取能力进行评价。在此基础上,以科尔沁沙地为例,结合研究区草原类型等特征,建立适合于研究区的草原沙化遥感监测评价体系。并以此为基础,对覆盖研究区的1985年、1992年、2001年以及2013年四期Landsat TM/ETM+/OLI影像进行草原沙化等信息提取,深入分析科尔沁沙地草原沙化自上世纪80年代以来的变化特征,并对其驱动因素进行定性和定量分析,主要研究内容和结果如下:
     1.其他土地覆盖类型的提取及掩膜
     从土地利用/土地覆盖变化角度对草原沙化进行研究,能够在获取草原沙化信息的同时,得出沙地的转入来源及转出方向,有利于分析草原沙化过程,研究其驱动因素。在对草原沙化信息提取之前,首先基于各种植被指数、穗帽变换、光谱混合分析、决策树等方法,对研究区其他主要土地覆盖类型进行分层识别、提取、掩膜,在有效提高地物提取精度的同时,有利于突出研究重点,减少草原沙化信息提取的复杂性,提高解译精度。
     2.草原沙化遥感监测指标的挑选及评价体系的建立
     对目前常用的基于植被盖度的荒漠化评价指标进行应用,并与裸沙面积百分比指标进行对比、分析,发现,基于植被盖度的荒漠化评价指标容易高估草原沙化程度较轻或未沙化区域,且高估程度与土壤面积百分比呈正比关系,总体精度仅59.38%,而基于裸沙面积百分比的草原沙化评价则可有效避免这种问题,总体精度达80.99%,两种指标只是在土壤面积百分比越接近0的区域才趋于一致。本研究以裸沙面积百分比为主要评价指标,结合前人研究成果及研究区沙化特征,建立了科尔沁沙地草原沙化遥感监测评价体系,并以像元分解法作为获取裸沙面积百分比的主要方法。
     3.科尔沁沙地草原沙化特征
     科尔沁沙地西南部集中了科尔沁主要中、重度沙化草地,行政区划上涉及翁牛特旗、奈曼旗、库伦旗、敖汉旗。特别是翁牛特旗五分地镇-乌兰镇以东、西拉木伦河以南以及教来河以西,三线构成的三角地带聚集了科尔沁沙地的大部分中、重度草原沙化草地,特别是重度沙化草地。轻度、中度及重度沙化草地分别占研究区总面积的9%、4%及3%,三者面积之和约占研究区总面积的16%,在研究时段内,轻、中、重三级沙化草地及沙化草地总面积均呈先增后减的变化趋势;轻度、中度沙化草地变化拐点在1992年,重度沙化草地及沙化草地总面积变化拐点在2001年。总体上,科尔沁草原沙化状况呈现先发展后逆转的趋势,1985~1992年间为发展(重度沙化草地面积年增长率达5.91%),1992~2013年间为逆转,且逆转速度在2001~2013年间最快(重度沙化草地面积年减少率在1992~2001年为0.51%,在2001~2013年为2.92%),时空变化上,翁牛特旗东北部、奈曼旗以及库伦旗北部是草原沙化动态变化最为活跃的区域;
     4.驱动力上,本文研究时段内,科尔沁沙地暖干化趋势明显,且科尔沁沙地年内降水分布极其不均,冬春两季风大水少,所以气候背景上不利于草地沙化的逆转。人为因素上,人口、耕地面积及牲畜数量不断增长,特别是2002~2011年间,耕地面积、有效灌溉面积及牲畜存栏量增长迅速,但是,经本文监测显示,科尔沁沙地1992年~2001年,已呈现逆转趋势,特别是在2001~2013年间,逆转面积及逆转速率均较大,说明一些生态保护及恢复政策的实施有效地促进了草原植被恢复及草地沙化逆转。另外,经因子分析可知,在1987~2000时段内,人为干扰是研究区草原沙化发生发展的主要因子,而在2001~2012年,自然因素和人为因素对草原沙化影响相近,人为因素中,耕地面积的增加是主要影响因素。
Desertification, land degradation in arid, semi-arid and dry sub-humid areas resulting from climaticvariations and/or human activities, is treated as one of the most critical environmental hazards, since theincreasing rate of it implies a clear manifestation of human interaction and climatic-change processes onthe environment. As one of the seriously affected countries with a long-term and large-scaledesertification problem, China is not immune to this environmental hazard. Since the direct economicloss of desertification in China is about128.14billion RMB each year in the late20th century,desertification is often termed as the main and most serious form of the degradation. With a populationof over1.3billion and limited farmland, it is a survival issue for China to tap and manage the grasslandefficiently and sustainable, since it has the second-largest grassland area of about400million hectaresof which accounts for41.41%of the country’s territory. Facing the worsening degradation of grasslands,state and local governments in China have implemented a series of ecological protection projects, theeffect of which has become contentious at all levels of government and a topic of public concern.Grassland desertification is the most direct indicator of the effect of the grazing ban. Monitoring andaccurate assessment of the status and changing trend of grassland desertification is instrumental indeveloping effective policies to combat grassland degradation, for understanding the changing trend ofgrassland degradation.
     We selected18counties and cities in Horqin Sandy Land as the study area. Based on a series ofLandsat TM/ETM+/OLI images, field observations and expert review, a Horqin grassland sandydesertification classification and grading system was constructed. Then, spectral mixture analysis (SMA)and a decision-tree method were used to interpret images of the study area from four years:1985,1992,2001and2013. The following results were obtained:
     1.Based on relevant desertification classification indicator studies, China’s national standard andfield inspection and verification, combined with the land use, grassland type and basic desertificationcharacteristics of the study area, we classified the land cover of the study area into nine categories.Finally, we conducted seminars and demonstration projects for experts to substantiate the scientificvalidity, operability and interpretability of the remote sensing images. Combining the sample plots andquadrat data, the grassland type and general environment of the study area, we further determined theappropriate gradation system for remote sensing of grassland desertification in Ningxia
     2.Before producing unmixed pixels, a mask was made for farmland, human settlements, water,forest and other land uses based on visual interpretation, the MNDWI, NDVI, TC and the NDII, amongother methods.
     3.Comparison and selection of methods: Linear spectral mixture model retrivals the occupation ofbare sand, vegetation index retrivals the vegetation coverage. We find that the desertification level inhigh soil coverage area often be overrated while be evaluated by vegetation coverage. However,evaluation based on bare sand area can effectively avoid this kind of problem with high interpretation accuracy.
     4.Spatial distribution characteristics:The moderately desertified grassland and severely desertifiedgrassland mainly distributed in the southwest of Horqin Sandy Land, where involves Wengniute Banner,Naiman Banner, Kulun Banner and Aohan Banner in administrative division. And the severelydesertified grassland especially located in the tringle region that forms by Wufendi-Wulan in WengniuteBanner, Xar Moron River and Jiaolai River.
     5.Area statistical characteristics:The landcover in the study area is mainly covered by grassland,which accounts for70%of its territory. Among the grassland, non-, slightly, moderately and severelydesertified grassland accounts for55%,9%,4%and3%of its territory, separately.
     6.Spatio-temporal variation characteristics: From1985to1992, the grassland desertification degree“reversed” and “obviously reversed” mainly distributed in the central part of Bairin Left Banner and thenorthern part of Bairin Right Banner, while “developed” and “seriously developed” mainly distributedin the northeast part of Wengniute Banner, northwest part of Naiman Banner and west of Kailu County.From1992to2001,“reversed” and “obviously reversed” mainly interspersed among Naiman Baner, thenorthern part of Aohan Banner and the eastern part of Ar Horqin Banner, while “developed” and“seriously developed” mainly distributed in the middle-east part of Wengniute Banner, northeast part ofKulun Banner et al. From2001to2013, the grassland sandy desertification in Horqin Sandy Land wasmainly “reversed” and “obviously reversed”, except some “developed” and “seriously developed” inKeerqinzuoyihou Banner,central part of Kulun Banner and Bairin Right Banner.
     7.Driving factors: During the research period in this paper, the warm desiccation tendency wasquite obvious. The coupling relation between wind and precipitation not benefit the reversion of thegrassland sandy desertification. Furthermore, the growing number of population, livestock and farmlandarea also blocked the reversion trend of grassland sandy desertification. However, the results in thispaper suggested that the grassland sandy desertification turned in a reversion trend since1992, andespecially clear reversed between2001and2013. These results show that the grazing ban, together withother ecological engineering measures, has helped reverse desertification and promote the restoration ofgrassland vegetation.
引文
1.保家有,李晓松,吴波.基于沙地植被指数的荒漠化评价方法.东北林业大学学报.2008,36(1):69~72.
    2.毕海芸,王思远,曾江源,等.基于TM影像的几种常用水体提取方法的比较和分析.遥感信息,2012,27(5):77~82.
    3.曾桂香.基于多尺度纹理分析的SAR图像地物分类[曾桂香硕士论文].武汉大学,2004.
    4.查勇,高家庆,倪绍祥,等.遥感技术在荒漠化滥测中的应用──以陕西榆林市芹河乡为例.中国沙漠,1997,17(3):68~72.
    5.柴芸.甘肃省沙化土地监测研究.甘肃农业大学学报,2003,38(3):296~303.
    6.陈百明,周小萍.《土地利用现状分类》国家标准的解读.自然资源学报,2007,22(6):994~1003.
    7.陈凤臻,姜琦刚,赵明,等.基于GIS的近30年来松辽平原沙质荒漠化遥感动态研究.干旱区资源与环境,2008,22(12):122~127.
    8.陈广庭.近50年北京的沙尘天气及治理对策.中国沙漠,2001,21(4):402~407.
    9.陈彦光编著.基于Excel的地理数据分析.北京:科学出版社,2010.
    10.程序.农牧交错带研究中的现代生态学前沿问题.资源科学,1999,21(5):1~8.
    11.慈龙骏,吴波.中国荒漠化气候类型划分及潜在发生范围的确定.中国沙漠,1997,17(2):107~111.
    12.慈龙骏.我国荒漠化发生机理与防治对策.第四纪研究,1998(2):97~107.
    13.丁国栋,赵廷宁,范建友,等.荒漠化评价指标体系研究现状述评.北京林业大学学报,2004a,26(1):92~96.
    14.丁国栋.区域荒漠化评价中植被的指示性及盖度分级标准研究——以毛乌索沙区为例.水土保持学报,2004b,18(l):158~160.
    15.丁建丽,塔西甫拉提特依拜.基于NDVI的绿洲植被生态景观格局变化研究.地理学与国土研究,2002,18(1):23~26.
    16.董光荣,金炯,李保生,等.科尔沁沙地沙漠化的几个问题──以南部地区为例.中国沙漠,1994,14(1):1~9.
    17.董光荣,申建友,金炯.关于“荒漠化”与“沙漠化”的概念.干旱区地理,1988,11(1):58~61.
    18.董玉祥,刘毅华.土地沙漠化监测指标体系的探讨.干旱环境监测,1992,6(3):179~182.
    19.董玉祥.“荒漠化”与“沙漠化”.科技术语研究,2000,4(2):18~21.
    20.范建友.基于RS和GIS的正蓝旗植被动态与荒漠化评价研究[范建友硕士学位论文].北京:北京林业大学,2004.
    21.范旻昊.基于MODIS遥感数据的混合像元分解技术与方法研究[范旻昊硕士论文].南京信息工程大学,2007.
    22.封建民,李晓华.近15年来共和盆地土地沙质荒漠化动态变化及原因分析.水土保持研究,2010(5):129~133.
    23.冯毓荪.沙漠化地图的编绘与表示方法——以科尔沁地区为例.中国沙漠,1985,5(2):17~23.
    24.冯钟葵.关于地物辐射值的计算问题.中国遥感卫星地面站用户简讯,2002.
    25.傅文杰,戴塔根.基于线性光谱混合模型的遥感影像枇杷树信息提取.西北林学院学报,2006,21(2):13~15.
    26.高会军,李小强,张峰,等.青海湖地区生态环境动态变化遥感监测.中国地质灾害与防治学报,2005(3):100~103.
    27.高尚武,王葆芳,朱灵益,等.中国沙质荒漠化土地监测评价指标体系,林业科学,1998,34(2):1~10.
    28.高志海.基于RS和GIS的绿洲植被与荒漠化动态研究[高志海博士论文].北京林业大学,2003.
    29.高志海,孙保平,丁国栋.荒漠化评价研究综述.中国沙漠,2004,24(1):19~24.
    30.葛华,宣威,刘喜海,等.通辽市水资源状况及面临的问题.内蒙古水利,2009(3):84~85.
    31.葛绥成.中国北方气候干燥及沙漠扩大之研究.正官报史地,1941,9月3日~10月1日.
    32.郭丽秋,杨志国,王福义.通辽市科尔沁区水环境现状与问题.内蒙古水利,2008(6):41~42.
    33.郭绍礼.西辽河流域沙漠化土地的形成和演变.自然资源,1980(04):46~52.
    34.海春兴,马礼,王学萌,等.农牧交错带典型地段土地沙化主要因素分析——以河北坝上张北县为例.地理研究,2002,21(5):543~550.
    35.郝建亭,杨武年,李玉霞,等.基于FLAASH的多光谱影像大气校正应用研究.遥感信息,2008,(1):78~81.
    36.何春阳,史培军,陈晋,等.北京地区土地利用/覆盖变化研究.地理研究,2001,20(6):679~687.
    37.胡茂桂,王劲峰.遥感影像混合像元分解及超分辨率重建研究进展.地理科学进展,2010,29(6):747~756.
    38.胡孟春.全新世科尔沁沙地环境演变的初步研究.干旱区资源与环境,1989,3(3):51~58.
    39.胡振琪,杨玲,王广军.草原露天矿区草地沙化的遥感分析——以霍林河矿区为例.中国矿业大学学报,2005,34(1):6~10.
    40.惠巍巍,衣德萍,廖彩霞,等.混合像元分解研究综述.林业科技情报,2007,39(1):2~3.
    41.姜高珍,韩冰,高应波,等. Landsat系列卫星对地观测40年回顾及LDCM前瞻.遥感学报,2013(5):1033~1048.
    42.姜琦刚,高会军.近30年来北方农牧交错带沙质荒漠化动态变化.世界地质,2005,24(4):373~377.
    43.蒋德明.科尔沁沙地荒漠化过程与生态恢复.中国环境科学出版社,2003.
    44.金向荣,任晓辉.科尔沁沙地沙漠化的演变.赤峰学院学报(自然科学版),2006,22(5):35~36.
    45.康相武,马欣,吴绍洪.基于景观格局的区域沙漠化程度评价模型构建.地理研究,2007,26(2):297~304.
    46.李宝林,周成虎.东北平原西部沙地沙质荒漠化的遥感监测研究.遥感学报,2002,6(2):117~122.
    47.李春晖,杨志峰.黄河流域NDVI时空变化及其与降水/径流关系.地理研究,2004,23(6):753~759.
    48.李继红.科尔沁奈曼土地荒漠化程度遥感评价研究:[李继红博士论文].东北林业大学,2007.
    49.李金亚,徐斌,杨秀春,等.锡林郭勒盟草原沙化动态变化及驱动力分析——以正蓝旗为例.地理研究,2011a,30(9):1669~1682.
    50.李金亚.基于TM数据的草原沙化遥感监测方法研究与应用[李金亚硕士论文].中国农业科学院,2011b.
    51.李小文主编.遥感原理与应用.北京:科学出版社,2008:153~157.
    52.李晓松.基于混合象元分解的荒漠化监测与评价[李晓松硕士学位论文].北京:北京林业大学,2005.
    53.李晓松,吴波,范文义,等.基于光谱混合分析的荒漠化信息提取--以毛乌素沙地为例.林业科学研究,2006,19(2):192~198.
    54.廉毅,高枞亭,任红玲,等.吉林省西部荒漠化发展的陆地卫星遥感监测分析.气象学报,1999,57(6):662~667.
    55.凌峰,吴胜军,肖飞,等.遥感影像亚像元定位研究综述.中国图象图形学报,2011,16(8):1335~1345.
    56.凌侠.宁夏河东沙地荒漠化态势评价研究[凌侠博士论文].北京林业大学,2007.
    57.刘纪远主编.中国资源环境遥感宏观调查与动态研究.北京:中国科学技术出版社,1996:353.
    58.刘绿柳,肖风劲.黄河流域植被NDVI与温度,降水关系的时空变化.生态学杂志,2006,25(5):477~481.
    59.刘同海,吴新宏,董永平.基于TM影像的草原沙漠化植被盖度分析研究.干旱区资源与环境,2010,24(2):141~144.
    60.刘拓.我国荒漠化防治现状及对策.发展研究,2009(3):65~68.
    61.刘拓.中国土地沙漠化经济损失评估.中国沙漠,2006,26(1):40~46.
    62.刘新民,赵哈林.科尔沁沙地风沙环境与植被.科学出版社,1996.
    63.刘勇,岳文泽.基于图像融合与混合像元分解的城市植被盖度提取.生态学报,2010,30(1):93~99.
    64.刘玉平,慈龙骏.毛乌素沙地草场荒漠化评价的指标体系.中国沙漠,1998,18(4):72~77.
    65.刘云芳,李瑞,张克斌,等.基于NDVI的农牧交错带草地植被数量动态研究.干旱区资源与环境,2007,21(10):137~143.
    66.卢琦,刘力群.中国防治荒漠化对策.中国人口·资源与环境,2003,13(1):86~91.
    67.吕晓芳,王仰麟,张镱锂,等.宁夏中部生态脆弱区土地利用变化及沙漠化响应——以宁夏盐池县为例.地理研究,2007,26(6):1156~1164.
    68.吕长春,王忠武,钱少猛.混合像元分解模型综述.遥感信息,2003(3):55~58,60.
    69.吕子君.基于RS与GIS的内蒙古正蓝旗草原沙化动态监测与评价研究[吕子君博士学位论文].北京:北京林业大学,2005.
    70.孟力猛.基于NDVI和LUCC的盐池县荒漠化动态研究[孟力猛硕士论文].北京林业大学,
    2011.
    71.米佳,王堃,王红梅. Landsat ETM+在北方农牧交错带土壤沙化监测中的应用.光谱学与光谱分析,2011(3):798~802.
    72.农业部畜牧兽医司,全国畜牧兽医总站.中国草地资源.中国科学技术出版社,1996.
    73.农业部计划司.全国草原生态建设规划.北京农业出版社,2002,309~328.
    74.彭飞,王涛,薛娴.基于RUE的人类活动对沙漠化地区植被影响研究——以科尔沁地区为例.中国沙漠,2010,30(4):896~902.
    75.祁元,王一谋,王建华,等.基于遥感和GIS技术的荒漠化动态分析--以宁夏盐池为例.中国沙漠,2003,23(3):275~279.
    76.乔锋.荒漠化监测研究[乔峰硕士论文].北京林业大学,2006.
    77.乔汉.土地荒漠化的指标.世界沙漠研究,1994,(4):1~11.
    78.乔平林,张继贤,林宗坚.基于神经网络的土地荒漠化信息提取方法研究.测绘学报,2004,33(1):58~62.
    79.乔五十,郭喜绒,刘妍,等.地表覆盖遥感制图耕地要素提取的方法与相关问题探讨.测绘标准化,2013,29(3):21~23.
    80.裘善文.试论科尔沁沙地的形成与演变.地理科学,1989,9(4):317~328.
    81.宋晓宇,王纪华,刘良云,等.基于高光谱遥感影像的大气校正:用AVIRIS数据评价大气校正模块FLAASH.遥感技术与应用,2005,20(4):393~398.
    82.孙保平主编.荒漠化防治工程学.北京:中国林业出版社,2000.
    83.孙建国,艾廷华,王沛,等.基于NDVI-气候变量特征空间的植被退化评价.武汉大学学报(信息科学版),2008(06):573~576.
    84.孙建国,王涛,颜长珍.气候变化和人类活动在榆林市荒漠化过程中的相对作用.中国沙漠,2012,32(3):625~630.
    85.孙武,李保生.荒漠化分类分级理论的初步探讨.地理研究,1999,18(3):225~230
    86.孙武,南忠仁,李保生.荒漠化指标体系设计原则的研究.自然资源学报,2000,15(2):160.
    87.唐海萍,唐少卿.西部大开发中甘肃荒漠化态势及其防治问题.北京师范大学学报(自然科学版),2002,38(3):411~416.
    88.田庆久,闵祥军.植被指数研究进展.地球科学进展,1998,13(4):328~330.
    89.王建,董光荣,李文君,等.利用遥感信息决策树方法分层提取荒漠化土地类型的研究探讨.中国沙漠,2000(03):12~16.
    90.王君厚,孙司衡.荒漠化类型划分及其数量化评价体系.干旱环境监测,1996,10(3):129~137.
    91.王鹏新,陈晓玲,李飞鹏.典型干草原退化草地的时空分布特征及其动态监测.干旱地区农业研究,2002,20(1):92~94.
    92.王强,黄楠.混合像元分解研究综述:中国地理信息系统协会第四次会员代表大会暨第十一届年会,北京,2007[C].
    93.王秋菊.草原沙漠化治理工程生态效益评价[硕士论文].中国农业科学院,2008.
    94.王思远,刘纪远,张增祥,等.中国土地利用时空特征分析.地理学报,2001,56(6):631~639.
    95.王涛,吴薇,赵哈林,等.科尔沁地区现代沙漠化过程的驱动因素分析.中国沙漠,2004,24(5):1~528.
    96.王涛.近50年来中国北方典型地区沙漠化的发展与逆转态势:中国首届沙产业高峰论坛,银川,2008[C].
    97.王铁成,刘兴文.利用TM图像提取土地荒漠化信息的方法与效果──以阜康地区为例.遥感技术与应用,1994,9(1):34~41.
    98.王晓慧.沙化土地遥感监测机理和方法研究[王晓慧博士论文].中国林业科学研究院,2007.
    99.王野乔.遥感及多源地理数据分类中的人工神经网络模型.地理科学,1997(2):10~17.
    100.韦玉春,黄家柱. Landsat5图像的增益、偏置取值及其对行星反射率计算分析.地理信息科学,2006,8(1):110~113.
    101.乌兰图雅,雷军,玉山.科尔沁沙地风沙环境形成与演变研究进展.干旱区资源与环境,2002,16(1):28~31.
    102.邬建国.景观生态学——格局、过程、尺度与等级(第二版).北京:高等教育出版社,2007.
    103.吴波,慈龙骏.毛乌素沙地景观格局变化研究.生态学报,2001,21(2):191~196.
    104.吴波,慈龙骏.五十年代以来毛乌素沙地荒漠化扩展及其原因.第四纪研究,1998(2):165~172.
    105.吴波,卢琦.我国荒漠化基本特点及加快荒漠化地区发展的意义.中国人口·资源与环境,2002,12(1):99~101.
    106.吴波,苏志珠,杨晓晖,等.荒漠化监测与评价指标体系框架.林业科学研究,2005,18(4):490~496.
    107.吴见,彭道黎.土地沙化遥感信息提取技术研究进展.世界林业研究,2009,22(5):47~52.
    108.吴见.沙漠化现状定量评价遥感信息模型研究[吴见博士论文].北京林业大学,2012.
    109.吴柯,张良培,李平湘.一种端元变化的神经网络混合像元分解方法.遥感学报,2007,11(1):20~26.
    110.吴薇,王熙章,姚发芬.毛乌素沙地沙漠化的遥感监测.中国沙漠,1997,17(4):83~88.
    111.吴薇.近50a来科尔沁地区沙漠化土地的动态监测结果与分析.中国沙漠,2003(06):43~48.
    112.吴晓天.草地沙化遥感监测方法研究及应用[吴晓天硕士论文].中国农业科学院,2003.
    113.吴正,钟德才.中国北方地区沙漠化的现状与趋势之窥见.中国沙漠,1993,13(1):2l~27.
    114.吴正.浅议我国北方地区的沙漠化问题.地理学报,1991,46(3):266~276.
    115.武弘麟,史培军.全新世科尔沁沙地的环境变迁.内蒙古草场资源遥感考察队.内蒙古草场资源遥感应用研究(二),1987,68.
    116.信忠保,许炯心,郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响.中国科学:D辑,2007,37(11):1504~1514.
    117.徐伟.北京市典型风沙危害区景观动态及驱动力研究[徐伟博士论文].北京林业大学,2006.
    118.许端阳,康相武,刘志丽,等.气候变化和人类活动在鄂尔多斯地区沙漠化过程中的相对作用研究.中国科学: D辑,2009,39(4):516~528.
    119.颜梅春.基于TM数据的水域变化信息提取研究.水资源保护,2005,21(6):31~33.
    120.杨根生,刘阳宣,史培军.有关沙漠化几个问题的探讨.干旱区研究,1986,(4):73~77.
    121.杨光.基于3S的盐池县景观格局及荒漠化动态研究[杨光博士论文].北京林业大学,2008.
    122.杨恒山,刘江,梁怀宇.西辽河平原气候及水资源变化特征.应用生态学报,2009,20(1):84~90.
    123.杨建锋,马军成,王令超.基于多光谱遥感的耕地等别识别评价因素研究.农业工程学报,2012,28(17):230~236.
    124.杨晓辉,慈龙骏.基于遥感技术的荒漠化评价研究进展.世界林业研究,2006,19(6):11~17.
    125.叶笃正,丑纪范,刘纪远,等.关于我国华北沙尘天气的成因与治理对策.地理学报,2000,55(5):513~521.
    126.银山.内蒙古浑善达克沙地荒漠化动态研究[银山博士论文].内蒙古农业大学,2010.
    127.游晓斌,游先祥,相莹莹.混合像元及混合像元分析.北京林业大学学报,2003(S1):28~32.
    128.于显双,赵明,陈凤臻,等.基于GIS的北方农牧交错带荒漠化遥感动态监测与成因分析——以内蒙古通辽市为例.干旱区资源与环境,2010,24(04):107~111.
    129.喻素芳,范文义,秦武明,等.基于光谱混合分析的荒漠化评价方法.广西农业生物科学,2008,27(4):471~476.
    130.袁宏波.黄河源区玛曲县草地沙化动态监测及区域景观结构分析研究[硕士论文].甘肃农业大学,2006.
    131.张国祯.北京市沙化土地现状评价及其防治策略研究[张国珍博士论文].北京林业大学,2007.
    132.张景路,张永福,孟现勇,等.土地沙漠化预警研究进展.农业灾害研究,2012,2(6):49~52.
    133.张鹏凯,宣威,刘新潮,等.通辽市科尔沁区地下水超采及其治理对策探索.内蒙古水利,2009(06):70~71.
    134.张文华.荒漠化评价遥感信息模型的研究[张文华硕士论文].东北林业大学,2006.
    135.张文军.科尔沁沙地活沙障植被及土壤恢复效应的研究[张文军博士论文].北京林业大学,2008.
    136.赵春晖,齐滨,王玉磊.一种改进的N-FINDR高光谱端元提取算法.电子与信息学报,2012,34(2):499~503.
    137.赵庚星,窦益湘,田文新,等.卫星遥感影像中耕地信息的自动提取方法研究.地理科学,2001,21(3):224~229.
    138.赵哈林,赵学勇,张铜会,等.科尔沁沙地荒漠化过程及其恢复机理.北京:海洋出版社,2003.
    139.赵英时主编.遥感应用分析原理与方法.北京:科学出版社,2003,171~172.
    140.周立华,朱艳玲,黄玉邦.禁牧政策对北方农牧交错区草地沙漠化逆转过程影响的定量评价.中国沙漠,2012,32(2):308~313.
    141.朱会义,李秀彬.关于区域土地利用变化指数模型方法的讨论.地理学报,2003,58(5):643~650.
    142.朱俊凤,朱震达.中国沙漠化防治.北京:中国林业出版社,1999,2~7.
    143.朱震达,刘恕.关于沙漠化概念及其发展程度的判断.中国沙摸,1984,4(3):2~8.
    144.朱震达主编.中国沙漠化及其治理.北京:科学出版社.1989.
    145.Adams J B, Smith M O, Johnson P E. Spectral mixture modeling: Anew analysis of rock and soiltypes at the Viking Lander1site. Journal of Geophysical Research: Solid Earth (1978--2012),1986,91(B8):8098~8112.
    146.Asner G P, Heidebrecht K B. Desertification alters regional ecosystem--climate interactions.Global Change Biology,2005,11(1):182~194.
    147.Bai Z G, Dent D L, Olsson L, et al. Proxy global assessment of land degradation. Soil Use andManagement,2008,24(3):223~234.
    148.Bateson A, Curtiss B.A method for Manual Endmember Selection and Spectral Unmixing.Remote Sensing of Environment.1996.55(3):229~243.
    149.Berry L, Abraham E, Essahli W. UNCCD recommended minimum set of impact indicators.Consultancy report, UNCCD,2009.
    150.Berry L, Ford R B. Recommendations for a system to Monitor Critical Indicator in Areas Proneto Desertification. Massachusetts, Clark University,1977.
    151.Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing ofAVIRIS data: In summaries, Fifth JPL Airborne Earth Science Workshop. Pasadena, CA, US:JPL Publication,1995,1(1):23~26.
    152.Boer M M, Puigdefabregas J. Assessment of dryland condition using spatial anomalies ofvegetation index values. International Journal of Remote Sensing,2005,26(18):4045~4065.
    153.China National Committee for the Implementation of the United Nations Convention to CombatDesertification (CCICCD), China county paper to combat desertification, China ForestryPublishing House,1997.
    154.China National Committee for the Implementation of the United Nations Convention to CombatDesertification (CCICCD), China county paper to combat desertification, China ForestryPublishing House,2002.
    155.Collado A D, Chuvieco E, Camarasa A. Satellite remote sensing analysis to monitordesertification processes in the crop-rangeland boundary of Argentina. Journal of AridEnvironments,2002,52(1):121~133.
    156.Dawelbait M, Morari F. Limits and potentialities of studying dryland vegetation using the opticalremote sensing. Italian Journal of Agronomy,2010,3(2):97~106.
    157.Dawelbait M, Morari F. Monitoring desertification in a Savannah region in Sudan using Landsatimages and spectral mixture analysis. Journal of Arid Environments,2012,80:45~55.
    158.Del Barrio G, Puigdefabregas J, Sanjuan M E, et al. Assessment and monitoring of land conditionin the Iberian Peninsula,1989–2000. Remote Sensing of Environment,2010,114(8):1817~1832.
    159.Dregne H E.(韩清译),1979,沙漠化指征,世界沙漠研究,1980(3):1~4.
    160.Dregne H E. Desertification control: A framework for action. Environmental Monitoring andAssessment,1995,37(1):111.
    161.Eckmann T C, Still C J, Roberts D A, et al. Variations in Subpixel Fire Properties with Seasonand Land Cover in Southern Africa. Earth Interactions,2010,14(6).
    162.Elmore A J, Mustard J F, Manning S J, et al. Quantifying Vegetation Change in SemiaridEnvironments: Precision and Accuracy of Spectral Mixture Analysis and the NormalizedDifference Vegetation Index. Remote Sensing of Environment,2000,73(1):87~102.
    163.Enne G, Yeroyanni M. AIDCCD-Active exchange of experience on indicators and developmentof perspectives in the context of the UNCCD: Local and regional desertification indicators in aglobal perspective. Sassari (Italy): Centro Interdipartimentale di Ateneo Nuclep RicercaDesertificazione, Universita degli Studi di Sassari,2006.
    164.Enne G, Yeroyanni M. AIDCCD-Active exchange of experience on indicators and developmentof perspectives in the context of UNCCD: Role of information circulation systems in scientificand practical approaches to combat desertification. Centro Interdipartimentale di Ateneo NuclepRicerca Desertificazione, Universita degli Studi di Sassari, Sassari,2007.
    165.Enne G, Yeroyanni M. Report on the state of the art on existing indicators and CCDimplementation in the UNCCD Annexes.2005.
    166.Enne G, Zucca C. Desertification indicators for the European Mediterranean region. State of theart and possible methodological approaches. Agenzia Nazionale per la Protezione dell’Ambiente,Rome, Italy,2000.
    167.Evans J, Geerken R. Discrimination between climate and human-induced dryland degradation.Journal of Arid Environments,2004,57(4):535~554.
    168.Fernández-Manso A, Quintano C, Roberts D. Evaluation of potential of multiple endmemberspectral mixture analysis (MESMA) for surface coal mining affected area mapping in differentworld forest ecosystems. Remote Sensing of Environment,2012,127:181~193.
    169.Ferrara A, Salvati L, Sateriano A, et al. Performance evaluation and cost assessment of a keyindicator system to monitor desertification vulnerability. Ecological Indicators,2012,23:123~129.
    170.Frame D J, Stone D AI I. Assessment of the first consensus prediction on climate change. NatureClimate Change,2013,3(4):357~359.
    171.Franke J, Roberts D A, Halligan K, et al. Hierarchical Multiple Endmember Spectral MixtureAnalysis (MESMA) of hyperspectral imagery for urban environments. Remote Sensing ofEnvironment,2009,113(8):1712~1723.
    172.Garcia M, Ustin L. Detection of interannual vegetation responses to climatic variability usingAVIRIS data in a coastal savanna in California. Geoscience and Remote Sensing, IEEETransactions on,2001,39(7):1480~1490.
    173.García-Haro, F J, Gilabert M A, Melia J. Extraction of Endmember from Spectral Mixtures.Remote Sensing of Environment,1999,68(3):237~253.
    174.García-Haro, F J, Sommer S, Kemper T. A new tool for variable multiple endmember spectralmixture analysis (VMESMA). International Journal of Remote Sensing,2005,26(10):2135~2162.
    175.Ge X, Ni J, Li Z, et al. Quantifying the synergistic effect of the precipitation and land use onsandy desertification at county level: A case study in Naiman Banner, northern China. Journal ofEnvironmental Management,2013,123:34~41.
    176.Geist H. The causes and progression of desertification.Ashgate Publishing, Ltd.,2005.
    177.Gilabert M A, García-Haro, F J, Melia J. A mixture modeling approach to estimate vegetationparameters for heterogeneous canopies in remote sensing. Remote Sensing of Environment,2000,72(3):328~345.
    178.Grainger A, Smith M S, Squires V R, et al. Desertification, and climate change: the case forgreater convergence. Mitigation and Adaptation Strategies for Global Change,2000,5(4):361~377.
    179.Green A A, BermanM, SwitzerP, et al.A transformation for ordering multispectral data in termsof image quality with implications for noise removal.IEEE Transactions on Geoscience andRemote Sensing,1988,26(1):65~74.
    180.Helld E N U, Tottrup C. Regional desertification: a global synthesis. Global and PlanetaryChange,2008,64(3):169~176.
    181.Helldén U, Tottrup C. Regional desertification: Aglobal synthesis. Global and Planetary Change,2008,64(3–4):169~176.
    182.Herrmann S M, Hutchinson C F. The changing contexts of the desertification debate. Journal ofArid Environments,2005,63(3):538~555.
    183.Hestir E L, Khanna S, Andrew M E, et al. Identification of invasive vegetation usinghyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment,2008,112(11):4034~4047.
    184.Holben B N, Justice C O. An examination of spectral band ratioing to reduce the topographiceffect on remotely sensed data. International Journal of Remote Sensing.1981,2:115~121.)
    185.Huete A R, Tucker C J.Investigation of soil influences in AVHRR red and near-infraredvegetation index imagery. International Journal of Remote Sensing.1991,12:1223~1242.
    186.Ichoku C, Karnieli A.A review of mixture modeling techniques for sub-pixel land coverestimation. Remote Sensing Review,1996,13:161~186.
    187.Irons J R, Dwyer J L, Barsi J A. The next Landsat satellite: The Landsat data continuity mission.Remote Sensing of Environment,2012,122:11~21.
    188.Katra I, Lancaster N. Surface-sediment dynamics in a dust source from spaceborne multispectralthermal infrared data. Remote sensing of Environment,2008,112(7):3212~3221.
    189.Keshava N, Mustard J F. Spectral unmixing. Signal Processing Magazine, IEEE,2002,19(1):44~57.
    190.Kuehl R O, Breckenridge R P, Panda M. Integrated response Plot designs for indicators ofdesertification. Proceedings of the International Symposium and Workshop in Tucson, Arizona,VSA,1994.
    191.Kulkarni A D. Neural-fuzzy models for multispectral image analysis. Applied Intelligence,1998,8(2):173~187.
    192.Li J Y, Yang X C, Jin Y X, et al. Monitoring and analysis of grassland desertification dynamicsusing Landsat images in Ningxia, China. Remote Sensing of Environment,2013,138:19~26.
    193.Liu J, Diamond J. China's environment in a globalizing world. Nature,2005,435(7046):1179~1186.
    194.Liu J, Miller J R, Haboudane D, et al. Crop fraction estimation from casi hyperspectral datausing linear spectral unmixing and vegetation indices. Canadian Journal of Remote Sensing,2008,34(S1):S124~S138.
    195.Lobell D B, Asner G P. Cropland distributions from temporal unmixing of MODIS data. RemoteSensing of Environment,2004,93(3):412~422.
    196.Mabbutt JA. Desertification indicators. Climatic Change,1986,9(1):113.
    197.Meehl G A, Hu A, Tebaldi C, et al. Relative outcomes of climate change mitigation related toglobal temperature versus sea-level rise. Nature Climate Change,2012,2(8):576~580.
    198.Mohamed I N L, Verstraeten G. Analyzing dune dynamics at the dune-field scale based onmulti-temporal analysis of Landsat-TM images. Remote Sensing of Environment,2012,119:105~117.
    199.Mouat D, Lancaster J, Wade T, et al. Desertification Evaluated Using an IntegratedEnvironmental Assessment Model. Environmental Monitoring and Assessment,1997,48(2):139~156.
    200.Myneni R B,Ganapol B D,Asrar G.Remote sensing of vegetation canopy photosynthetic andstomatal conductance efficiencies.Remote Sensing of Environment.1992,42:217~238.
    201.Okin G, Okin W, Roberts D, Murray B.Multiple endmember spectral mixture analysis:Application to an arid/semi-arid landscape. In Proc.7th AVIRIS Earth Science Workshop, JPLPublication98~21, Pasadena, CA, pp.1998:291~299.
    202.Pacheco A, McNairn H. Evaluating multispectral remote sensing and spectral unmixing analysisfor crop residue mapping. Remote sensing of Environment,2010,114(10):2219~2228.
    203.Painter T H, Dozier J, Roberts D A, et al. Retrieval of subpixel snow-covered area and grain sizefrom imaging spectrometer data. Remote Sensing of Environment,2003,85(1):64~77.
    204.Pan J, Li T. Extracting desertification from Landsat TM imagery based on spectral mixtureanalysis and Albedo-Vegetation feature space. Natural Hazards,2013:1~13.
    205.Peddle D R, Smith A M. Spectral mixture analysis of agricultural crops: endmember validationand biophysical estimation in potato plots. International Journal of Remote Sensing,2005,26(22):4959~4979.
    206.Peter R J. North. Estimation of fAPAR, LAI, and vegetation fractional cover from ATSR-2imagery. Remote Sensing of Environment,2002,80(l):114~121.
    207.Phinn S, Stanford M, Scarth P, et al. Monitoring the composition of urban environments based onthe vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques.International Journal of Remote Sensing,2002,23(20):4131~4153.
    208.Pickup G, Bastin G N, Chewings V H. Identifying trends in land degradation in non-equilibriumrangelands. Journal of Applied Ecology,1998,35(3):365~377.
    209.Pinzari F, Trinchera A, Benedetti A, et al. Soil quality indicators for the assessment of the risk ofdesertification in Mediterranean ecosystems.,2000[C].
    210.PlazaA, Chang C.An improved N-FINDR algorithm in implementation,2005[C].
    211.Purevdorj T S, Tateishi R, Ishiyama T, et al. Relationships between percent vegetation cover andvegetation indices. International Journal of Remote Sensing,1998,19(18):3519~3535.
    212.Radeloff V C, Mladenoff D J, Boyce M S. Detecting jack pine budworm defoliation usingspectral mixture analysis: separating effects from determinants. Remote Sensing of Environment,1999,69(2):156~169.
    213.Rashed T, Weeks J R, Roberts D, et al. Measuring the physical composition of urban morphologyusing multiple endmember spectral mixture models. Photogrammetric Engineering and RemoteSensing,2003,69(9):1011~1020.
    214.Reining P. Handbook on Desertification Indicators. Washington DC, American Association forthe Advancement of Science,1978.
    215.Reynolds J F, Grainger A, Stafford Smith D M, et al. Scientific concepts for an integratedanalysis of desertification. Land Degradation\&Development,2011,22(2):166~183.
    216.Reynolds J F, Smith D M S, Lambin E F, et al. Global desertification: building a science fordryland development. Science,2007,316(5826):847~851.
    217.Reynolds J F, Stafford Smith D M. Global desertification:do humans cause deserts? Berlin:Dahlem University Press,2002.
    218.Richards J A, Jia X. Remote Sensing Digital Image Analysis. Heidelberg, Germany: SpringerBerlin Heidelberg,2006.
    219.Roberts D A, Gardner M, Church R, et al. Mapping chaparral in the Santa Monica Mountainsusing multiple endmember spectral mixture models. Remote Sensing of Environment,1998,65(3):267~279.
    220.Roberts D A, Ustin S L, Ogunjemiyo S, et al. Spectral and structural measures of northwestforest vegetation at leaf to landscape scales. Ecosystems,2004,7(5):545~562.
    221.Roberts D A. Mapping North African landforms using continental scale unmixing of MODISimagery. Remote Sensing of Environment,2005,97(4):470~483.
    222.R der A, Udelhoven T, Hill J, et al. Trend analysis of Landsat-TM and-ETM+imagery tomonitor grazing impact in a rangeland ecosystem in Northern Greece. Remote Sensing ofEnvironment,2008,112(6):2863~2875.
    223.Rogan J, Franklin J, Roberts D A. A comparison of methods for monitoring multitemporalvegetation change using Thematic Mapper imagery. Remote Sensing of Environment,2002,80(1):143~156.
    224.Sabol D E, Adams J B, Smith M O. Quantitative subpixel spectral detection of targets inmultispectral images. Journal of Geophysical Research: Planets (1991--2012),1992,97(E2):2659~2672.
    225.Sharma K D. The hydrological indicators of desertification. Journal of Arid Environments,1998,39(2):121~132.
    226.Somers B, Delalieux S, Verstraeten W W, et al. An automated waveband selection technique foroptimized hyperspectral mixture analysis. International Journal of Remote Sensing,2010,31(20):5549~5568.
    227.Sommer S, Zucca C, Grainger A, et al. Application of indicator systems for monitoring andassessment of desertification from national to global scales. Land Degradation&Development,2011,22(2):184~197.
    228.Song C. Spectral mixture analysis for subpixel vegetation fractions in the urban environment:How to incorporate endmember variability? Remote Sensing of Environment,2005,95(2):248~263.
    229.Svab E, Tyler AN, Preston T, et al. Characterizing the spectral reflectance of algae in lake waterswith high suspended sediment concentrations. International Journal of Remote Sensing,2005,26(5):919~928.
    230.Symeonakis E, Drake N. Monitoring desertification and land degradation over sub-SaharanAfrica. International Journal of Remote Sensing,2004,25(3):573~592.
    231.Tanser F C, Palmer A R. The application of a remotely-sensed diversity index to monitordegradation patterns in a semi-arid, heterogeneous, South African landscape. Journal of aridenvironments,1999,43(4):477~484.
    232.Tatem A J, Lewis H G, Atkinson P M, et al. Super-resolution land cover pattern prediction usinga Hopfield neural network. Remote Sensing of Environment,2002,79(1):1~14.
    233.Theseira M A, Thomas G, Sannier C. An evaluation of spectral mixture modelling applied to asemi-arid environment. International Journal of Remote Sensing,2002,23(4):687~700.
    234.Thorp K R, French A N, Rango A. Effect of image spatial and spectral characteristics onmapping semi-arid rangeland vegetation using multiple endmember spectral mixture analysis(MESMA). Remote Sensing of Environment,2013,132:120~130.
    235.Tits L, Somers B, Stuckens J, et al. Integration of in situ measured soil status and remotelysensed hyperspectral data to improve plant production system monitoring: Concept, perspectivesand limitations. Remote Sensing of Environment,2013,128:197~211.
    236.Tripathy G K, Ghosh T K, Shah S D. Monitoring of desertification process in Karnataka state ofIndia using multi-temporal remote sensing and ancillary information using GIS. InternationalJournal of Remote Sensing,1996,17(12):2243~2257.
    237.UNCCD. United Nations Convention to Combat Desertification: In Those CountriesExperiencing Serious Drought And/or Desertification, Particularly in Africa. Geneva: UNEP,1994.
    238.UNCOD. Desertification: Its Causes and Consequences. Pergamon Press,1997.
    239.UNEP. Status of desertification and implementation of the United Nation Plan to CombatDesertification.Nairobi,1991.
    240.UNEP. Status of desertification and implementation of the United Nations plan of action tocombat desertification. United Nations Environment Programmer, Nairobi, Kenya,1992.
    241.UNEP. WorldAtlas of Desertification. London: EdwardArnold,1997.
    242.USGS. Retrieved byApril3,2014, from http://landsat.usgs.gov/landsat8.php
    243.Valle H F De, Elissalde N O, Gagliardini D A, et al. Status of desertification in the Patagonianregion: assessment and mapping from satellite imagery. Arid Soil Research and Rehabilitation,1998,12(2):95~122.
    244.Verstraete M M, Brink A B, Scholes R J, et al. Climate change and desertification: Where do westand, where should we go? Global and Planetary Change,2008,64(3–4):105~110.
    245.Vogt J V, Safriel U, Von Maltitz G, et al. Monitoring and assessment of land degradation anddesertification: towards new conceptual and integrated approaches. Land Degradation\&Development,2011,22(2):150~165.
    246.Wang F, Pan X, Wang D, et al. Combating desertification in China: Past, present and future.Land Use Policy,2013,31:311~313.
    247.Wang T, Yan C Z, Song X, et al. Monitoring recent trends in the area of aeolian desertified landusing Landsat images in China’s Xinjiang region. ISPRS Journal of Photogrammetry andRemote Sensing,2012,68:184~190.
    248.Warren A. Land degradation is contextual. Land Degradation\&Development,2002,13(6):449~459.
    249.Weng Q, Lu D, Schubring J. Estimation of land surface temperature--vegetation abundancerelationship for urban heat island studies. Remote sensing of Environment,2004,89(4):467~483.
    250.Wessels K J, Prince S D, Reshef I. Mapping land degradation by comparison of vegetationproduction to spatially derived estimates of potential production. Journal of Arid Environments,2008,72(10):1940~1949.
    251.Wessels K J, van den Bergh F, Scholes R J. Limits to detectability of land degradation by trendanalysis of vegetation index data. Remote Sensing of Environment,2012,125:10~22.
    252.Winter M E. N-FINDR: an algorithm for fast autonomous spectral end-member determination inhyperspectral data,1999[C].1999.
    253.Wu C S. Normalized spectral mixture analysis for monitoring urban composition using ETMplus imagery. Remote Sensing of Enviroment,2004,93(4):480~492.
    254.Xu S, Peddle D R, Coburn C A, et al. Sensitivity of a carbon and productivity model to climatic,water, terrain, and biophysical parameters in a Rocky Mountain watershed. Canadian Journal ofRemote Sensing,2008,34(3):245~258.
    255.Xue Z, Qin Z, Li H, et al. Evaluation of aeolian desertification from1975to2010and its causesin northwest Shanxi Province, China. Global and Planetary Change,2013,107:102~108.
    256.Yang S, Sun J, Ramirez-Cuesta A J, et al. Selectivity and direct visualization of carbon dioxideand sulfur dioxide in a decorated porous host. Nature chemistry,2012,4(11):887~894.
    257.Zucca C, Peruta R D, Salvia R, et al. Towards a World Desertification Atlas. Relating andselecting indicators and data sets to represent complex issues. Ecological Indicators,2012,15(1):157~170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700