用户名: 密码: 验证码:
3号染色体短臂抑癌基因CpG岛甲基化表型与胃癌关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:利用已发表相关文献中的数据进行系统性Meta分析,以期明确RASSF1A基因启动子甲基化与胃癌发生的关系。方法:使用PubMed和Web of Science数据库搜索2013年7月以前所有相关文献。如果某研究属于病例-对照研究,且RASSF1A基因启动子甲基化的频率能在文中获取,那么该研究将被纳入我们的Meta分析。所有的数据由2位研究者独立检索并按照制定的数据收集标准进行收集。使用优势比(OR)及其95%可信区间(95%CI)来衡量RASSF1A基因启动子甲基化与胃癌风险之间的关系。使用基于卡方检验的Q检验和敏感性分析,评估不同研究间潜在的异质性,用漏斗图检验发表偏倚。结果:纳入文献11篇,共涉及研究病例1215例。将所有数据纳入Meta分析,结果显示RASSF1A基因启动子甲基化与胃癌风险有密切相关性(OR,12.67;95%CI,8.12-19.78;P<0.001),且纳入的文献之间不存在异质性。亚组分析进一步表明,RASSF1A基因甲基化的个体与未发生甲基化的个体相比,患胃癌的风险显著增加。整体和亚组分析均没有发现发表偏倚。结论:RASSF1A基因启动子甲基化显著增加胃癌的发病风险,RASSF1A基因启动子甲基化有希望成为潜在的胃癌风险预测因子。
     目的:研究3号染色体短臂(3p)抑癌基因启动子区CpG岛甲基化表型(CIMP)在胃癌及对照癌旁组织中表达状态,分析其与胃癌患者临床病理及预后的关系。方法:采用甲基化特异性PCR(MSP)方法检测100例胃癌组织及其对应癌旁组织中hOGG1、VHL、hMLH1、SEMA3B、RASSF1A、BLU、FHIT和RAR-B共8个抑癌基因启动子区甲基化表型状态。CIMP阳性定义为每份样本中同时有四个或多于四个基因同时甲基化。结果:100例胃癌组织样本中有99例(99%)表现出至少有一个基因的启动子区呈现甲基化,胃癌组织中hOGG1、VHL、hMLH1、SEMA3B、RASSF1A、BLU、 FHIT和RAR-B基因启动子区甲基化阳性率分别为7%、9%、58%、56%、43%、64%、67%和18%,对应癌旁组织中各基因甲基化阳性率分别为2%、2%、8%、35%、5%、55%、25%和13%。两组间VHL、hMLH1、SEMA3B、RASSF1A和FHIT基因的甲基化阳性率存在显著差异(P=0.030,P<0.001,P=0.003,P<0.001和P<0.001)。胃癌组织和对照癌旁组织中CIMP阳性率分别为44%和4%,两组间有显著差异(P<0.001)。胃癌组织CIMP阳性与肿瘤分化程度密切相关,分化程度越差其CIMP阳性率越高(P=0.004);与淋巴结转移亦显著相关,伴淋巴结转移者其CIMP阳性率较无淋巴结转移者显著增高(P=0.005);与其余病理特征包括性别、年龄、肿瘤直径、临床分期和TNM分期均无关(P>0.05)。CIMP阴性组和阳性组患者中位生存时间分别为31和15个月,生存率差异有统计学意义(P=0.009)。Cox回归多因素分析显示,CIMP是影响胃癌患者预后的独立因素(OR,4.3063;95%CI,1.7158-10.8084; P=0.002)。结论:3pCIMP阳性率在胃癌组织和正常胃黏膜中有显著差异,3pCIMP异常状态可能在胃癌形成的早期已经发生,可能影响肿瘤分化、导致淋巴结转移,可作为预测胃癌患者预后的重要指标。
     目的:研究3p CIMP在癌血样本和正常人外周血细胞样本中的阳性率差异,研究其与胃癌易感性的关系。方法:采用MSP方法检测100例胃癌外周血及70例正常人外周血白细胞中hOGG1、VHL、hMLH1、SEMA3B、RASSF1A、BLU、 FHIT和RAR-B共8个抑癌基因启动子区甲基化状态。结果:胃癌组和对照组hOGG1和VHL基因都未发现甲基化异常,故将这两个基因排除,胃癌组6个抑癌基因启动子区甲基化阳性率分别为:hMLH124.0%(24/100),SEMA3B62.0%(62/100),RASSF1A20.0%(20/100),BLU48.0%(48/100),FHIT50.0%(50/100)和RAR-B6.00%(6/100);对照组各基因甲基化阳性率明显降低:hMLH17.1%(5/70),SEMA3B28.6%(20/70),RASSF1A2.9%(2/70),BLU35.7%(25/70),FHIT25.7%(18/70)和RAR-B4.3%(3/70)。两组间hMLH1、SEMA3B、FHIT和RASSF1A基因甲基化阳性率有显著差异(P=0.004,P=0.000,P=0.001,P=0.001)。胃癌组与对照组血样中的CIMP阳性率分别为30%(30/100)和4.3%(3/70),两组间CIMP阳性率有显著差异(P<0.001)。3pCIMP阳性与肿瘤低分化及淋巴结转移密切相关(P=0.019,P=0.032)。Logistic回归分析显示, FHIT、hMLH1、SEMA3B、RASSF1A基因启动子区甲基化和3pCIMP阳性与胃癌风险有密切相关性(OR2.78,95%CI1.32-5.45; OR3.89,95%CI1.37-10.89;OR3.97,95%CI1.97-7.27; OR3.97,95%CI1.97-7.27; OR8.37,95%CI1.87-35.33; OR9.53,95%CI2.63-30.83),敏感性分别为50%、24%、62%、20%和30%,特异性分别为74.3%、92.9%、52.9%、97.1%和95.7%,阳性预测值分别为73.5%、82.8%、75.6%、90.9%和90.9%,准确度分别为60%、52.4%、65.9%、51.8%和57.1%。结论:胃癌患者和正常人对照的外周血细胞3pCIMP阳性率有显著差异,3pCIMP阳性可以显著增加胃癌的发病风险(OR9.53,95%CI2.63-30.83),将有可能成为胃癌有用的易感预测因子,3pCIMP阳性可能是胃癌低分化和淋巴结转移的预测指标。
Objective: To assess the association of RASSF1A promoter methylation with gastric cancer risk by acomprehensive meta-analysis. Methods: Relevant studies were identified by searches of PubMed andWeb of Science databases with no restrictions. Combined odds ratio (OR) and95%confidence interval(CI) were used to assess the strength of the association between RASSF1A promoter methylation andgastric cancer risk. A chi-square-based Q-test and sensitivity analyses were performed to test thebetween-study heterogeneity and the contributions of single studies to the final results, respectively.Funnel plots were carried out to evaluate publication bias. Results: Overall, a significant associationwas observed between RASSF1A promoter methylation and gastric cancer risk (OR,12.67;95%CI,8.12-19.78; P <0.001) with no between-study heterogeneity. Subgroup analyses further revealed thatgastric cancer risk was increased for individuals carrying the methylated RASSF1A compared withthose with unmethylated RASSF1A. In addition, no publication bias was detected in the overall andsubgroup analyses. Conclusion: This sudy identified a strong association between RASSF1A promotermethylation and risk of gastric cancer, and highlighted a promising potential for RASSF1A promotermethylation in gastric cancer risk prediction.
     Objective: To study whether CpG island methylation phenotype (CIMP) status involving tumorsuppressor gene lacated on chromosome3p could correlate with gastric cancer. Methods: Methylationspecific PCR (MSP) was used to examine methylation profiles for eight TSGs harbored in chromosome3p in100gastric cancer tissues and100paired normal tissues. CIMP positive is referred to having fouror more than four synchronously methylated genes per sample. The correlation of CIMP and the overallsurvival time were evaluated by Kaplan-Meier chart and Log-rank test.Cox model was used formultivariate analysis.Results:99of100(99%) gastric cancer tissue samples presented promotermethylation of at least one gene. The frequency of promoter methylation for eight genes explored ranged from7%for hOGG1to67%for FHIT. CIMP+increased in44of100gastric cancer tissues(44.0%) as compared to the paired normal tissues (4.0%), respectively (P<0.001). CIMP positive isclosely related to the low degree of tumor differentiation (P=0.004) and lymph node metastasis(P=0.005). The median survival time of patients with negative and positive CIMP was31and15months,respectively (P=0.009). Cox regression analysis suggested that CIMP was independent factorsaffecting the prognosis of gastric cancer patients (OR,4.3063;95%CI,1.7158-10.8084; P=0.002).Conclusion: Normal and malignant gastric tissues are found to have its own unique CIMP patterns.CIMP+may play a role in poor differentiation and lymph node metastasis of gastric cancer and could beused as an important survival predictor in human gastric cancer.
     Objective: To assess the association of CpG island methylator phenotype status involving tumorsuppressor genes located on chromosome3p with gastric cancer risk by a case-control study. Methods:Using MSP method, we examined methylation profiles for eight TSGs harbored in chromosome3p in100gastric cancer blood samples as well as70normal blood samples. Odds ratio (OR) and95%confidence interval (CI) were used to assess the strength of the association between CIMP and gastriccancer risk. Results:99/100(99%) gastric cancer blood samples presented promoter methylation of atleast one gene. Given that VHL and hOGG1showed no methylation of any sample, we didn‘t considerthe contribution of the two gene to CIMP+. CIMP+was found in30.0%(30/100) of blood samples fromgastric cancer patients and4.3%(3/70) of normal blood samples, respectively (P<0.001). CIMP+isclosely related to the low degree of tumor differentiation (P=0.019) and lymph node metastasis(P=0.032). A significant association was observed between CIMP and gastric cancer risk (OR,9.53;95%CI,2.63-30.83; P<0.001). Conclusion: CIMP in peripheral blood cells could provide usefulbiomarkers of susceptibility to gastric cancer.
引文
[1] Jemal A, Bray F, Center M M, et al. Global cancer statistics[J]. CA: a cancer journal for clinicians,2011,61(2):69-90.
    [2] K Wu, Y Nie, C Guo, et al. Molecular basis of therapeutic approaches to gastric cancer[J]. JGastroenterol Hepatol,2009,24(1):37-41.
    [3] AD Panani. Cytogenetic and molecular aspects of gastric cancer: clinical implications[J]. CancerLett,2008,266(2):99-115.
    [4] Tamura G. Alterations of tumor suppressor and tumor-related genes in the development andprogression of gastric cancer[J]. World Journal of Gastroenterology,2006,12(2):192-198.
    [5] Smith M G, Hold G L, Tahara E, et al. Cellular and molecular aspects of gastric cancer[J]. WorldJournal of Gastroenterology,2006,12(19):2979-2990.
    [6] Jones P A, Baylin S B. The fundamental role of epigenetic events in cancer[J]. Nature reviewsgenetics,2002,3(6):415-428.
    [7] Feinberg A P, Tycko B. The history of cancer epigenetics[J]. Nature Reviews Cancer,2004,4(2):143-153.
    [8] Ahmad Miremadi, Mikkel Z. Oestergaard, Paul D.P. Pharoah, et al. Cancer genetics of epigeneticgenes[J]. Hum. Mol. Genet.,2007,16: R28-R49.
    [9] Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps[J]. NatureReviews Genetics,2007,8(4):286-298.
    [10] Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology[J]. Naturemedicine,2011:330-339.
    [11] Alan P. Wolffe and Marjori A. Matzke. Epigenetics: Regulation Through Repression[J]. Science,1999,286:481.
    [12] Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism[J]. Annu. Rev. Pharmacol.Toxicol.,2005,45:629-656.
    [13] Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome[J]. Human moleculargenetics,2007,16(R1): R50-R59.
    [14] Esteller M. Relevance of DNA methylation in the management of cancer[J]. The lancet oncology,2003,4(6):351-358.
    [15] Esteller M, Herman J G. Cancer as an epigenetic disease: DNA methylation and chromatinalterations in human tumours[J]. The Journal of pathology,2002,196(1):1-7.
    [16] Esteller M, Corn P G, Baylin S B, et al. A gene hypermethylation profile of human cancer[J].Cancer research,2001,61(8):3225-3229.
    [17] Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, abrighter future[J]. Oncogene,2002,21(35):5427-5440.
    [18] Esteller M. Dormant hypermethylated tumour suppressor genes: questions and answers[J]. TheJournal of pathology,2005,205(2):172-180.
    [19] Zingg J M, Jones P A. Genetic and epigenetic aspects of DNA methylation on genome expression,evolution, mutation and carcinogenesis[J]. Carcinogenesis,1997,18(5):869-882.
    [20] Jones P A, Baylin S B. The fundamental role of epigenetic events in cancer[J]. Nature reviewsgenetics,2002,3(6):415-428.
    [21] Jones P A, Laird P W. Cancer-epigenetics comes of age[J]. Nature genetics,1999,21(2):163-167.
    [22] Zou X P, Zhang B, Zhang X Q, et al. Promoter hypermethylation of multiple genes in early gastricadenocarcinoma and precancerous lesions[J]. Human pathology,2009,40(11):1534-1542.
    [23] Baylin S B, Ohm J E. Epigenetic gene silencing in cancer–a mechanism for early oncogenicpathway addiction?[J]. Nature Reviews Cancer,2006,6(2):107-116.
    [24] Kang G H, Shim Y H, Jung H Y, et al. CpG island methylation in premalignant stages of gastriccarcinoma[J]. Cancer research,2001,61(7):2847-2851.
    [25] Tahara T, Shibata T, Nakamura M, et al. Increased number of CpG island hypermethylation intumor suppressor genes of non-neoplastic gastric mucosa correlates with higher risk of gastriccancer[J]. Digestion,2010,82(1):27-36.
    [26] Kang G H. CpG island hypermethylation in gastric carcinoma and its premalignant lesions[J].Korean journal of pathology,2012,46(1):1-9.
    [27] Nagini S. Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular geneticsand chemoprevention[J]. World journal of gastrointestinal oncology,2012,4(7):156.
    [28] David S, Meltzer S J. Stomach–Genetic and epigenetic alterations of preneoplastic and neoplasticlesions[J]. Cancer Biomarkers,2011,9(1):493-507.
    [29] In-Seon C, Tsung-Teh W U. Epigenetic alterations in gastric carcinogenesis[J]. Cell research,2005,15(4):247-254.
    [30] Yamamoto E, Suzuki H, Takamaru H, et al. Role of DNA methylation in the development ofdiffuse-type gastric cancer[J]. Digestion,2011,83(4):241-249.
    [31] Chen W, Gao N, Shen Y, et al. Hypermethylation downregulates Runx3gene expression and itsrestoration suppresses gastric epithelial cell growth by inducing p27and caspase3in human gastriccancer[J]. Journal of gastroenterology and hepatology,2010,25(4):823-831.
    [32]沈玉玲,陈卫昌,高楠.5-aza-dC和丁酸钠对人胃癌细胞株MKN28细胞周期、凋亡以及抑癌基因表达的影响.胃肠病学,2009,14(9):551-554.
    [33] Yamashita K, Sakuramoto S, Watanabe M. Genomic and epigenetic profiles of gastric cancer:potential diagnostic and therapeutic applications[J]. Surgery today,2011,41(1):24-38.
    [34] Yang S, Chung H C. Novel biomarker candidates for gastric cancer[J]. Oncology reports,2008,19(3):675-680.
    [35] Ooki A, Yamashita K, Kikuchi S, et al. Potential utility of HOP homeobox gene promotermethylation as a marker of tumor aggressiveness in gastric cancer[J]. Oncogene,2010,29(22):3263-3275.
    [36] Issa J P. CpG island methylator phenotype in cancer[J]. Nature Reviews Cancer,2004,4(12):988-993.
    [37] Xu Y, Hu B, Choi A J, et al. Unique DNA methylome profiles in CpG island methylator phenotypecolon cancers[J]. Genome research,2012,22(2):283-291.
    [38] Hughes L A E, Khalid-de Bakker C A J, Smits K M, et al. The CpG island methylator phenotype incolorectal cancer: progress and problems[J]. Biochimica et Biophysica Acta (BBA)-Reviews onCancer,2012,1825(1):77-85.
    [39] Zhang Q Y, Yi D Q, Zhou L, et al. Status and significance of CpG island methylator phenotype inendometrial cancer[J]. Gynecologic and obstetric investigation,2011,72(3):183-191.
    [40] Toyota M, Ahuja N, Suzuki H, et al. Aberrant methylation in gastric cancer associated with theCpG island methylator phenotype[J]. Cancer Research,1999,59(21):5438-5442.
    [41] Curtin K, Slattery M L, Ulrich C M, et al. Genetic polymorphisms in one-carbon metabolism:associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifyingeffects of diet[J]. Carcinogenesis,2007,28(8):1672-1679.]
    [42] Kim J G, Takeshima H, Niwa T, et al. Comprehensive DNA methylation and extensive mutationanalyses reveal an association between the CpG island methylator phenotype and oncogenicmutations in gastric cancers[J]. Cancer letters,2013,330(1):33-40.
    [43] Ryan J L, Jones R J, Kenney S C, et al. Epstein-Barr virus-specific methylation of human genes ingastric cancer cells[J]. Infectious agents and cancer,2010,5(1):27.
    [44] Chen H Y, Zhu B H, Zhang C H, et al. High CpG island methylator phenotype is associated withlymph node metastasis and prognosis in gastric cancer[J]. Cancer science,2012,103(1):73-79.
    [45] Park S Y, Kook M C, Kim Y W, et al. CpG island hypermethylator phenotype in gastric carcinomaand its clinicopathological features[J]. Virchows Archiv,2010,457(4):415-422.
    [46] Jee C D, Kim M A, Jung E J, et al. Identification of genes epigenetically silenced by CpGmethylation in human gastric carcinoma[J]. European journal of cancer,2009,45(7):1282-1293.
    [47] Iacopetta B, Kawakami K, Watanabe T. Predicting clinical outcome of5-fluorouracil-basedchemotherapy for colon cancer patients: is the CpG island methylator phenotype the5-fluorouracilresponsive subgroup?[J]. International journal of clinical oncology,2008,13(6):498-503.
    [48] Schneider B G, Pulitzer D R, Brown R D, et al. Allelic imbalance in gastric cancer: an affected siteon chromosome arm3p[J]. Genes, Chromosomes and Cancer,1995,13(4):263-271.
    [49] Chetty R, Naidoo R, Tarin M, et al. Chromosome2p,3p,5q and18q status in sporadic gastriccancer[J]. Pathology,2002,34(3):275-281.
    [50] Yamashita K, Sakuramoto S, Watanabe M. Genomic and epigenetic profiles of gastric cancer:potential diagnostic and therapeutic applications[J]. Surgery today,2011,41(1):24-38.
    [51] Tamura G. Alterations of tumor suppressor and tumor-related genes in the development andprogression of gastric cancer[J]. World Journal of Gastroenterology,2006,12(2):192.
    [52] Dammann R, Li C, Yoon J H, et al. Epigenetic inactivation of a RAS association domain familyprotein from the lung tumour suppressor locus3p21.3[J]. Nature genetics,2000,25(3):315-319.
    [53] Hesson L B, Cooper W N, Latif F. The role of RASSF1A methylation in cancer[J]. Disease markers,2007,23(1-2):73-87.
    [54] Byun D S, Lee M G, Chae K S, et al. Frequent epigenetic inactivation of RASSF1A by aberrantpromoter hypermethylation in human gastric adenocarcinoma[J]. Cancer research,2001,61(19):7034-7038.
    [55] To K F, Leung W K, Lee T L, et al. Promoter hypermethylation of tumor‐related genes in gastricintestinal metaplasia of patients with and without gastric cancer[J]. International journal of cancer,2002,102(6):623-628.
    [56] Balassiano K, Lima S, Jenab M, et al. Aberrant DNA methylation of cancer-associated genes ingastric cancer in the European Prospective Investigation into Cancer and Nutrition(EPIC–EURGAST)[J]. Cancer letters,2011,311(1):85-95.
    [57] Liu Z, Zhao J, Chen X F, et al. CpG island methylator phenotype involving tumor suppressor geneslocated on chromosome3p in non-small cell lung cancer[J]. Lung cancer,2008,62(1):15-22.
    [58] Liu Z, Li W, Lei Z, et al. CpG island methylator phenotype involving chromosome3p confers anincreased risk of non-small cell lung cancer[J]. Journal of Thoracic Oncology,2010,5(6):790-797.
    [59] Kuroki T, Trapasso F, Yendamuri S, et al. Allele loss and promoter hypermethylation of VHL,RAR-β, RASSF1A, and FHIT tumor suppressor genes on chromosome3p in esophageal squamouscell carcinoma[J]. Cancer research,2003,63(13):3724-3728.
    [60] Choi C H, Lee K M, Choi J J, et al. Hypermethylation and loss of heterozygosity of tumorsuppressor genes on chromosome3p in cervical cancer[J]. Cancer letters,2007,255(1):26-33.
    [61] Costello J F, Frühwald M C, Smiraglia D J, et al. Aberrant CpG-island methylation has non-randomand tumour-type–specific patterns[J]. Nature genetics,2000,24(2):132-138.
    [62] Laird P W. The power and the promise of DNA methylation markers[J]. Nature Reviews Cancer,2003,3(4):253-266.
    [63] Fan B, Xiong B. Investigation of serum tumor markers in the diagnosis of gastric cancer[J].Hepato-gastroenterology,2010,58(105):239-245.
    [64] Ye T, Chen Y, Fang J. DNA methylation biomarkers in serum for gastric cancer screening[J]. Minireviews in medicinal chemistry,2010,10(11):1034-1038.
    [65] Zheng Y, Chen L, Li J, et al. Hypermethylated DNA as potential biomarkers for gastric cancerdiagnosis[J]. Clinical biochemistry,2011,44(17):1405-1411.
    [1] Jemal A, Bray F, Center M M, et al. Global cancer statistics[J]. CA: a cancer journal for clinicians,2011,61(2):69-90.
    [2] Kelley J R, Duggan J M. Gastric cancer epidemiology and risk factors[J]. Journal of clinicalepidemiology,2003,56(1):1-9.
    [3] Kikuchi S. Epidemiology of Helicobacter pylori and gastric cancer[J]. Gastric Cancer,2002,5(1):6-15.
    [4] Yokozaki H, Yasui W, Tahara E. Genetic and epigenetic changes in stomach cancer[J]. Internationalreview of cytology,2001,204:49-95.
    [5] Tamura G. Genetic and epigenetic alterations of tumor suppressor and tumor-related genes in gastriccancer[J].2002.
    [6] Sapari N S, Loh M, Vaithilingam A, et al. Clinical potential of DNA methylation in gastric cancer: ameta-analysis[J]. PloS one,2012,7(4): e36275.
    [7] Gigek C O, Chen E S, Calcagno D Q, et al. Epigenetic mechanisms in gastric cancer[J].Epigenomics,2012,4(3):279-294.
    [8] Agathanggelou A, Cooper W N, Latif F. Role of the Ras-association domain family1tumorsuppressor gene in human cancers[J]. Cancer research,2005,65(9):3497-3508.
    [9] Pfeifer G P, Yoon J H, Liu L, et al. Methylation of the RASSF1A gene in human cancers[J].Biological chemistry,2002,383(6):907-914.
    [10] Dammann R, Schagdarsurengin U, Seidel C, et al. The tumor suppressor RASSF1A in humancarcinogenesis: an update[J]. Histol Histopathol,2005;20:645-663.
    [11] Dammann R, Li C, Yoon J H, et al. Epigenetic inactivation of a RAS association domain familyprotein from the lung tumour suppressor locus3p21.3[J]. Nature genetics,2000,25(3):315-319.
    [12] Hesson L B, Cooper W N, Latif F. The role of RASSF1A methylation in cancer[J]. Disease markers,2007,23(1-2):73-87.
    [13] Byun D S, Lee M G, Chae K S, et al. Frequent epigenetic inactivation of RASSF1A by aberrantpromoter hypermethylation in human gastric adenocarcinoma[J]. Cancer research,2001,61(19):7034-7038.
    [14] To K F, Leung W K, Lee T L, et al. Promoter hypermethylation of tumor-related genes in gastricintestinal metaplasia of patients with and without gastric cancer[J]. International journal of cancer,2002,102(6):623-628.
    [15] Balassiano K, Lima S, Jenab M, et al. Aberrant DNA methylation of cancer-associated genes ingastric cancer in the European Prospective Investigation into Cancer and Nutrition(EPIC–EURGAST)[J]. Cancer letters,2011,311(1):85-95.
    [16] Dickersin K, Berlin J A. Meta-analysis: state-of-the-science[J]. Epidemiologic reviews,1992,14(1):154-176.
    [17] Higgins J P T, Thompson S G, Deeks J J, et al. Measuring inconsistency in meta-analyses[J]. BMJ:British Medical Journal,2003,327(7414):557.
    [18] Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies ofdisease[J]. The Challenge of Epidemiology: Issues and Selected Readings,2004,1(1):533-553.
    [19] DerSimonian R, Laird N. Meta-analysis in clinical trials[J]. Controlled clinical trials,1986,7(3):177-188.
    [20] Egger M, Smith G D, Schneider M, et al. Bias in meta-analysis detected by a simple, graphicaltest[J]. Bmj,1997,315(7109):629-634.
    [21] Kang G H, Lee S, Kim J S, et al. Profile of aberrant CpG island methylation along the multisteppathway of gastric carcinogenesis[J]. Laboratory investigation,2003,83(5):635-641.
    [22] Ye M, Xia B, Guo Q S, et al.[The influence of promoter methylation of RASSF1A on RASSF1AmRNA and protein expression in gastric cancer tissues][J]. Zhonghua nei ke za zhi [Chinesejournal of internal medicine],2006,45(12):1008-1012.
    [23] Kang G H, Lee S, Kim J S, et al. Profile of aberrant CpG island methylation along multistep gastriccarcinogenesis[J]. Laboratory investigation,2003,83(4):519-526.
    [24] Ye M, Xia B, Guo Q, et al. Association of diminished expression of RASSF1A with promotermethylation in primary gastric cancer from patients of central China[J]. BMC cancer,2007,7(1):120.
    [25] Wang Y C, Yu Z H, Liu C, et al. Detection of RASSF1A promoter hypermethylation in serum fromgastric and colorectal adenocarcinoma patients[J]. World journal of gastroenterology: WJG,2008,14(19):3074.
    [26] Guo W, Dong Z, Chen Z, et al. Aberrant CpG island hypermethylation of RASSF1A in gastriccardia adenocarcinoma[J]. Cancer investigation,2009,27(4):459-465.
    [27] Zou X P, Zhang B, Zhang X Q, et al. Promoter hypermethylation of multiple genes in early gastricadenocarcinoma and precancerous lesions[J]. Human pathology,2009,40(11):1534-1542.
    [28] Yao D, Shi J, Shi B, et al. Quantitative assessment of gene methylation and their impact on clinicaloutcome in gastric cancer[J]. Clinica Chimica Acta,2012,413(7):787-794.
    [29] Tan S H, Ida H, Lau Q C, et al. Detection of promoter hypermethylation in serum samples ofcancer patients by methylation-specific polymerase chain reaction for tumour suppressor genesincluding RUNX3[J]. Oncology reports,2007,18(5):1225-1230.
    [30] Zhou S L, Cui J, Fan Z M, et al. Polymorphism of A133S and promoter hypermethylation in Rasassociation domain family1A gene (RASSF1A) is associated with risk of esophageal and gastriccardia cancers in Chinese population from high incidence area in northern China[J]. BMC cancer,2013,13(1):259.
    [31] Baylin S B. DNA methylation and gene silencing in cancer[J]. Nature Clinical Practice Oncology,2005,2: S4-S11.
    [32] Das P M, Singal R. DNA methylat ion and cancer[J]. Journal of Clinical Oncology,2004,22(22):4632-4642.
    [33] Lau J, Ioannidis J, Schmid C H. Summing up evidence: one answer is not always enough[J]. Thelancet,1998,351(9096):123-127.
    [34] Roder DM. The epidemiology of gastric cancer[J]. Gastric Cancer,2002;5Suppl1:5-11.
    [35] Wang J, Wang B, Chen X, et al. The prognostic value of RASSF1A promoter hypermethylation innon-small cell lung carcinoma: a systematic review and meta-analysis[J]. Carcinogenesis,2011,32(3):411-416.
    [36] Gao T, Wang S, He B, et al. The association of ras association domain family protein1a (RASSF1A)methylation states and bladder cancer risk: a systematic review and meta-analysis[J]. PloS one,2012,7(11): e48300.
    [37] Jiang Y, Cui L, Shen S, et al. The prognostic role of RASSF1A promoter methylation in breastcancer: a meta-analysis of published data[J]. PloS one,2012,7(5): e36780.
    [38] Dong S M, Sun D I, Benoit N E, et al. Epigenetic inactivation of RASSF1A in head and neckcancer[J]. Clinical cancer research,2003,9(10):3635-3640.
    [1]2012年中国卫生统计提要。中华人民共和国卫生部,2007。
    [2] Esteller M, Herman J G. Cancer as an epigenetic disease: DNA methylation and chromatinalterations in human tumours[J]. The Journal of pathology,2002,196(1):1-7.
    [3] AD Panani. Cytogenetic and molecular aspects of gastric cancer: clinical implications[J]. CancerLett,2008,266(2):99-115.
    [4] Tamura G. Alterations of tumor suppressor and tumor-related genes in the development andprogression of gastric cancer[J]. World Journal of Gastroenterology,2006,12(2):192-198.
    [5] Smith M G, Hold G L, Tahara E, et al. Cellular and molecular aspects of gastric cancer[J]. WorldJournal of Gastroenterology,2006,12(19):2979-2990.
    [6] Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps[J]. NatureReviews Genetics,2007,8(4):286-298.
    [7] So K, Tamura G, Honda T, et al. Multiple tumor suppressor genes are increasingly methylated withage in non-neoplastic gastric epithelia[J]. Cancer science,2006,97(11):1155-1158.
    [8] Ksiaa F, Ziadi S, Amara K, et al. Biological significance of promoter hypermethylation oftumor-related genes in patients with gastric carcinoma[J]. Clinica Chimica Acta,2009,404(2):128-133.
    [9] Oue N, Mitani Y, Motoshita J, et al. Accumulation of DNA methylation is associated with tumorstage in gastric cancer[J]. Cancer,2006,106(6):1250-1259.
    [10] Sato F, Meltzer S J. CpG island hypermethylation in progression of esophageal and gastriccancer[J]. Cancer,2006,106(3):483-493.
    [11] In-Seon C, Tsung-Teh W U. Epigenetic alterations in gastric carcinogenesis[J]. Cell research,2005,15(4):247-254.
    [12] Yamamoto E, Suzuki H, Takamaru H, et al. Role of DNA methylation in the development ofdiffuse-type gastric cancer[J]. Digestion,2011,83(4):241-249.
    [13] Qu Y, Dang S, Hou P. Gene methylation in gastric cancer[J]. Clinica Chimica Acta,2013,424:53-65.
    [14] Kim J G, Takeshima H, Niwa T, et al. Comprehensive DNA methylation and extensive mutationanalyses reveal an association between the CpG island methylator phenotype and oncogenicmutations in gastric cancers[J]. Cancer letters,2013,330(1):33-40.
    [15] Walsh M D, Clendenning M, Williamson E, et al. Expression of MUC2, MUC5AC, MUC5B, andMUC6mucins in colorectal cancers and their association with the CpG island methylatorphenotype[J]. Modern Pathology,2013.
    [16] Simons C, Hughes L A E, Smits K M, et al. A novel classification of colorectal tumors based onmicrosatellite instability, the CpG island methylator phenotype and chromosomal instability:implications for prognosis[J]. Annals of oncology,2013,24(8):2048-2056.
    [17] Liu-Chittenden Y, Kebebew E. CpG island methylator phenotype in adrenocortical carcinoma: factor fiction?[J]. The Journal of Clinical Endocrinology&Metabolism,2013,98(1):48-50.
    [18] Hughes L A E, Melotte V, De Schrijver J, et al. The CpG island methylator phenotype: what's in aname?[J]. Cancer research,2013,73(19):5858-5868.
    [19] Asada K, Watanabe N, Nakamura Y, et al. Stronger prognostic power of the CpG island methylatorphenotype than methylation of individual genes in neuroblastomas[J]. Japanese journal of clinicaloncology,2013,43(6):641-645.
    [20] Zong L, Seto Y. CpG island methylator phenotype, helicobacter pylori, Epstein-Barr virus, andmicrosatellite instability and prognosis in gastric cancer: a systematic review and meta-analysis[J].PloS one,2014,9(1): e86097.
    [21] Ibragimova I, Dulaimi E, Slifker M J, et al. A global profile of gene promoter methylation intreatment-na ve urothelial cancer[J]. Epigenetics,2014,9(5).
    [22] Kroeger N, Klatte T, Chamie K, et al. Deletions of chromosomes3p and14q molecularlysubclassify clear cell renal cell carcinoma[J]. Cancer,2013,119(8):1547-1554.
    [23] Chen J, Fu L, Zhang L Y, et al. Tumor suppressor genes on frequently deleted chromosome3p innasopharyngeal carcinoma[J]. Chinese journal of cancer,2012,31(5):215.
    [24] Lerman M I, Minna J D. The630-kb lung cancer homozygous deletion region on humanchromosome3p21.3: identification and evaluation of the resident candidate tumor suppressorgenes[J]. Cancer Research,2000,60(21):6116-6133.
    [25] Cheng Y, Poulos N E, Lung M L, et al. Functional evidence for a nasopharyngeal carcinoma tumorsuppressor gene that maps at chromosome3p21.3[J]. Proceedings of the National Academy ofSciences,1998,95(6):3042-3047.
    [26] Wistuba I I, Behrens C, Virmani A K, et al. High resolution chromosome3p allelotyping of humanlung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuoussites of3p allele loss and three regions of frequent breakpoints[J]. Cancer Research,2000,60(7):1949-1960.
    [27] Zabarovsky E R, Lerman M I, Minna J D. Tumor suppressor genes on chromosome3p involved inthe pathogenesis of lung and other cancers[J]. Oncogene,2002,21(45):6915-6935.
    [28] Radicella J P, Dherin C, Desmaze C, et al. Cloning and characterization of hOGG1, a humanhomolog of the OGG1gene of Saccharomyces cerevisiae[J]. Proceedings of the National Academyof Sciences,1997,94(15):8010-8015.
    [29] Takao M, Aburatani H, Kobayashi K, et al. Mitochondrial targeting of human DNA glycosylasesfor repair of oxidative DNA damage[J]. Nucleic acids research,1998,26(12):2917-2922.
    [30] Dhénaut A, Boiteux S, Radicella J P. Characterization of the hOGG1promoter and its expressionduring the cell cycle[J]. Mutation Research/DNA Repair,2000,461(2):109-118.
    [31] Bruner S D, Norman D P G, Verdine G L. Structural basis for recognition and repair of theendogenous mutagen8-oxoguanine in DNA[J]. Nature,2000,403(6772):859-866.
    [32] Hodges N J, Chipman J K. Down-regulation of the DNA-repair endonuclease8-oxo-guanine DNAglycosylase1(hOGG1) by sodium dichromate in cultured human A549lung carcinoma cells[J].Carcinogenesis,2002,23(1):55-60.
    [33] Audebert M, Chevillard S, Levalois C, et al. Alterations of the DNA repair gene OGG1in humanclear cell carcinomas of the kidney[J]. Cancer research,2000,60(17):4740-4744.
    [34] Conway J E, Chou D, Clatterbuck R E, et al. Hemangioblastomas of the central nervous system invon Hippel-Lindau syndrome and sporadic disease[J]. Neurosurgery,2001,48(1):55-63.
    [35] Chung D C, Smith A P, Louis D N, et al. A novel pancreatic endocrine tumor suppressor gene locuson chromosome3p with clinical prognostic implications[J]. Journal of Clinical Investigation,1997,100(2):404.
    [36] Chung D C, Smith A P, Louis D N, et al. A novel pancreatic endocrine tumor suppressor gene locuson chromosome3p with clinical prognostic implications[J]. Journal of Clinical Investigation,1997,100(2):404.
    [37] Cao Z, Hwi Song J, Kim C J, et al. Genetic and epigenetic analysis of the VHL gene in gas triccancers[J]. Acta Oncologica,2008,47(8):1551-1556.
    [38] Leung W K, Yu J, Ng E K W, et al. Concurrent hypermethylation of multiple tumor‐related genesin gastric carcinoma and adjacent normal tissues[J]. Cancer,2001,91(12):2294-2301.
    [39] Brand N, Petkovich M, Krust A, et al. Identification of a second human retinoic acid receptor[J].Nature,1988,332:850-3.
    [40] Yao Y, Tao H, Kim J J, et al. Alterations of DNA mismatch repair proteins and microsatelliteinstability levels in gastric cancer cell lines[J]. Laboratory investigation,2004,84(7):915-922.
    [41] Kang Y H, Bae S, Kim W. Comprehensive analysis of promoter methylation and altered expressionof hMLH1in gastric cancer cell lines with microsatellite instability[J]. Journal of cancer researc hand clinical oncology,2002,128(3):119-124.
    [42] Cunningham J M, Christensen E R, Tester D J, et al. Hypermethylation of the hMLH1promoter incolon cancer with microsatellite instability[J]. Cancer Research,1998,58(15):3455-3460.
    [43] Kuroki T, Trapasso F, Yendamuri S, et al. Allelic loss on chromosome3p21.3and promoterhypermethylation of semaphorin3B in non-small cell lung cancer[J]. Cancer research,2003,63(12):3352-3355.
    [44] Tomizawa Y, Sekido Y, Kondo M, et al. Inhibition of lung cancer cell growth and induction ofapoptosis after reexpression of3p21.3candidate tumor suppressor gene SEMA3B[J]. Proceedingsof the National Academy of Sciences,2001,98(24):13954-13959.
    [45] Dammann R, Li C, Yoon J H, et al. Epigenetic inactivation of a RAS association domain familyprotein from the lung tumour suppressor locus3p21.3[J]. Nature genetics,2000,25(3):315-319.
    [46] Lerman M I, Minna J D. The630-kb lung cancer homozygous deletion region on humanchromosome3p21.3: identification and evaluation of the resident candidate tumor suppressorgenes[J]. Cancer Research,2000,60(21):6116-6133.
    [47] Z chbauer-Müller S, Fong K M, Maitra A, et al.5′CpG island methylation of the FHIT gene iscorrelated with loss of gene expression in lung and breast cancer[J]. Cancer research,2001,61(9):3581-3585.
    [48] Liu Z, Zhao J, Chen X F, et al. CpG island methylator phenotype involving tumor suppressor geneslocated on chromosome3p in non-small cell lung cancer[J]. Lung cancer,2008,62(1):15-22.
    [49] Liu Z, Li W, Lei Z, et al. CpG island methylator phenotype involving chromosome3p confers anincreased risk of non-small cell lung cancer[J]. Journal of Thoracic Oncology,2010,5(6):790-797.
    [50] Kuroki T, Trapasso F, Yendamuri S, et al. Allele loss and promoter hypermethylation of VHL,RAR-β, RASSF1A, and FHIT tumor suppressor genes on chromosome3p in esophageal squamouscell carcinoma[J]. Cancer research,2003,63(13):3724-3728.
    [51] Choi C H, Lee K M, Choi J J, et al. Hypermethylation and loss of heterozygosity of tumorsuppressor genes on chromosome3p in cervical cancer[J]. Cancer letters,2007,255(1):26-33.
    [52] Costello J F, Frühwald M C, Smiraglia D J, et al. Aberrant CpG-island methylation has non-randomand tumour-type specific patterns[J]. Nature genetics,2000,24(2):132-138.
    [53] Laird P W. The power and the promise of DNA methylation markers[J]. Nature Reviews Cancer,2003,3(4):253-266.
    [54] Issa J P. CpG island methylator phenotype in cancer[J]. Nature Reviews Cancer,2004,4(12):988-993.
    [55] Jones P A, Baylin S B. The fundamental role of epigenetic events in cancer[J]. Nature reviewsgenetics,2002,3(6):415-428.
    [56] Feinberg A P, Tycko B. The history of cancer epigenetics[J]. Nature Reviews Cancer,2004,4(2):143-153.
    [57] Ahmad Miremadi, Mikkel Z. Oestergaard, Paul D.P. Pharoah, et al. Cancer genetics of epigeneticgenes[J]. Hum. Mol. Genet.,2007,16: R28-R49.
    [58] Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology[J]. Naturemedicine,2011:330-339.
    [59] Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism[J]. Annu. Rev. Pharmacol.Toxicol.,2005,45:629-656.
    [60] Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome[J]. Human moleculargenetics,2007,16(R1): R50-R59.
    [61] Esteller M. Relevance of DNA methylation in the management of cancer[J]. The lancet oncology,2003,4(6):351-358.
    [62] Esteller M, Herman J G. Cancer as an epigenetic disease: DNA methylation and chromatinalterations in human tumours[J]. The Journal of pathology,2002,196(1):1-7.
    [63] Esteller M, Corn P G, Baylin S B, et al. A gene hypermethylation profile of human cancer[J].Cancer research,2001,61(8):3225-3229.
    [64] Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, abrighter future[J]. Oncogene,2002,21(35):5427-5440.
    [65] Esteller M. Dormant hypermethylated tumour suppressor genes: questions and answers[J]. TheJournal of pathology,2005,205(2):172-180.
    [66] Chen W, Gao N, Shen Y, et al. Hypermethylation downregulates Runx3gene expression and itsrestoration suppresses gastric epithelial cell growth by inducing p27and caspase3in human gastriccancer[J]. Journal of gastroenterology and hepatology,2010,25(4):823-831.
    [67]沈玉玲,陈卫昌,高楠.5-aza-dC和丁酸钠对人胃癌细胞株MKN28细胞周期、凋亡以及抑癌基因表达的影响.胃肠病学,2009,14(9):551-554.
    [68] Ooki A, Yamashita K, Kikuchi S, et al. Potential utility of HOP homeobox gene promotermethylation as a marker of tumor aggressiveness in gastric cancer[J]. Oncogene,2010,29(22):3263-3275.
    [69] Issa J P. CpG island methylator phenotype in cancer[J]. Nature Reviews Cancer,2004,4(12):988-993.
    [70] Schneider B G, Pulitzer D R, Brown R D, et al. Allelic imbalance in gastric cancer: an affected siteon chromosome arm3p[J]. Genes, Chromosomes and Cancer,1995,13(4):263-271.
    [71] Chetty R, Naidoo R, Tarin M, et al. Chromosome2p,3p,5q and18q status in sporadic gastriccancer[J]. Pathology,2002,34(3):275-281.
    [72] Harnack L, Jacobs D R, Nicodemus K, et al. Relationship of folate, vitamin B-6, vitamin B-12, andmethionine intake to incidence of colorectal cancers[J]. Nutrition and cancer,2002,43(2):152-158.
    [73] Davis C D, Uthus E O. DNA methylation, cancer susceptibility, and nutrient interactions[J].Experimental biology and medicine,2004,229(10):988-995.
    [74] Jung Y D, Kim M S, Shin B A, et al. EGCG, a major component of green tea, inhibits tumourgrowth by inhibiting VEGF induction in human colon carcinoma cells[J]. British journal of cancer,2001,84(6).
    [75] Ji B T, Chow W H, Hsing A W, et al. Green tea consumption and the risk of pancreatic andcolorectal cancers[J]. International Journal of Cancer,1997,70(3):255-258.
    [76] Clement Y. Can green tea do that? A literature review of the clinical evidence[J]. Preventivemedicine,2009,49(2):83-87.
    [77] Tsubono Y, Nishino Y, Komatsu S, et al. Green tea and the risk of gastric cancer in Japan[J]. NewEngland Journal of Medicine,2001,344(9):632-636.
    [78] Zou X P, Zhang B, Zhang X Q, et al. Promoter hypermethylation of multiple genes in early gastricadenocarcinoma and precancerous lesions[J]. Human pathology,2009,40(11):1534-1542.
    [79] Baylin S B, Ohm J E. Epigenetic gene silencing in cancer–a mechanism for early oncogenicpathway addiction?[J]. Nature Reviews Cancer,2006,6(2):107-116.
    [80] Kang G H, Shim Y H, Jung H Y, et al. CpG island methylation in premalignant stages of gastriccarcinoma[J]. Cancer research,2001,61(7):2847-2851.
    [81] Tahara T, Shibata T, Nakamura M, et al. Increased number of CpG island hypermethylat ion intumor suppressor genes of non-neoplastic gastric mucosa correlates with higher risk of gastriccancer[J]. Digestion,2010,82(1):27-36.
    [82] Kang G H. CpG island hypermethylation in gastric carcinoma and its premalignant lesions[J].Korean journal of pathology,2012,46(1):1-9.
    [83] Ren J, Singh B N, Huang Q, et al. DNA hypermethylation as a chemotherapy target[J]. Cellularsignalling,2011,23(7):1082-1093.
    [1] Itoh H, Oohata Y, Nakamura K, et al. Complete ten-year postgastrectomy follow-up of early gastriccancer[J]. The American journal of surgery,1989,158(1):14-16.
    [2] Fan B, Xiong B. Investigation of serum tumor markers in the diagnosis of gastric cancer[J].Hepato-gastroenterology,2010,58(105):239-245.
    [3] Ye T, Chen Y, Fang J. DNA methylation biomarkers in serum for gastric cancer screening[J]. Minireviews in medicinal chemistry,2010,10(11):1034-1038.
    [4] Lange C P E, Campan M, Hinoue T, et al. Genome-scale discovery of DNA-methylation biomarkersfor blood-based detection of colorectal cancer[J]. PloS one,2012,7(11): e50266.
    [5] Lange C P E, Campan M, Hinoue T, et al. Genome-scale discovery of DNA-methylation biomarkersfor blood-based detection of colorectal cancer[J]. PloS one,2012,7(11): e50266.
    [6] Sapari N S, Loh M, Vaithilingam A, et al. Clinical potential of DNA methylation in gastric cancer: ameta-analysis[J]. PloS one,2012,7(4): e36275.
    [7] Hong L, Ahuja N. DNA Methylation Biomarkers of stool and blood for early detection of coloncancer[J]. Genetic testing and molecular biomarkers,2013,17(5):401-406.
    [8] Shivapurkar N, Gazdar A F. DNA methylation based biomarkers in non-invasive cancer screening[J].Current molecular medicine,2010,10(2):123.
    [9] Chihara Y, Kanai Y, Fujimoto H, et al. Diagnostic markers of urothelial cancer based on DNAmethylation analysis[J]. BMC cancer,2013,13(1):275.
    [10] Langevin S M, Koestler D C, Christensen B C, et al. Peripheral blood DNA methylation profilesare indicative of head and neck squamous cell carcinoma[J]. Epigenetics,2012,7(3):291-299.
    [11] Zheng Y, Chen L, Li J, et al. Hypermethylated DNA as potential biomarkers for gastric cancerdiagnosis[J]. Clinical biochemistry,2011,44(17):1405-1411.
    [12] Hagmar L, Brogger A, Hansteen IL, et al. Cancer risk in humans predicted by increased levels ofchromosomal damage[J]. Cancer Res,1994,54:2919-2922.
    [13] Bonassi S, Hagmar L, Strombert U, et al. Chromosomal aberrations in lymphocytes predict humancancer independently of exposure to carcinogens[J]. Cancer Res,2000,60:1619-1625.
    [14] Bonassi S, Abbondandolo A, Camurri L, et al. Are chromosome aberrations in circulatinglymphocytes predictive of a future cancer onset in humans? Preliminary results of an Italian cohortstudy[J]. Cancer Genet Cytogenet,1995,79:133-135.
    [15] Wu, X, Amos CL, Zhu Y, et al. Telomere dysfunction: a potential cancer predisposition factor[J]. JNatl Cancer Inst,2003,95:1211-1218.
    [16] Broberg K, Bjork J, Paulsson K, et al. Constitutional short telomeres are strong geneticsusceptibility markers for bladder cancer[J]. Carcinogenesis,2005,26:1263-1271.
    [17] McGrath M, Wong JY, Michaud D, et al. Telomere length, cigarette smoking, and bladder cancerrisk in men and women[J]. Cancer Epidemiol Biomarkers Prev,2007,815-819.
    [18] Liu Z, Li W, Lei Z, et al. CpG island methylator phenotype involving chromosome3p confers anincreased risk of non-small cell lung cancer[J]. Journal of Thoracic Oncology,2010,5(6):790-797.
    [19] Li Y, Zhu J, Tian G, et al. The DNA methylome of human peripheral blood mononuclear cells[J].PLoS biology,2010,8(11): e1000533.
    [20] Zhang Y J, Wu H C, Shen J, et al. Predicting hepatocellular carcinoma by detection of aberrantpromoter methylation in serum DNA[J]. Clinical Cancer Research,2007,13(8):2378-2384.
    [21] Esteller M. Dormant hypermethylated tumour suppressor genes: questions and answers[J]. TheJournal of pathology,2005,205(2):172-180.
    [22] Rouprêt M, Hupertan V, Catto J W F, et al. Promoter hypermethylation in circulating blood cellsidentifies prostate cancer progression[J]. International Journal of Cancer,2008,122(4):952-956.
    [23] Wu H C, Wang Q, Delgado-Cruzata L, et al. Genomic methylation changes over time in peripheralblood mononuclear cell DNA: differences by assay type and baseline values[J]. CancerEpidemiology Biomarkers&Prevention,2012,21(8):1314-1318.
    [24] Terry M B, Delgado-Cruzata L, Vin-Raviv N, et al. DNA methylation in white blood cells:association with risk factors in epidemiologic studies[J]. Epigenetics,2011,6(7):828.
    [25] Piyathilake C J, Macaluso M, Alvarez R D, et al. A higher degree of LINE-1methylation inperipheral blood mononuclear cells, a one-carbon nutrient related epigenetic alteration, isassociated with a lower risk of developing cervical intraepithelial neoplasia[J]. Nutrition,2011,27(5):513-519.
    [26] Reinius L E, Acevedo N, Joerink M, et al. Differential DNA methylation in purified human bloodcells: implications for cell lineage and studies on disease susceptibility[J]. PloS one,2012,7(7):e41361.
    [27] Marsit C J, Houseman E A, Christensen B C, et al. Examination of a CpG island methylatorphenotype and implications of methylation profiles in solid tumors[J]. Cancer research,2006,66(21):10621-10629.
    [28] Hughes L A E, Melotte V, De Schrijver J, et al. The CpG island methylator phenotype: what's in aname?[J]. Cancer research,2013,73(19):5858-5868.
    [29] Noushmehr H, Weisenberger D J, Diefes K, et al. Identification of a CpG island methylatorphenotype that defines a distinct subgroup of glioma[J]. Cancer cell,2010,17(5):510-522.
    [30] Curtin K, Slattery M L, Samowitz W S. CpG island methylation in colorectal cancer: past, presentand future[J]. Pathology research international,2011,2011.
    [31] Fu H, Wu D, Zhou H, et al. CpG island methylator phenotype and its relationship with prognosis inadult acute leukemia patients[J]. Hematology,2013.
    [32] Jirtle R L, Skinner M K. Environmental epigenomics and disease susceptibility[J]. Nature reviewsgenetics,2007,8(4):253-262.
    [33] Dolinoy D C, Jirtle R L. Environmental epigenomics in human health and disease[J].Environmental and molecular mutagenesis,2008,49(1):4-8.
    [34] Dolinoy D C, Weidman J R, Jirtle R L. Epigenetic gene regulation: linking early developmentalenvironment to adult disease[J]. Reproductive Toxicology,2007,23(3):297-307.
    [35] Bollati V, Baccarelli A. Environmental epigenetics[J]. Heredity,2010,105(1):105-112.
    [36] Harnack L, Jacobs D R, Nicodemus K, et al. Relationship of folate, vitamin B-6, vitamin B-12, andmethionine intake to incidence of colorectal cancers[J]. Nutrition and cancer,2002,43(2):152-158.
    [37] Davis C D, Uthus E O. DNA methylation, cancer susceptibility, and nutrient interactions[J].Experimental biology and medicine,2004,229(10):988-995.
    [38] Jung Y D, Kim M S, Shin B A, et al. EGCG, a major component of green tea, inhibits tumourgrowth by inhibiting VEGF induction in human colon carcinoma cells[J]. British journal of cancer,2001,84(6).
    [39] Ji B T, Chow W H, Hsing A W, et al. Green tea consumption and the risk of pancreatic andcolorectal cancers[J]. International Journal of Cancer,1997,70(3):255-258.
    [40] Clement Y. Can green tea do that? A literature review of the clinical evidence[J]. Preventivemedicine,2009,49(2):83-87.
    [41] Tsubono Y, Nishino Y, Komatsu S, et al. Green tea and the risk of gastric cancer in Japan[J]. NewEngland Journal of Medicine,2001,344(9):632-636.
    [1] Brown T A. Genomes[M]. Wiley-Liss, Oxford,2002.
    [2] Pruitt K D. NCBI Eukaryotic Genomes: Current Status, New Reports, and AnnotationSummary[C]//Plant and Animal Genome XXII Conference. Plant and Animal Genome,2014.
    [3] Ahmad Miremadi, Mikkel Z. Oestergaard, Paul D.P. Pharoah, et al. Cancer genetics of epigeneticgenes[J]. Hum. Mol. Genet.,2007,16: R28-R49.
    [4]梁硕,胡成平,何碧秀等.核心蛋白多糖对肺腺癌细胞长作用及其机制初探. Chinese Journalof Lung Cancer,2007,1(3):9-13.
    [5] Jones P A, Baylin S B. The epigenomics of cancer[J]. Cell,2007,128(4):683-692.
    [6] Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps[J]. NatureReviews Genetics,2007,8(4):286-298.
    [7] Bernstein B E, Stamatoyannopoulos J A, Costello J F, et al. The NIH roadmap epigenomics mappingconsortium[J]. Nature biotechnology,2010,28(10):1045-1048.
    [8] Fazzari M J, Greally J M. Epigenomics: beyond CpG islands[J]. Nature Reviews Genetics,2004,5(6):446-455.
    [9] Jirtle R L, Skinner M K. Environmental epigenomics and disease susceptibility[J]. Nature reviewsgenetics,2007,8(4):253-262.
    [10] Waddington C H. Preliminary notes on the development of the wings in normal and mutant strainsof drosophila[J]. Proceedings of the National Academy of Sciences of the United States of America,1939,25(7):299.
    [11] Bird A. Perceptions of epigenetics[J]. Nature,2007,447(7143):396-398.
    [12] Boumber Y, IssaJ P. Epigenetics in cancer:what‘s thefuture[J]. Oncology,2011,25(3):220-226.
    [13] Esteller M. Epigenetics in cancer[J]. New England Journal of Medicine,2008,358(11):1148-1159.
    [14] Sharma S, Kelly T K, Jones P A. Epigenetics in cancer[J]. Carcinogenesis,2010,31(1):27-36.
    [15] Jones P A, Baylin S B. The fundamental role of epigenetic events in cancer[J]. Nature reviewsgenetics,2002,3(6):415-428.
    [16] Ellis L, Atadja P W, Johnstone R W. Epigenetics in cancer: targeting chromatin modifications[J].Molecular cancer therapeutics,2009,8(6):1409-1420.
    [17] Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome[J]. Human moleculargenetics,2007,16(R1): R50-R59.
    [18] Baylin S B, Jones P A. A decade of exploring the cancer epigenome—biological and translationalimplications[J]. Nature Reviews Cancer,2011,11(10):726-734.
    [19] Herman J G, Baylin S B. Gene silencing in cancer in association with promoterhypermethylation[J]. New England Journal of Medicine,2003,349(21):2042-2054.
    [20] Einav Nili G Y, Saito Y, Egger G, et al. Cancer epigenetics: modifications, screening, and therapy[J].Annu. Rev. Med.,2008,59:267-280.
    [21] Illingworth R S, Bird A P. CpG islands–a rough guide‘[J]. FEBS letters,2009,583(11):1713-1720.
    [22] Jones P A. Functions of DNA methylation: islands, start sites, gene bodies and beyond[J]. NatureReviews Genetics,2012,13(7):484-492.
    [23] Islands C G. CpG island chromatin[J]. Epigenetics,2011,6(2):147-152.
    [24] Deaton A M, Bird A. CpG islands and the regulation of transcription[J]. Genes&development,2011,25(10):1010-1022.
    [25] Suzuki M M, Bird A. DNA methylation landscapes: provocative insights from epigenomics[J].Nature Reviews Genetics,2008,9(6):465-476.
    [26] Bird A P. CpG-rich islands and the function of DNA methylation[J]. Nature,1985,321(6067):209-213.
    [27] Cooper D N, Youssoufian H. The CpG dinucleotide and human genetic disease[J]. Human genetics,1988,78(2):151-155.
    [28] Issa J P J, Ottaviano Y L, Celano P, et al. Methylation of the oestrogen receptor CpG island linksageing and neoplasia in human colon[J]. Nature genetics,1994,7(4):536-540.
    [29] Bird A. DNA methylation patterns and epigenetic memory[J]. Genes&development,2002,16(1):6-21.
    [30] Tazi J, Bird A. Alternative chromatin structure at CpG islands[J]. Cell,1990,60(6):909-920.
    [31] Okano M, Bell D W, Haber D A, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essentialfor de novo methylation and mammalian development[J]. Cell,1999,99(3):247-257.
    [32] Yoder J A, Walsh C P, Bestor T H. Cytosine methylation and the ecology of intragenomicparasites[J]. Trends in genetics,1997,13(8):335-340.
    [33] Baylin S B, Herman J G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics[J].Trends in Genetics,2000,16(4):168-174.
    [34] Florl A R, L wer R, Schmitz-Dr ger B J, et al. DNA methylation and expression of LINE-1andHERV-K provirus sequences in urothelial and renal cell carcinomas[J]. British journal of cancer,1999,80(9):1312.
    [35] Bender J. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing[J].Trends in biochemical sciences,1998,23(7):252-256.
    [36] El‐Osta A. DNMT cooperativity—the developing links between methylation, chromatin structureand cancer[J]. Bioessays,2003,25(11):1071-1084.
    [37] Chik F, Szyf M. Effects of specific DNMT gene depletion on cancer cell transformation and breastcancer cell invasion; toward selective DNMT inhib itors[J]. Carcinogenesis,2011,32(2):224-232.
    [38] Di Croce L, Raker V A, Corsaro M, et al. Methyltransferase recruitment and DNAhypermethylation of target promoters by an oncogenic transcription factor[J]. Science,2002,295(5557):1079-1082.
    [39] Klose R J, Bird A P. Genomic DNA methylation: the mark and its mediators[J]. Trends inbiochemical sciences,2006,31(2):89-97.
    [40] Suzuki M M, Bird A. DNA methylation landscapes: provocative insights from epigenomics[J].Nature Reviews Genetics,2008,9(6):465-476.
    [41] Bestor T H. The DNA methyltransferases of mammals[J]. Human molecular genetics,2000,9(16):2395-2402.
    [42] Okano M, Bell D W, Haber D A, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essentialfor de novo methylation and mammalian development[J]. Cell,1999,99(3):247-257.
    [43] Rhee I, Bachman K E, Park B H, et al. DNMT1and DNMT3b cooperate to silence genes in humancancer cells[J]. Nature,2002,416(6880):552-556.
    [44] Dolinoy D C, Jirtle R L. Environmental epigenomics in human health and disease[J].Environmental and molecular mutagenesis,2008,49(1):4-8.
    [45] Dolinoy D C, Weidman J R, Jirtle R L. Epigenetic gene regulation: linking early developmentalenvironment to adult disease[J]. Reproductive Toxicology,2007,23(3):297-307.
    [46] Bollati V, Baccarelli A. Environmental epigenetics[J]. Heredity,2010,105(1):105-112.
    [47] Harnack L, Jacobs D R, Nicodemus K, et al. Relationship of folate, vitamin B-6, vitamin B-12, andmethionine intake to incidence of colorectal cancers[J]. Nutrition and cancer,2002,43(2):152-158.
    [48] Davis C D, Uthus E O. DNA methylation, cancer susceptibility, and nutrient interactions[J].Experimental biology and medicine,2004,229(10):988-995.
    [49] Jung Y D, Kim M S, Shin B A, et al. EGCG, a major c omponent of green tea, inhibits tumourgrowth by inhibiting VEGF induction in human colon carcinoma cells[J]. British journal of cancer,2001,84(6).
    [50] Ji B T, Chow W H, Hsing A W, et al. Green tea consumption and the risk of pancreatic andcolorectal cancers[J]. International Journal of Cancer,1997,70(3):255-258.
    [51] Clement Y. Can green tea do that? A literature review of the clinical evidence[J]. Preventivemedicine,2009,49(2):83-87.
    [52] Tsubono Y, Nishino Y, Komatsu S, et al. Green tea and the risk of gastric cancer in Japan[J]. NewEngland Journal of Medicine,2001,344(9):632-636.
    [53] Kawasaki H, Taira K. Induction of DNA methylation and gene silencing by short interfering RNAsin human cells[J]. Nature,2004,431(7005):211-217.
    [54] Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA[J]. Nature,2004,431(7006):343-349.
    [55] Bao N, Lye K W, Barton M K. MicroRNA binding sites in arabidopsis class III HD-ZIP mRNAsare required for methylation of the template chromosome[J]. Developmental cell,2004,7(5):653-662.
    [56] Baylin S B, Esteller M, Rountree M R, et al. Aberrant patterns of DNA methylation, chromatinformation and gene expression in cancer[J]. Human molecular genetics,2001,10(7):687-692.
    [57] Esteller M, Herman J G. Cancer as an epigenetic disease: DNA methylation and chromatinalterations in human tumours[J]. The Journal of pathology,2002,196(1):1-7.
    [58] Rountree M R, Bachman K E, Herman J G, et al. DNA methylation, chromatin inheritance, andcancer[J]. Oncogene,2001,20(24).
    [59] Esteller M, Corn P G, Baylin S B, et al. A gene hypermethylation profile of human cancer[J].Cancer research,2001,61(8):3225-3229.
    [60] Luczak M W, Jagodziński P P. The role of DNA methylation in cancer development[J]. FoliaHistochemica et Cytobiologica,2006,44(3):143-142.
    [61] Zhao J, Liang Q, Cheung K F, et al. Genome-wide identification of Epstein-Barr virus–drivenpromoter methylation profiles of human genes in gastric cancer cells[J]. Cancer,2013,119(2):304-312.
    [62] Esteller M, Rattner B P, Blum R, et al. Virulence of infecting Helicobacter pylori strains andintensity of mononuclear cell infiltration are associated with levels of DNA hypermethylation ingastric mucosae[J]. Epigenetics,2013,8(8).
    [63] Yoshida T, Kato J, Maekita T, et al. Altered mucosal DNA methylation in parallel with highlyactive Helicobacter pylori-related gastritis[J]. Gastric Cancer,2013,16(4):488-497.
    [64] Herman J G, Baylin S B. Gene silencing in cancer in association with promoterhypermethylation[J]. New England Journal of Medicine,2003,349(21):2042-2054.
    [65] Kashima T, Nakamura K, Kawaguchi J, et al. Overexpression of cadherins suppresses pulmonarymetastasis of osteosarcoma in vivo[J]. International journal of cancer,2003,104(2):147-154.
    [66] Gaudet F, Hodgson J G, Eden A, et al. Induction of tumors in mice by genomic hypomethylation[J].Science,2003,300(5618):489-492.
    [67] Howard G, Eiges R, Gaudet F, et al. Activation and transposition of endogenous retroviral elementsin hypomethylation induced tumors in mice[J]. Oncogene,2008,27(3):404-408.
    [68] Eden A, Gaudet F, Waghmare A, et al. Chromosomal instability and tumors promoted by DNAhypomethylation[J]. Science,2003,300(5618):455-455.
    [69] Yang A S, Estecio M R H, Garcia-Manero G, et al. Comment on" Chromosomal instability andtumors promoted by DNA hypomethylation" and" Induction of tumors in mice by genomichypomethylation"[J]. Science,2003,302(5648):1153-1153.
    [70] Narayan A, Ji W, Zhang X Y, et al. Hypomethylation of pericentromeric DNA in breastadenocarcinomas[J]. International journal of cancer,1998,77(6):833-838.
    [71] Yamada Y, Jackson-Grusby L, Linhart H, et al. Opposing effects of DNA hypomethylation onintestinal and liver carcinogenesis[J]. Proceedings of the National Academy of Sciences of theUnited States of America,2005,102(38):13580-13585.
    [72] Suzuki K, Suzuki I, Leodolter A, et al. Global DNA demethylation in gastrointestinal cancer is agedependent and precedes genomic damage[J]. Cancer cell,2006,9(3):199-207.
    [73] Wilson A S, Power B E, Molloy P L. DNA hypomethylation and human diseases[J]. Biochimica etBiophysica Acta (BBA)-Reviews on Cancer,2007,1775(1):138-162.
    [74] Rizwana R, Hahn P J. CpG methylation reduces genomic instability[J]. Journal of Cell Science,1999,112(24):4513-4519.
    [75] Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsicand environmental signals[J]. Nature genetics,2003,33:245-254.
    [76] Ehrlich M. DNA methylation in cancer: too much, but also too little[J]. Oncogene,2002,21(35):5400-5413.
    [77] Vachtenheim J, Horáková I, Novotná H. Hypomethylation of CCGG sites in the3′region of H-rasprotooncogene is frequent and is associated with H-ras allele loss in non-small cell lung cancer[J].Cancer research,1994,54(5):1145-1148.
    [78] Neddermann P, Gallinari P, Lettieri T, et al. Cloning and expression of human G/Tmismatch-specific thymine-DNA glycosylase[J]. Journal of Biological Chemistry,1996,271(22):12767-12774.
    [79] Tommasi S, Denissenko M F, Pfeifer G P. Sunlight induces pyrimidine dimers preferentially at5-methylcytosine bases[J]. Cancer research,1997,57(21):4727-4730.
    [80] Murrell A. Genomic imprinting and cancer: from primordial germ cells to somatic cells[J]. TheScientific World Journal,2006,6:1888-1910.
    [81] Trasler J M. Gamete imprinting: setting epigenetic patterns for the next generation[J].Reproduction, Fertility and Development,2005,18(2):63-69.
    [82] Fraga M F, Esteller M. DNA methylation: a profile of methods and applications[J]. Biotechniques,2002,33(3):632-649.
    [83] Frühwald M C, Plass C. Global and gene-specific methylation patterns in cancer: aspects of tumorbiology and clinical potential[J]. Molecular genetics and metabolism,2002,75(1):1-16.
    [84] Frommer M, McDonald L E, Millar D S, et al. A genomic sequencing protocol that yields a positivedisplay of5-methylcytosine residues in individual DNA strands[J]. Proceedings of the NationalAcademy of Sciences,1992,89(5):1827-1831.
    [85] Sch fer H, Müller H H. Modification of the sample size and the schedule of interim analyses insurvival trials based on data inspections[J]. Statistics in medicine,2001,20(24):3741-3751.
    [86] Xiong Z, Laird P W. COBRA: a sensitive and quantitative DNA methylation assay[J]. Nucleicacids research,1997,25(12):2532-2534.
    [87] Gonzalgo M L, Jones P A. Rapid quantitation of methylation differences at specific sites usingmethylation-sensitive single nucleotide primer extension (Ms-SNuPE)[J]. Nucleic acids research,1997,25(12):2529-2531.
    [88] Herman J G, Graff J R, My h nen S, et al. Methylation-specific PCR: a novel PCR assay formethylation status of CpG islands[J]. Proceedings of the National Academy of Sciences,1996,93(18):9821-9826.
    [89] Laird P W. Principles and challenges of genome-wide DNA methylation analysis[J]. NatureReviews Genetics,2010,11(3):191-203.
    [90] Bibikova M, Fan J B. Genome-wide DNA methylation profiling[J]. Wiley InterdisciplinaryReviews: Systems Biology and Medicine,2010,2(2):210-223.
    [91] Bibikova M, Barnes B, Tsan C, et al. High density DNA methylation array with single CpG siteresolution[J]. Genomics,2011,98(4):288-295.
    [92] Costello J F, Frühwald M C, Smiraglia D J, et al. Aberrant CpG-island methylation has non-randomand tumour-type–specific patterns[J]. Nature genetics,2000,24(2):132-138.
    [93] Weber M, Davies J J, Wittig D, et al. Chromosome-wide and promoter-specific analyses identifysites of differential DNA methylation in normal and transformed human cells[J]. Nature genetics,2005,37(8):853-862.
    [94] Paz M F, Fraga M F, Avila S, et al. A systematic profile of DNA methylation in human cancer celllines[J]. Cancer research,2003,63(5):1114-1121.
    [95] Maruya S, Issa J P J, Weber R S, et al. Differential methylation mtatus of tumor-associated genes inhead and neck squamous carcinoma incidence and potential implications[J]. Clinical cancerresearch,2004,10(11):3825-3830.
    [96] Verma M, Srivastava S. Epigenetics in cancer: implications for early detection and prevention[J].The lancet oncology,2002,3(12):755-763.
    [97] Verma M, Dunn B K, Ross S, et al. Early detection and risk assessment proceedings andrecommendations from the workshop on epigenetics in cancer prevention[J]. Annals of the NewYork Academy of Sciences,2003,983(1):298-319.
    [98] Dunn B K, Verma M, Umar A. Epigenetics in cancer prevention: early detection and riskassessment[J]. Annals of the New York Academy of Sciences,2003,983(1):1-4.
    [99] Sun Y, Deng D, You W C, et al. Methylation of p16CpG islands associated with malignanttransformation of gastric dysplasia in a population-based study[J]. Clinical Cancer Research,2004,10(15):5087-5093.
    [100] Palmisano W A, Divine K K, Saccomanno G, et al. Predicting lung cancer by detecting aberrantpromoter methylation in sputum[J]. Cancer research,2000,60(21):5954-5958.
    [101] Dulaimi E, Uzzo R G, Greenberg R E, et al. Detection of bladder cancer in urine by a tumorsuppressor gene hypermethylation panel[J]. Clinical Cancer Research,2004,10(6):1887-1893.
    [102] Hoque M O, Begum S, Topaloglu O, et al. Quantitative detection of promoter hypermethylation ofmultiple genes in the tumor, urine, and serum DNA of patients with renal cancer[J]. Cancerresearch,2004,64(15):5511-5517.
    [103] Bird A. DNA methylation patterns and epigenetic memory[J]. Genes&development,2002,16(1):6-21.
    [104] Takai D, Jones P A. Comprehensive analysis of CpG islands in human chromosomes21and22[J].Proceedings of the national academy of sciences,2002,99(6):3740-3745.
    [105] Ren J, Singh B N, Huang Q, et al. DNA hypermethylation as a chemotherapy target[J]. Cellularsignalling,2011,23(7):1082-1093.
    [106] Sato N, Maehara N, Su G H, et al. Effects of5-aza-2′-deoxycytidine on matrix metalloproteinaseexpression and pancreatic cancer cell invasiveness[J]. Journal of the National Cancer Institute,2003,95(4):327-330.
    [107] Mack G S. Epigenetic cancer therapy makes headway[J]. Journal of the National Cancer Institute,2006,98(20):1443-1444.
    [108] Brown R, Plumb J A. Demethylation of DNA by decitabine in cancer chemotherapy[J]. Expertreview of anticancer therapy,2004,4(4):501-510.
    [109] Momparler R L, Ayoub J. Potential of5-aza-2′-deoxycytidine (Decitabine) a potent inhibitor ofDNA methylation for therapy of advanced non-small cell lung cancer[J]. Lung cancer,2001,34:111-115.
    [110] Cheng J C, Matsen C B, Gonzales F A, et al. Inhibition of DNA methylation and reactivation ofsilenced genes by zebularine[J]. Journal of the National Cancer Institute,2003,95(5):399-409.
    [111] Gerhauser C. Cancer chemoprevention and nutri-epigenetics: State of the art and futurechallenges[M]//Natural Products in Cancer Prevention and Therapy. Springer Berlin Heidelberg,2013:73-132.
    [112] Villar-Garea A, Fraga M F, Espada J, et al. Procaine is a DNA-demethylating agent withgrowth-inhibitory effects in human cancer cells[J]. Cancer Research,2003,63(16):4984-4989.
    [113] Maruyama R, Sugio K, Yoshino I, et al. Hypermethylation of FHIT as a prognostic marker innonsmall cell lung carcinoma[J]. Cancer,2004,100(7):1472-1477.
    [114] Graziano F, Arduini F, Ruzzo A, et al. Prognostic analysis of E-cadherin gene promoterhypermethylation in patients with surgically resected, node-positive, diffuse gastric cancer[J].Clinical cancer research,2004,10(8):2784-2789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700