用户名: 密码: 验证码:
光环境因子对循环水养殖系统大西洋鲑生长及性腺发育的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光照是工业化循环水养殖系统中影响大西洋鲑生长及性腺发育的重要环境因子,全面了解光环境因子与大西洋鲑之间的相互作用,对于大西洋鲑的生产实践具有重要的指导意义。本论文结合养殖工程学、生理生态学、超声诊断学和半导体照明等学科,构建了大西洋鲑早期性别和发育阶段鉴别技术方法,查明了工业化循环水养殖生产系统中大西洋鲑生长性能及性腺发育的变化规律,系统地研究了光环境因子对循环水养殖系统大西洋鲑生长及性腺发育的影响效应。主要研究结论如下:
     (1)采用超声成像技术,探讨了大西洋鲑早期性别及发育期鉴别方法研究。研究结果表明:利用超声成像技术鉴别雌鱼的准确率较雄鱼高,其中鉴定雌鱼的准确率为93%,鉴定雄鱼的准确率为81%。根据大西洋鲑性腺发育的状况,每尾鱼超声波检测的时间约为35s。大西洋鲑Ⅲ期卵巢的超声波图像呈小三角形,结构紧密;Ⅳ、Ⅴ期卵巢的超声波图像呈白色亮点的圆形颗粒结构。而Ⅳ、Ⅴ期精巢的超声波图像则呈不规则黑影,但Ⅱ、Ⅲ期精巢的超声波图像无明显的判别特征,这两个时期的精巢需要排除Ⅱ、Ⅲ、Ⅳ、Ⅴ期卵巢及Ⅳ、Ⅴ期精巢来确定。超声成像技术鉴别Ⅲ期、Ⅳ期卵巢的准确率分别为87%、92%,对Ⅴ期卵巢鉴别的准确率达到100%。超声波技术鉴定Ⅱ期精巢的准确率仅为64%,对Ⅲ期、Ⅳ期精巢鉴别的准确率分别为71%、86%,精巢发育至Ⅴ期时的准确率为84%。超声波技术鉴定早期性腺(Ⅱ~Ⅲ期)发育的准确率较低,为75%;对晚期性腺(Ⅳ~Ⅴ期)发育鉴定的准确率较高,为89%。
     (2)在大西洋鲑工业化循环水养殖生产系统中,连续12个月,跟踪监测了初始体重分别为160.85±41.48g、418.00±92.29g两批降海大西洋鲑(smolts)生长及性腺发育规律。监测结果表明:2011年9月和2012年1月降海的雌、雄大西洋鲑体重和体长生长速度差异均不显著,但雄鱼生长速度整体上大于雌鱼;上述两批次的雌、雄鱼体质量体长拟合函数关系式W=aLb中b值均大于3.0,显示工业化循环水养殖生产系统中雌、雄大西洋鲑体重生长大于体长生长。雌、雄大西洋鲑各生长阶段的体质量特定生长率、相对增重、肥满度、体质量变异系数及生长激素的变化趋势基本一致,即各生长指标呈现变化幅度不同的波浪式规律。在循环水养殖生产系统中,雌性大西洋鲑卵巢启动时间是在降海后的第9-10个月,卵巢发育较快个体的体重范围为596~2755g;雄性大西洋鲑精巢启动时间是在降海后的第6-9个月,精巢发育较快个体的体重范围为274~2880g。两批次雌、雄大西洋鲑雌二醇激素(E2)浓度水平随时间的变化均呈现先降低后升高再降低的趋势,且雌、雄鱼E2含量均无显著差异(p>0.05)。2011年9月、2012年1月降海的大西洋鲑分别在降海后第13、第8个月前睾酮(T)浓度水平变化趋势大体一致;2011年9月降海的大西洋鲑雌、雄鱼T含量均出现先升高后降低的趋势,2012年1月降海的雌、雄个体的T含量均呈现不规则的“W”式变化;上述两批次雄鱼T含量分别在第14、10个月达到最高值(即3.27、1.43ng.ml-1),且此时两批次雄鱼T水平均显著高于雌性鱼(p<0.05)。
     (3)以初始体重为(850.97±82.77)g的大西洋鲑为研究对象,运用正交实验方法,持续7个月,探讨了不同光谱成分(550nm,A1;455,A2;625,A3)、光周期(LD24:0,B1;LD12:12,B2;LD8:16,B3)和光强(0.88W.m-2,C1;4.55W.m-2,C2;8.60W.m-2,C3)对工业化循环水养殖系统大西洋鲑生长及性腺发育的影响。研究结果表明:在工业化循环水养殖系统中,光谱成分、光周期和光强对大西洋鲑生长、摄食影响不明显,625nm、LD12:12、8.60W.m-2是本实验条件下较为适宜的光照条件。雄、雌大西洋鲑分别在550nm、LD24:0、4.55W.m-2及550nm、LD24:0、0.88W.m-2的条件下性腺发育最快。大西洋鲑在性腺发育过程中,光周期是光环境参数中的重要因子。光周期对大西洋鲑性腺指数、睾酮激素、夜间血浆褪黑激素及雌性大西洋鲑雌二醇激素具有显著或极显著影响;光周期对雄性大西洋鲑雌二醇激素的影响不显著,光谱成分、光强对大西洋鲑性腺指数、夜间褪黑激素及睾酮和雌二醇激素均无显著的影响。
     (4)选取初始体重为(1071.70±155.54)g的大西洋鲑600尾,随机分为6组:24L-8L组的初始光周期LD24:0、每日缩短5min,8L-24L组的初始光周期LD8:24、每日增加5min,24L:0D组为光周期LD24:0,18L:6D组为光周期LD18:6,12L:12D组为光周期LD12:12,8L:16D组为光周期LD8:16,每组2个重复,每个重复50尾鱼,研究了不同光周期水平对循环水养殖系统大西洋鲑生长及性腺发育的影响,实验周期7个月。研究表明,实验结束时不同光周期水平对大西洋鲑成活率、体质量变异系数、肥满度、体质量特定生长率、体长特定生长率、相对增重和日增重的影响差异不显著(p>0.05)。各光周期组大西洋鲑摄食率、饲料转化效率和饲料系数的变化范围分别为0.40~0.51%/d、78.09~89.28%和1.12~1.28,光周期12L:12D组饲料系数较低,摄食率和饲料转化效率较高。各实验组白天大西洋鲑血浆褪黑激素含量无显著性差异(p>0.05),24L:0D组夜间鱼的血浆褪黑激素含量均显著低于夜间其他各实验组(p<0.05),各组由低到高依次为:24L:0D <8L-24L <24L-8L<12L:12D <18L:6D <8L:16D。8L:16D组和12L:12D组可延缓雌、雄大西洋鲑性腺发育,而24L:0D组、8L-24L组和24L-8L组均可不同程度地加快雌、雄鱼的性腺发育。
     上述研究成果可以为人工光照调控工业化循环水养殖大西洋鲑性腺发育提供理论依据,并将促进大西洋鲑工业化循环水养殖产业的健康发展。
Lighting is an important environmental factor for affecting the growth and gonadaldevlopment of Atlantic salmon (Salmo salar) in recirculating aquaculture systems(RAS). Acomprehensive understanding of the interactions between light environmentfactors and Atlantic salmon would be instructive and meaningful to the productionpractice of Atlantic salmon. Based on the combination of these disciplines includingaquacultural engineering, physiological ecology, ultrasound diagnostics andsemiconductor lighting, the present study constructed the identification methods ofearly sex and the different stages of gonadal developoment in farmed Atlantic salmon.It also aimed to find out the changes of growth performance and gonadal developmentof the salmon in commercial RAS and systematically study the effects of lightenvironment factors on the growth performance and gonadal development in RAS.Main research results of the present study are as follows:
     (1) The idenfication method of early sex and gonadal development stages ofcultured Atlantic salmon were determined by using ultrasound imaging technique.The results showed that there was higher accuracy of sex identification in the femalesusing ultrasound imaging technology than that of the males, and the accuracy of theidentification in females and males was93%,81%respectively. According to sexgonadal status of Atlantic salmon, the duration time of each fish was35s. Theultrasonic images of the ovaries at stage Ⅲ appeared the characteristics of small triangles in female Atlantic salmon, and the ovarian images at stages Ⅳ andⅤ withthe structure of both the white spot and rounded particle. The ultrasound images of thetestis at stages Ⅳ andⅤwere the characteristics of the irregular shadows, while thetesticular ultrasonic images at stages Ⅱa ndⅢ were not distinguished in male fish.That is to say, the identification of the testis at stages Ⅱand Ⅲ need to exclude thestages Ⅱ, Ⅲ, Ⅳ and Ⅴ ofthe ovaries and the stages Ⅳ and Ⅴ ofthe testis. Inaddition, the accuracy of the ovaries at stages Ⅲ and Ⅳ in female fish was87%and92%respectively, and the ovarian accuracy at stage Ⅴ of was100%; The accuracy ofthe testis at stages Ⅱ, Ⅲ, Ⅳ andⅤ were64%,71%,86%and84%separately. So tospeak, the accuracy of gonadal development in early stages (namely Ⅱand Ⅲ) was(75%) lower than that of the later stages (namely Ⅳand Ⅴ), which was89%.
     (2) The experiment was conducted for12months to monthly monitor the changesof growth performance and gonadal development of Atlantic salmon in two batches(with initial weight of160.85±41.48g,418.00±92.29g respectively) in commercialRAS. The results indicated that there were no differences of the body weight and bodylength of male and female smolts entering seawater in September2011and January2012respectively (p>0.05). However, the growth of the males was greater than that ofthe females during the experimental period. The b values were more than3.0for theformula of the relationship between body weight and body length with W=aLbin maleand female fishes, suggesting that the growths of body weight in males and femaleswere greater than the growths of body length in commercial RAS. The changes of thespecific growth rate, relative weight gain, condition factor, coefficient of sizevariation and growth hormone level were concident and regular in various wavytendency at different growth stages. The initiation time of ovary development ofsmolts was at the nineth to tenth month into the seawater, and the body weight of theindividual which rapidly grew in ovaries ranged from596g to2755g. The initiationtime of testicular development in the salmon was at the sixth to nineth month after theseawater, and the weight of the individual which rapidly grew in testis ranged from274g to2880g. The changes of the estradiol (E2) levels in females and males were allfirstly decreased, then increased and decreased again in two batches entering seawater in September2011and January2012respectively. There were no significant effectson the E2concentrations of the female and male in two batches (p>0.05). The trend oftestosterone (T) levels of the salmon in two batches (entering seawater in September2011and January2012separately) remained the same into the seawater before thethirteenth and eighth month respectively. The T levels of female and male salmonentering seawater in September2011were all firstly raised and then reduced into theseawater after the thirteenth month, and the female and male fish entering seawater inJanuary2012showed the irregular alterations of “W” pattern into the seawater afterthe eighth month. The T concentrations of the male fish in the above two batchesreached the peak values (3.27and1.43ng.ml-1respectively) into the seawater at thefourteenth and tenth month separately, and the T levels of the males in two batcheswere both significantly higher than that of the females at this point (p<0.05).
     (3) The effects of spectral composition (namely, A1,550nm; A2,455nm; A3,625nm), photoperiod (namely, B1, LD24:0; B2, LD12:12; B3, LD8:16) and lightintensity (namely, C1,0.88W.m-2; C2,4.55W.m-2; C3,8.60W.m-2) on the growthperformance and gonadal development of Atlantic salmon (with initial weight of850.97±82.77g) for210days in RAS were studied by orthogonal test methods. Theresults indicated that spectral composition, photoperiod and light intensity would notaffect the growth performance and feeding of Atlantic salmon (Salmo salar) in RAS,and625nm, LD12:12and8.60W.m-2were thought to be a suitable combination ofartificial lighting under the present experimental condition. The best combinations forthe three factors with the optimum levels in male and female fish were550nm,LD24:0,4.55w.m-2and550nm, LD24:0,0.88w.m-2separately, which could induce thegonadal development of Atlantic salmon. Photoperiod was the main factor in lightenvironment parameters in the process of the gonadal development of the salmon.Photoperiod had extremely significant effects on the nocturnal plasma melatoninrelease, female E2, and male GSI and T of Atlantic salmon (p<0.01), and displayed aremarkable influences on the GSI and plasma T of female fish (p<0.05). whilephotoperiod had no such significant effect on the male plasma E2, and spectralcomposition and light intensity showed no significant effects on GSI, nocturnal plasma melatonin secretion and plasma T and E2ofAtlantic salmon (p>0.05).
     (4) Aseven months trail was conducted to investigate the effects of photoperiodlevels on the growth performance and gonadal development ofAtlantic salmon(Salmo salar) in recirculating aquaculture systems (RAS). Six hundredAtlanticsalmon with the initial body weight (1071.70±155.54) g were randomly distributedin six groups with two replicates per group and50fish per replicate. In the six groups,group24L-8L was initially treated under the photoperiod of LD24:0followed thereduction of5min every day, group8L-24L was initially treated under thephotoperiod of LD8:16followed the increasion of5min every day, and group24L:0Dreceiving the photoperiod of LD24:0, group18L:6D receiving the photoperiod of LD18:6, group12L:12D receiving the photoperiod of LD12:12, group8L:16D receivingthe photoperiod of LD8:16. The results displayed as follows: there were nosignificant influences of different photoperiod levels on the survival rate, coefficientof size variation, and condition factor, specific growth rate of body weight and bodylength, and relative weight gain and daily weight gain at the termination of the trial(p>0.05). The feeding ratio (FR), feed conversion efficiency (FCE) and feedconversion ratio (FCR) in all experimental groups ranged from0.40~0.51%/d,78.09~89.28%and1.12~1.28respectively. The FCR ofAtlantic salmon was lowerand the FR and FCE were higher under the photoperiod of LD12:12. There were nosignificant differences in plasma melatonin levels ofAtlantic salmon among allgroups during the daytime (p>0.05), while the plasma melatonin level ofAtlanticsalmon was lower under the photoperiod of LD24:0than any other photoperiodtreatments during the nighttime (p<0.05) and the sequence of nocturnal plasmamelatonin among all the six groups was group24L:0D      The findings mentioned above in the present study will provide the theory referencefor the growth performance and gonadal development of Atlantic salmon (Salmo salar) with artificial light, and will also promote the sustainable and healthy development forthe farming industry ofAtlantic salmon in RAS.
引文
Amiri B, Maebayashi M, Adachi S, Moberg G, Doroshov S, Yamauchi K.1999. Invitro steroidogenesis by testicular fragments and ovarian follicles in a hybridsturgeon, Bester. Fish Physiology and Biochemistry,21:1-14.
    Bapary M AJ, Amin M N, Takeuchi Y, Takemura A.2011. The stimulatory effects oflong wavelengths of light on the ovarian development in the tropical damselfish,(Chrysiptera cyanea). Aquaculture,314:188-192.
    Bayarri M, Madrid J, Sánchez-Vázquez F.2002. Influence of light intensity, spectrumand orientation on sea bass plasma and ocular melatonin. Journal of pinealresearch,32:34-40.
    Begtashi I, Rodríguez L, Moles G, Zanuy S, Carrillo M.2004. Long-term exposure tocontinuous light inhibits precocity in juvenile male European sea bass(Dicentrarchus labrax L.). I. Morphological aspects. Aquaculture,241:539-559.
    Biswas A K, Seoka M, Inoue Y, Takii K, Kumai H.2005. Photoperiod influences thegrowth, food intake, feed efficiency and digestibility of red sea bream (Pagrusmajor). Aquaculture,250:666-673.
    Bj rnsson B T.1997. The biology of salmon growth hormone: from daylight todominance. Fish Physiology and Biochemistry,17:9-24.
    Bj rnsson B T, Thorarensen H, Hirano T, Ogasawara T, Kristinsson J B.1989.Photoperiod and temperature affect plasma growth hormone levels, growth,condition factor and hypoosmoregulatory ability of juvenile Atlantic salmon(Salmo salar) during parr-smolt transformation. Aquaculture,82:77-91.
    Bj rnsson B T, Taranger G L, Hansen T, Stefansson S O, Haux C.1994. TheInterrelation between Photoperiod, Growth Hormone, and Sexual Maturation ofAdult Atlantic Salmon (Salmo salar). General and comparative endocrinology,93:70-81.
    Blythe B, Helfrich L A, Beal W, Bosworth B, Libey G S.1994. Determination of sexand maturational status of striped bass (Morone saxatilis) using ultrasonicimaging. Aquaculture,125:175-184.
    Boeuf G, Le Bail P-Y.1999. Does light have an influence on fish growth? Aquaculture,177:129-152.
    Boschung H T, Williams J D, Gotshall D W, Caldwell D K, Caldwell M C.1983. TheAudubon Society field guide to North American fishes, whales, and dolphins.Knopf New York.
    Bromage N, Porter M, Randall C.2001. The environmental regulation of maturationin farmed finfish with special reference to the role of photoperiod and melatonin.Aquaculture,197:63-98.
    Bromage N, Elliott J, Springate J, Whitehead C.1984. The effects of constantphotoperiods on the timing of spawning in the rainbow trout. Aquaculture,43:213-223.
    Carrillo M, Zanuy S, Prat F, Serrano R, Bromage N.1993. Environmental andhormonal control of reproduction in sea bass. Recent advances in Aquaculture,4:43-54.
    Colombo R E, Wills P S, Garvey J E.2004. Use of ultrasound imaging to determinesex of shovelnose sturgeon. North American Journal of Fisheries Management,24:322-326.
    Commission E I F A. Flow-through and Recirculation Systems: Report of theWorking Group on Terminology, Format and Units of Measurement [R].European Inland Fisheries Advisory Commission. Rome: Food and AgricultureOrganization of the United Nations,1986:91.
    Cowan M, Davie A, Migaud H.2011a. The effect of combining shading andcontinuous lighting on the suppression of sexual maturation in outdoor-rearedAtlantic cod, Gadus morhua. Aquaculture,320:113-122.
    Cowan M, Davie A, Migaud H.2011b. The effect of combining shading andcontinuous lighting on the suppression of sexual maturation in outdoor-rearedAtlantic cod, Gadus morhua. Aquaculture,320:113-122.
    Dalsgaard J, Lund I, Thorarinsdottir R, Drengstig A, Arvonen K, Pedersen P B.2013.Farming different species in RAS in Nordic countries: current status and futureperspectives. Aquacultural Engineering,53:2-13.
    Downing G.2002. Impact of spectral composition on larval haddock,Melanogrammus aeglefinus L., growth and survival. Aquaculture Research,33:251-259.
    Downing G, Litvak M.2001. The effect of light intensity and spectrum on theincidence of first feeding by larval haddock. Journal of Fish Biology,59:1566-1578.
    Drengstig A, Bergheim A.2013. Commercial land-based farming of European lobster(Homarus gammarus L.) in recirculating aquaculture system (RAS) using asingle cage approach. Aquacultural Engineering,53:14-18.
    Duncan N, Mitchell D, Bromage N.1999. Post-smolt growth and maturation ofout-of-season0+Atlantic salmon (Salmo salar) reared under differentphotoperiods. Aquaculture,177:61-71.
    Duston J, Bromage N.1987. Constant photoperiod regimes and the entrainment of theannual cycle of reproduction in the female rainbow trout (Salmo gairdneri).General and comparative endocrinology,65:373-384.
    Endal H P, Taranger G L, Stefansson S O, Hansen T.2000. Effects of continuousadditional light on growth and sexual maturity in Atlantic salmon, Salmo salar,reared in sea cages. Aquaculture,191:337-349.
    Eriksson L-O, Lundqvist H.1982. Circannual rhythms and photoperiod regulation ofgrowth and smolting in Baltic salmon (Salmo salar L.). Aquaculture,28:113-121.
    Falcón J, Migaud H, Munoz-Cueto J A, Carrillo M.2010. Current knowledge on themelatonin system in teleost fish. General and comparative endocrinology,165:469-482.
    FAO. State of World Fisheries and Aquaculture.2004. FAO, Rome.
    Forsberg O I.1995. Empirical investigations on growth of post-smolt Atlantic salmon(Salmo salar L.) in land-based farms. Evidence of a photoperiodic influence.Aquaculture,133:235-248.
    Frantzen M, Arnesen A M, Damsg rd B, Tveiten H, Johnsen H K.2004. Effects ofphotoperiod on sex steroids and gonad maturation in Arctic charr. Aquaculture,240:561-574.
    Friedland K, Haas R.1996. Marine post-smolt growth and age at maturity of Atlanticsalmon. Journal of Fish Biology,48:1-15.
    Frost D A, McAuley W C, Kluver B, Wastel M, Maynard D, Flagg T A.2014.Methods and Accuracy of Sexing Sockeye Salmon Using Ultrasound for CaptiveBroodstock Management. NorthAmerican Journal ofAquaculture,76:153-158.
    Garr AL, Posch H, McQuillan M, Davis M.2012. Development of a captive breedingprogram for the Florida apple snail, Pomacea paludosa: Relaxation and sex ratiorecommendations. Aquaculture,370:166-171.
    Gehrke P.1994. Influence of light intensity and wavelength on phototactic behaviourof larval silver perch Bidyanus bidyanus and golden perch Macquana ambiguaand the effectiveness of light traps. Journal of Fish Biology,44:741-751.
    Hansen T, Stefansson S, Taranger G.1992. Growth and sexual maturation in Atlanticsalmon, Salmon salar L., reared in sea cages at two different light regimes.Aquaculture Research,23:275-280.
    Hansen T, Karlsen, Taranger G L, Hemre G-I, Holm J C, Kjesbu O S.2001. Growth,gonadal development and spawning time of Atlantic cod (Gadus morhua) rearedunder different photoperiods. Aquaculture,203:51-67.
    Head A B, Malison J A.2000. Effects of lighting spectrum and disturbance level onthe growth and stress responses of yellow perch Perca flavescens. Journal of theWorld Aquaculture Society,31:73-80.
    Herbinger C, Friars G.1992. Effects of winter temperature and feeding regime on therate of early maturation in Atlantic salmon (Salmo salar) male parr. Aquaculture,101:147-162.
    Hess R A, Bunick D, Bahr J.2001. Oestrogen, its receptors and function in the malereproductive tract-a review. Molecular and cellular endocrinology,178:29-38.
    Imsland A K, Dragsnes M, Stefansson S O.2003. Exposure to continuous lightinhibits maturation in turbot (Scophthalmus maximus). Aquaculture,219:911-919.
    Jensen A J, Karlsson S, Fiske P, Hansen L P, Hindar K, stborg G M.2013. Escapedfarmed Atlantic salmon grow, migrate and disperse throughout the Arctic Oceanlike wild salmon. Aquaculture Environment Interactions,3:223-229.
    Karakatsouli N, Papoutsoglou S E, Panopoulos G, Papoutsoglou E S, Chadio S,Kalogiannis D.2008. Effects of light spectrum on growth and stress response ofrainbow trout Oncorhynchus mykiss reared under recirculating system conditions.Aquacultural engineering,38:36-42.
    Karakatsouli N, Papoutsoglou E S, Sotiropoulos N, Mourtikas D, Stigen-Martinsen T,Papoutsoglou S E.2010. Effects of light spectrum, rearing density and lightintensity on growth performance of scaled and mirror common carp Cyprinuscarpio reared under recirculating system conditions. Aquacultural engineering,42:121-127.
    Karakatsouli N, Papoutsoglou S E, Pizzonia G, Tsatsos G, Tsopelakos A, Chadio S,Kalogiannis D, Dalla C, Polissidis A, Papadopoulou-Daifoti Z.2007. Effects oflight spectrum on growth and physiological status of gilthead seabream Sparusaurata and rainbow trout Oncorhynchus mykiss reared under recirculatingsystem conditions. Aquacultural engineering,36:302-309.
    Karlsen O, Holm J C. Ultrasonography, a non-invasive method for sex determinationin cod (Gadus morhua)[J]. Journal of Fish Biology,1994,44(6):965–971.
    Kelly A M, Kohler C C.1996. Manipulation of spawning cycles of channel catfish inindoor water-recirculating systems. The Progressive fish-culturist,58:221-228.
    Kr kenes R, Hansen T, Stefansson S O, Taranger G L.1991. Continuous lightincreases growth rate of Atlantic salmon (Salmo salar L.) postsmolts in sea cages.Aquaculture,95:281-287.
    Kucherka W D, Thomas P, Khan I A.2006. Sex differences in circulating steroidhormone levels in the red drum, Sciaenops ocellatus L. Aquaculture research,37:1464-1472.
    Kuhn D D, Angier M W, Barbour S L, Smith S A, Flick Jr G J.2013. Culturefeasibility of eastern oysters (Crassostrea virginica) in zero-water exchangerecirculating aquaculture systems using synthetically derived seawater and livefeeds. Aquacultural Engineering,54:45-48.
    Kynard B, Kieffer M.2002. Use of a borescope to determine the sex and egg maturitystage of sturgeons and the effect of borescope use on reproductive structures.Journal ofApplied Ichthyology,18:505-508.
    Leclercq E, Migaud H, Taylor J, Hunter D.2010. The use of continuous light tosuppress pre-harvest maturation in sea-reared Atlantic salmon, Salmo salar, canbe reduced to a four-month window. Aquac. Res., doi,10.
    Leclercq E, Taylor J, Sprague M, Migaud H.2011. The potential of alternativelighting-systems to suppress pre-harvest sexual maturation of1+Atlantic salmon(Salmo salar) post-smolts reared in commercial sea-cages. Aquaculturalengineering,44:35-47.
    Luchiari AC, de Morais Freire F A, Pirhonen J, Koskela J.2009. Longer wavelengthsof light improve the growth, intake and feed efficiency of individually rearedjuvenile pikeperch Sander lucioperca (L.). Aquaculture research,40:880-886.
    MacCrimmon H R, Gots B L.1979. World Distribution of Atlantic Salmon, Salmosolar. Journal of the Fisheries Board of Canada,36:422-457.
    Martin-Robichaud D, Rommens M.2001. Assessment of sex and evaluation ofovarian maturation of fish using ultrasonography. Aquaculture Research,32:113-120.
    Martin R W, Myers J, Sower S A, Phillips D J, Mcauley C.1983. Ultrasonic imaging,a potential tool for sex determination of live fish. North American Journal ofFisheries Management,3:258-264.
    Mattson N.1991. A new method to determine sex and gonad size in live fishes byusing ultrasonography. Journal of Fish Biology,39:673-677.
    Migaud H, Davie A, Taylor J.2010. Current knowledge on the photoneuroendocrineregulation of reproduction in temperate fish species. Journal of Fish Biology,76:27-68.
    Migaud H, Davie A, Martinez Chavez C C, Al-Khamees S.2007. Evidence fordifferential photic regulation of pineal melatonin synthesis in teleosts. Journal ofpineal research,43:327-335.
    Migaud H, Taylor J, Taranger G, Davie A, Cerdá-Reverter J, Carrillo M, Hansen T,Bromage N.2006. Pineal gland sensitivity to light intensity in salmon (Salmosalar) and sea bass (Dicentrarchus labrax): an in vivo and ex vivo study. J.Pineal Res,41:42-52.
    Mills D.1991. Ecology and management of Atlantic salmon. Springer. Number ofpages pp
    Moghim M, Vajhi A, Veshkini A, Masoudifard M.2002. Determination of sex andmaturity in Acipenser stellatus by using ultrasonography. Journal of AppliedIchthyology,18:325-328.
    Nicieza A, Brana F.1993. Relationships among smolt size, marine growth, and seaage at maturity of Atlantic salmon (Salmo salar) in northern Spain. CanadianJournal of Fisheries and Aquatic Sciences,50:1632-1640.
    Oppedal F, Taranger G L, Hansen T.2003. Growth performance and sexualmaturation in diploid and triploid Atlantic salmon (Salmo salar L.) in seawatertanks exposed to continuous light or simulated natural photoperiod. Aquaculture,215:145-162.
    Oppedal F, Taranger G, Juell J E, Hansen T.1999. Growth, osmoregulation and sexualmaturation of underyearling Atlantic salmon smolt Salmo salar L. exposed todifferent intensities of continuous light in sea cages. Aquaculture research,30:491-499.
    Oppedal F, Lasse Taranger G, Juell J-E, Fosseidengen J E, Hansen T.1997. Lightintensity affects growth and sexual maturation of Atlantic salmon (Salmo salar)postsmolts in sea cages. Aquatic Living Resources,10:351-357.
    Oppedal F, Berg A, Olsen R E, Taranger G L, Hansen T.2006. Photoperiod inseawater influence seasonal growth and chemical composition in autumnsea-transferred Atlantic salmon (Salmo salar L.) given two vaccines.Aquaculture,254:396-410.
    Piedrahita R H.2003. Reducing the potential environmental impact of tankaquaculture effluents through intensification and recirculation. Aquaculture,226:35-44.
    Porter M, Randall C, Bromage N, Thorpe J.1998. The role of melatonin and thepineal gland on development and smoltification of Atlantic salmon (Salmo salar)parr. Aquaculture,168:139-155.
    Porter M, Duncan N, Mitchell D, Bromagea N.1999. The use of cage lighting toreduce plasma melatonin in Atlantic salmon (Salmo salar) and its effects on theinhibition of grilsing. Aquaculture,176:237-244.
    Porter M, Duncan N, Handeland S, Stafansson S, Bromage N.2001. Temperature,light intensity and plasma melatonin levels in juvenile Atlantic salmon. Journalof fish biology,58:431-438.
    Power G.1981. Stock characteristics and catches of Atlantic salmon (Salmo salar) inQuebec, and Newfoundland and Labrador in relation to environmental variables.Canadian Journal of Fisheries and Aquatic Sciences,38:1601-1611.
    Puvanendran V, Brown J A.2002. Foraging, growth and survival of Atlantic codlarvae reared in different light intensities and photoperiods. Aquaculture,214:131-151.
    Rad F, Bozao lu S, Ergene G zükara S, Karahan A, Kurt G.2006. Effects of differentlong-day photoperiods on somatic growth and gonadal development in Niletilapia (Oreochromis niloticus L.). Aquaculture,255:292-300.
    Randall C, Bromage N.1998. Photoperiodic history determines the reproductiveresponse of rainbow trout to changes in daylength. Journal of ComparativePhysiology A,183:651-660.
    Randall C F, Bromage N R, Thorpe J E, Miles M S, Muir J S.1995. Melatoninrhythms in Atlantic salmon (Salmo salar) maintained under natural andout-of-phase photoperiods. Gen Comp Endocrinol,98:73-86.
    Read P, Fernandes T.2003. Management of environmental impacts of marineaquaculture in Europe. Aquaculture,226:139-163.
    Ricker W E.1987. Computation and interpretation of biological statistics of fishpopulations.
    Robitaille J, C té Y, Shooner G, Hayeur G.1986. Growth and maturation patterns ofAtlantic salmon, Salmo salar, in the Koksoak River, Ungava, Quebec. CanadianSpecial Publication of Fisheries and Aquatic Sciences,89:62-69.
    Rodríguez L, Begtashi I, Zanuy S, Carrillo M.2005. Long-term exposure tocontinuous light inhibits precocity in European male sea bass (Dicentrarchuslabrax L.): hormonal aspects. General and comparative endocrinology,140:116-125.
    Ruchin A.2004. Influence of colored light on growth rate of juveniles of fish. FishPhysiology and Biochemistry,30:175-178.
    Saunders R L, Schom C B.1985. Importance of the variation in life historyparameters of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries andAquatic Sciences,42:615-618.
    Schulz R, Andersson E, Taranger G.2006. Photoperiod manipulation can stimulate orinhibit pubertal testis maturation in Atlantic salmon (Salmo salar). AnimalReproduction,3:121-126.
    Schulz R W, Miura T.2002. Spermatogenesis and its endocrine regulation. FishPhysiology and Biochemistry,26:43-56.
    Shewmon L N, Godwin J R, Murashige R S, Daniels H V, Losordo T M.2007.Environmental manipulation of growth and sexual maturation in yellow perch,Perca flavescens. Journal of the World Aquaculture Society,38:383-394.
    Shields R, Davenport J, Young C, Smith P.1993. Oocyte maturation and ovulation inthe Atlantic halibut, Hippoglossus hippoglossus (L.), examined usingultrasonography. Aquaculture Research,24:181-186.
    Smith I P, Metcalfe N B, Huntingford F A, Kadri S.1993. Daily and seasonal patternsin the feeding behaviour of Atlantic salmon (Salmo salar L.) in a sea cage.Aquaculture,117:165-178.
    Steranka F M, Bhat J, Collins D, et al.2002. High power LEDs-technology status andmarket applications. Physical Status Solid (A),194(2):380-388.
    Strand, Alan r A, Staffan F, Magnhagen C.2007. Effects of tank colour and lightintensity on feed intake, growth rate and energy expenditure of juvenile Eurasianperch, Perca fluviatilis L. Aquaculture,272:312-318.
    Sugiura S H, Marchant D D, Kelsey K, Wiggins T, Ferraris R P.2006. Effluent profileof commercially used low-phosphorus fish feeds. Environmental pollution,140:95-101.
    Sullivan C.1993. Reproduction of striped bass, Morone saxatilis (Walbaum),broodstock: monitoring maturation and hormonal induction of spawning.Aquaculture Research,24:211-222.
    Takashima F, Yamada Y.1984. Control of maturation in masu salmon by manipulationof photoperiod. Aquaculture,43:243-257.
    Tao Y, Hara A, Hodson R G, Woods III L C, Sullivan C V.1993. Purification,characterization and immunoassay of striped bass (Morone saxatilis) vitellogenin.Fish physiology and biochemistry,12:31-46.
    Taranger G L, Haux C, Stefansson S O, Bj rnsson B T, Walther B T, Hansen T.1998.Abrupt changes in photoperiod affect age at maturity, timing of ovulation andplasma testosterone and oestradiol-17β profiles in Atlantic salmon, Salmo salar.Aquaculture,162:85-98.
    Taranger G L, Haux C, Hansen T, Stefansson S O, Bj rnsson B T, Walther B T, KryviH.1999. Mechanisms underlying photoperiodic effects on age at sexual maturityin Atlantic salmon, Salmo salar. Aquaculture,177:47-60.
    Taranger G L, Carrillo M, Schulz R W, Fontaine P, Zanuy S, Felip A, Weltzien F-A,Dufour S, Karlsen, Norberg B.2010. Control of puberty in farmed fish.General and Comparative Endocrinology,165:483-515.
    Taylor J, Migaud H, Porter M, Bromage N.2005. Photoperiod influences growth rateand plasma insulin-like growth factor-I levels in juvenile rainbow trout,Oncorhynchus mykiss. General and comparative endocrinology,142:169-185.
    Taylor J, Porter M, Bromage N, Migaud H.2008. Relationships betweenenvironmental changes, maturity, growth rate and plasma insulin-like growthfactor-I (IGF-I) in female rainbow trout. General and comparative endocrinology,155:257-270.
    Thorpe J.1994. Reproductive strategies in Atlantic salmon, Salmo salar L.Aquaculture Research,25:77-87.
    Trotter A, Battaglene S, Pankhurst P.2003. Effects of photoperiod and light intensityon initial swim bladder inflation, growth and post-inflation viability in culturedstriped trumpeter (Latris lineata) larvae. Aquaculture,224:141-158.
    Unwin M, Rowe D, Poortenaar C, Boustead N.2005. Suppression of maturation in2-year-old Chinook salmon (Oncorhynchus tshawytscha) reared undercontinuous photoperiod. Aquaculture,246:239-250.
    Vera L, Davie A, Taylor J, Migaud H.2010. Differential light intensity and spectralsensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glandsex vivo. General and comparative endocrinology,165:25-33.
    Villamizar N, Blanco-Vives B, Migaud H, Davie A, Carboni S, Sánchez-Vázquez F.2011. Effects of light during early larval development of some aquaculturedteleosts: Areview. Aquaculture,315:86-94.
    Volpato G, Duarte C, Luchiari A.2004. Environmental color affects Nile tilapiareproduction. Brazilian Journal of Medical and Biological Research,37:479-483.
    Wakabayashi K, Sato R, Ishii H, Akiba T, Nogata Y, Tanaka Y.2012. Culture ofphyllosomas of Ibacus novemdentatus (Decapoda: Scyllaridae) in a closedrecirculating system using jellyfish as food. Aquaculture,330:162-166.
    Wang T, Cheng Y, Liu Z, Yan S, Long X.2013. Effects of light intensity on growth,immune response, plasma cortisol and fatty acid composition of juvenileEpinephelus coioides reared in artificial seawater. Aquaculture,414:135-139.
    Wildhaber M, Papoulias D, DeLonay A, Tillitt D, Bryan J, Annis M, Allert J.2005.Gender identification of shovelnose sturgeon using ultrasonic and endoscopicimagery and the application of the method to the pallid sturgeon. Journal of FishBiology,67:114-132.
    Wilkinson R J, Longland R, Woolcott H, Porter M J.2010. Effect of elevatedwinter–spring water temperature on sexual maturation in photoperiodmanipulated stocks of rainbow trout (Oncorhynchus mykiss). Aquaculture,309:236-244.
    Yamanome T, Mizusawa K, Hasegawa E i, Takahashi A.2009. Green light stimulatessomatic growth in the barfin flounder Verasper moseri. Journal of ExperimentalZoology Part A: Ecological Genetics and Physiology,311:73-79.
    Yanez J, Meissl H.1996. Secretion of the methoxyindoles melatonin,5-methoxytryptophol,5-methoxyindoleacetic acid, and5-methoxytryptaminefrom trout pineal organs in superfusion culture: effects of light intensity. Generaland comparative endocrinology,101:165-172.
    Yoseda K, Yamamoto K, Asami K, Chimura M, Hashimoto K, Kosaka S.2008.Influence of light intensity on feeding, growth, and early survival of leopardcoral grouper (Plectropomus leopardus) larvae under mass-scale rearingconditions. Aquaculture,279:55-62.
    Young G, Kusakabe M, Nakamura I, Lokman P M, Goetz F W.2005. Gonadalsteroidogenesis in teleost fish. Molecular aspects of fish and marine biology,2:155-223.
    陈立侨,侯俊利,彭士明等.环境营养学研究与水产养殖业的可持续发展[J].饲料工业,2007,28(2):1-3.
    陈细华,危起伟,朱永久等.低龄中华鲟外科手术性别鉴定技术[J].中国水产科学,2004,11(4):371-374.
    华元渝,传林.重量与体长相关关系(W=aLb)的生物学意义及其应用.鱼类学论文集(一辑),北京:科学出版社,1981,125-131.
    黄晓荣,庄平,章龙珍等.人工养殖云斑尖搪鳢的生长特性[J].生态学杂志,2008,27(10):1740-1743.
    黄真理,常剑波.鱼类体长与体重关系中的分形特征[J].水生生物学报,1999,23(4):330-336.
    曲克明,杜守恩.海水工厂化高效养殖体系构建工程技术[M].北京:海洋出版社,2010,2-7.
    李秉钧,王波,张桂军.室内工厂化养殖犬齿牙鲆的生长特性[J].海洋水产研究,2007,28(5):30-35.
    刘鹰.海水工业化循环水养殖技术研究进展[J].中国农业科技导报,2011,13(5):50-53.
    罗国芝,朱泽闻.我国循环水养殖模式发展的前景分析[J].中国水产,2008,2:75-77.
    毛翠凤,庄平,刘健等.长江口中华鲟幼鱼的生长特性[J].海洋渔业,2005,27(3):177-181.
    毛兴武,张艳雯,周建军,等.新一代绿色光源LED及其应用技术[M].北京:邮电出版社,2008.
    农业部渔业局.中国渔业统计年鉴2012[R].北京:中国农业出版社,2012:5.
    曲秋芝,孙大江,刘雄.人工控制光周期条件下虹鳟血浆中17β-雌二醇和睾酮的浓度变化[J].水产学杂志,1991,(1):32-35.
    沈卓坤,郑剑辉,陈怀定等.双棘黄姑鱼血清性类固醇激素的周年变化[J].广东海洋大学学报,2007,27(3):16-19.
    王吉桥,赵德树,张景全.不同日照时数对鲤、鲢、鳙鱼苗生长和存活率的影响[J].生态学杂志,1994,13(3):41-44.
    王瑞梅,刘杰,史岩.我国水产养殖业环境污染防治研究[J].中国渔业经济,2010,5:108-112.
    王雪辉,杜飞雁,邱永松.南海北部主要经济鱼类体长与体重关系[J].台湾海峡,2006,25(2):262-266.
    温海深,林浩然.环境因子对硬骨鱼类性腺发育成熟及其排卵和产卵的调控[J].应用生态学报,2001,12(1):151-155.
    殷名称.鱼类生态学[M].北京:中国农业出版社,1995,34-63.
    张涛,颜世伟,庄平等.西伯利亚鲟性别及性腺发育的超声波鉴定[J].水产学报,2010,34(1):72-79.
    张照斌,牛翠娟,朱华等.室内饲育西伯利亚鲟的血清类固醇激素的周年变化[J].北京师范大学学报,2003,39(4):519-524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700