用户名: 密码: 验证码:
短脉冲激光对可见光CCD及滤光片组件的损伤效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CCD探测器与薄膜滤光片共同构成光电成像系统的核心组件,其中滤光片有选择性的截止某些波段的激光,可提高系统的抗干扰能力。本文开展了纳秒、皮秒以及飞秒脉冲激光对探测器组件的损伤效应研究,得到一些新认识和新结果。
     一、对比研究了纳秒(1064nm,33ns)、皮秒(1064nm,25ps)以及飞秒(800nm,100fs)单脉冲激光对Sony ICX405AL可见光CCD的损伤效应,主要研究方法和结论包括:
     1.从输出图像判断,不同脉宽激光对CCD的损伤均包括三个阶段:白点损伤、白线损伤以及完全失效。纳秒脉冲作用下这三个阶段的能量密度阈值分别为150、170和222mJ/cm2;皮秒脉冲作用下,阈值分别为15、40和1040mJ/cm2,其中失效阈值大幅升高;对于飞秒脉冲,白点损伤阈值只有2.5mJ/cm2,白线损伤阈值升高到216mJ/cm2,即使激光能量密度达到1.96J/cm2,仍然没有使CCD失效。
     2.分析CCD的损伤形貌表明,材料的损伤由器件内部开始,逐渐扩展到表层的微透镜等结构。白点损伤出现时,半导体表面没有明显损伤痕迹;白线损伤的出现伴随着烧蚀坑深度达到4-5μm,而多晶硅电极及钨遮光层仍然较完好;器件失效时,烧蚀坑深度达到约10μm,损伤区域中心电极、遮光层等结构被烧蚀。
     3.结合CCD输出图像、损伤形貌以及工作原理推断,白点损伤最初是由氧化层击穿形成的漏电流增加所致;当半导体和氧化层损伤到一定程度后,大量的漏电流直接进入垂直电荷转移通道,从而形成白线;随着器件烧蚀程度的进一步加深,MOS电容被击穿,驱动信号发生混乱,CCD失效。
     4.从激光作用半导体材料的角度分析,CCD失效时皮秒和飞秒脉冲峰值光强均超过1010W/cm2,材料中发生的非线性吸收远大于线性吸收。吸收系数升高、吸收深度减小,导致脉冲能量在材料表层沉积,相应的损伤深度也减小,而使器件失效需要保证一定的损伤深度。正是由于半导体材料的强吸收特性不利于损伤深度的扩展,导致皮秒和飞秒脉冲的失效阈值大幅升高。
     二、对比研究了纳秒(1064nm,10ns)、皮秒(1064nm,25ps)以及飞秒(800nm,100fs)单脉冲激光对HfO2/SiO2增反膜、增透膜和TiO2/SiO2可见光滤光片的损伤行为,以及研究了多波长高重频飞秒激光(150fs,80MHz)对可见光滤光片的损伤效应,主要研究方法和结论包括:
     1.数值模拟了薄膜中的光场特性,包括干涉场以及缺陷引起的场分布。利用平面波展开的方法计算了超短脉冲作用下的薄膜干涉场,结果表明,场分布严格依赖作用时间,形成的场增强系数也与长脉冲激光作用下不同;对缺陷场分布的模拟结果表明,节瘤缺陷在较大范围内扰乱干涉场,而纳米颗粒缺陷,即使尺寸只有数十纳米,也能造成局部的场增强效应,尤其当缺陷对激光的吸收较强时,形成的场增强效应系数也较大。
     2.单脉冲损伤实验结果表明,脉宽越短,薄膜损伤行为越确定。对同一薄膜,皮秒激光损伤阈值比纳秒激光小一个量级,而飞秒激光损伤阈值与皮秒激光相当。在阈值损伤时,无论纳秒、皮秒还是飞秒激光作用下均表现出缺陷诱导的损伤特性,当激光能量密度大于损伤阈值时,薄膜损伤主要表现为大面积烧蚀或剥落。
     3.薄膜的阈值损伤由缺陷诱导,结合脉冲持续时间内的热扩散长度以及缺陷的温度场分布等特性,解释了皮秒激光造成的损伤点比纳秒激光更小、更浅等现象出现的原因,而在飞秒激光作用下,缺陷的场增强效应是导致薄膜损伤行为与缺陷相关的主要原因。当激光能量密度大于阈值时,干涉场增强效应导致的膜层剥落弱化了缺陷的作用,通过计算纳秒、皮秒激光作用下的膜层温度场,以及飞秒脉冲作用下的材料中的等离子体浓度,对不同样品上出现的膜层剥落或烧蚀行为进行了分析。
     4.多波长高重频飞秒激光对滤光片的损伤效应研究表明,高重频飞秒脉冲作用下,薄膜的损伤行为同时包含温升效应和材料本征电离两方面的特性,前者导致了薄膜的热损伤,而后者主导了能量的沉积过程,建立的模型解释了滤光片损伤阈值随波长的变化关系,与实验结果相符。
     5.在高重频飞秒激光损伤可见光滤光片的过程中观察到薄膜透过率升高的现象,分析认为,这是膜层温升效应所致,并利用1080nm的连续波光纤激光进行了验证性实验,理论分析与实验结果相吻合。
     三、研究了激光被滤光片截止和衰减两种情况下对探测器的饱和效应问题。
     当激光被截止时,实验观察到薄膜损伤点的散射激光能够对CCD造成一定程度的饱和效应。对于激光被滤光片衰减的情形,首先基于光的衍射理论推导了描述CCD饱和面积的较完整的表达式,然后利用超连续谱光源,结合棱镜分光和小孔滤波的方法进行了不同波长激光对成像系统的饱和效应实验。结果表明,相同的激光功率密度下,使CCD饱和面积最大的激光波长对于CCD的响应度并不是最大,而是向长波方向有所偏移,利用推导的饱和面积公式解释了这一现象。
A CCD detector and an optical filter together make up the core module of animaging system. The filter selectively blocks some laser wavelengths to improve theanti-laser-damage ability of the system. In this paper, the damage effects investigationof the module induced by nanosecond, picosecond and femtosecond pulsed laser werecarried out, and some new results were obtained.
     1. A comparison study of the damage effects of a Sony ICX405AL visible lightCCD induced by nanosecond (1064nm,33ns), picosecond (1064nm,25ps) andfemtosecond (800nm,100fs) single laser pulse was carried out. The investigationmethods and results are listed below:
     1) Whether exposed to nanosecond, picosecond or femtosecond single laser pulse,the damage processes of the CCD samples all showed the fact that white point damage,white line damage and system failure arose successively in the output pictures with theincrease of laser energy. Under the irradiation of nanosecond single pulse, the thresholdsof these three different damage degrees were150,170and222mJ/cm2, respectively. Inpicosecond regime, the thresholds were15,40and1040mJ/cm2, respectively, in whichthe threshold of failure damage increased sharply. In terms of femtosecond laserillumination, the white point damage threshold was only2.5mJ/cm2, and the white linedamage threshold rose rapidly to216mJ/cm2, finally, even the laser energy density weretuned up to1.96J/cm2, the CCD still could not be failed completely.
     2) The damage morphologies of the CCD indicated that the ablation of thematerials started from the inside of the device, and expanded gradually to the surface. Atthe beginning of the white point damage, there was not any obvious damage could beobserved on the semiconductor surface. The onset of white line damage was in companywith the ablation depth of4-5μm, and the polysilicon electrode and tungsten lightshield were not damaged. When the device was failed, the ablation depth deepened toabout10μm, and, in the center of damaged area, the structures such as electrodes andlight shield were ablated.
     3) From the output pictures, damage morphologies and working principles of thedevice, we deduced that the occurrence of the white point was caused by the increasedleakage current as a result of the oxide layer breakdown. The breakdown theory oftransistor oxide layer in the field of integrated circuits was introduced into this paper toinvestigate the white point damage mechanism, in which the laser irradiation effectswere taken into account simultaneously. When the semiconductor and the oxide layerwere all damaged to some extent, numerous of leakage charges entered into the verticaltransferring pathway of the charge, then white line appeared in the pictures. Finally,CCD failed as soon as the MOS capacitors were breakdown.
     4) From the aspect of nonlinear absorption of intense laser by Silicon materials, atthe point of failure damage, the peak power of picosecond and femtosecond laser pulsesall exceeded a magnitude of1010W/cm2. In this situation, nonlinear absorption in thematerial was much more significant than linear absorption. As a result, the inducedabsorption depth dramatically reduced, and the ablation depth in the material reducedcorrespondingly. However, the morphology of the damaged CCD indicated that acertain ablation depth was required to fail such device. Therefore, the observed sharpincrease of failure damage thresholds under the irradiation of picosecond andfemtosecond laser pulses should be ascribed to the strong absorption nature thatsuppressed the expansion of ablation depth.
     2. The coating damage behaviors induced by single laser pulse in nanosecond(1064nm,10ns), picosecond (1064nm,25ps), and femtosecond (800nm,100fs) wereinvestigated. The customized samples contained reflectors, anti-reflectors and visiblelight filters. For the visible light filter, the damage experiment was also carried out usinga wavelength tunable, high repetition rate (80MHz), femtosecond (150fs) pulsed laser.Some obtained disciplinary conclusions are listed as follows:
     1) The damage behaviors of optical coatings were investigated from the simulationof light field distribution, comprising interference field and light field constructed bydefects. Spectrum broadening appears in femtosecond laser pulses. A method of planewave expansion was used to calculate the interference field in femtosecond regime. Theobtained light field was time dependent and was different from the case ofmonochromatic light incidence. The light fields constructed by defects were modeledconsisting of nodular defects and nanoinclusion defects. The results demonstrated that anodular defect distorted the interference field in a wider spatial range, and that, as fornanoinclusion defects, even in tens of nanometers scale, the local light intensificationshould not be neglected, especially when their absorption coefficients were relativelyhigher.
     2) The damage behaviors of a coating induced by a shorter laser pulse were moredeterministic, appearing a narrower indirect damaged area and smaller fluctuation ofdamage thresholds. For the same coating, the damage threshold of picosecond laser wasan order of magnitude smaller than of the nanosecond laser, and was in the same levelof that induced by femtosecond pulses.
     3) At the point of threshold, coating damage was defect induced, whether the pulselengths were in nanosecond, picosecond and even in femtosecond time scales. In thedamaged area of picosecond pulses, damage pits were smaller and shallower than thatbrought about by nanosecond pulses, which was interpreted by means of heat diffusionlength and the simulation of temperature field. When illuminated by femtosecond pulses,local light field intensification caused by defects affected the nonlinear excitation ofmaterials, consequently the laser induced damage behaviors. When the energy density on sample surface was much higher than the threshold, we observed large area ofcoating ablation or peeling off. Under this condition, the effect of interference fieldintensification was stronger than that of defects, and the relevant damage mechanismswere investigated by the calculation of temperature field and plasma density evolution.
     4) Coating damage induced by single femtosecond pulse is dominant by plasmabreakdown, however, the damage behaviors under the irradiation of wavelength tunable,high repetition rate, femtosecond laser pulses demonstrated that the coating damageprocesses comprised simultaneously the properties of thermal diffusion and the intrinsicionization of coating materials when irradiated by ultrashort laser pulses. Theestablished model explained the trend of thresholds under different wavelengths, whichwas according to the experiment results.
     5) A phenomenon of coating transmission increase was observed in the experimentof high repetition femtosecond laser pulses damaging the visible light filter, and themain factor should be thermal expansion effects of the coating layers. This wasexperimentally validated by using a1080nm continuous fiber laser to irradiate somecoatings and the theoretical analysis fit in the experiment results.
     3. The laser irradiation effects of the module system were investigated includingthe cases light filter blocking the incident laser and only decaying the laser, respectively.
     In the first situation, the CCD could be saturated to some extent only when thefilter was damaged and then the damaged pits scattered the incident laser. As for thesecond case, the saturation area of CCD was derived from the theory of light diffraction.A relatively complete equation was obtained to express the CCD saturation area. Thenthe experiment of CCD saturation effects was accomplished by using a super continuousspectrum source in company with the methods of prismatic decomposition and smallhole filtering. The results showed that, the wavelength that caused the biggest CCDsaturation area was not the wavelength that induced the biggest responsivity of CCDdetectors, but shifted to the direction of longer wavelengths. This was explained by theresults of theory derivations.
引文
[1]王祖军,唐本奇,肖志刚,等. CCD辐射损伤效应及加固技术研究进展[J].半导体光电,2009.30(6):797~803
    [2]孙承伟,陆启生,范正修,等.激光辐照效应[M].国防工业出版社,2002:336~369
    [3] W.S. Boyle, G.E. Smith. Charge Coupled Semiconductor Devices [J]. The BellSystem Technical Journal,1970:587~593
    [4]胡琳. CCD图像传感器的现状及未来发展[J].电子科技,2010,23(6):82~85
    [5]赵育良,许兆林,李开端.航空CCD电光侦察系统的发展现状与展望[J].光电子技术,2001,21(4):290~293
    [6] A. Hokazono, K. Ohuchi, M. Takayanagi, et al.14nm Gate LengthCMOSFETs Utilizing Low Thermal Budget Process with Poly-SiGe and Ni Salicide [C].IEDM Meeting, Piscataway, NJ,2002:639~642
    [7] B.K. Ridley. Mechanism of Electrical Breakdown in SiO2Films [J]. J. Appl.Phys.,1975.46:998~1007
    [8] J.F. Verweij, J.H. Klootwijk. Dielectric breakdown I: A Review of OxideBreakdown [J]. Microelectronics Journal,1995,27:611~622
    [9] C. Hu, Q. Lu. A Unified Gate Oxide Reliability Model [C]. Proc. IEEE,1999,99CH36296:47~51
    [10] T. Pompl, C. Engel, H. Wurzer, et al. Soft Breakdown and Hard Breakdown inUltra-thin Oxides [J]. Microelectronis Reliability,2001,41:543~551
    [11] Y.M. Lee, Y.D. Wu. Influence of Si/SiO2Interface Properties on ElectricalPerformance and Breakdown Characteristics of Ultrathin Stacked Oxide/NitrideDielectric Films [J]. Appl. Sur. Sci.,2008,254:4591~4598
    [12]李世涛,乔学亮,陈建国,等.卫星多功能激光防护膜层的研究[J].激光杂志,2005,26(4):9~10
    [13] Yachen Gao, Yuxiao Wang, Yinglin Song, et al. Strong Optical LimitingProperty of a Novel Silver Nanoparticle Containing C60Derivative [J]. Opt. Comm.,2003,223:103~108
    [14] Zhan Hongbing, Wang Minquan, Chen Wenzhe. Encapsulation of AromaticOxygen Palladium Phthalocyanine in Silica Xerogel and Its Optical Limiting Property[J]. Opt. Materials,2003,22:377~382
    [15]崔云,贺洪波,范正修,等.高能激光武器的发展及卫星激光防护膜的研究[J].激光与光电子学进展,2006,43(6):1~4
    [16]沈军,罗爱云,吴广明,等.化学法制备的HfO2薄膜的激光损伤阈值研究[J].强激光与粒子束,2007,19(3):403~407
    [17]刘泽金,陆启生,蒋志平,等.激光辐照CCD图像传感器局部的破坏效应研究[J].激光技术,1994,18(6):344~347
    [18]倪晓武,陆建,贺安之,等.激光对CCD器件破坏时几种阈值的测量[J].激光技术,1994,18(3):153~156
    [19]孙守红,郭立红,王立军.808nm激光对可见光面阵CCD的干扰损伤研究[J].长春理工大学学报(自然科学版),2008,31(1):19~21
    [20]沈洪斌,沈学举,周冰,等.532nm脉冲激光辐照CCD实验研究[J].强激光与粒子束,2009,21(10):1449~1454
    [21] Takayuki Tomita, Hiroto Utsunomiya, Yoshinari Kamakura, et al. Hot HoleInduced Breakdown of Thin Silicon Dioxide Films [J]. Appl. Phys. Lett.,1997,71(25):3664~3667
    [22] W. Kosonocky, J. Carnes, M. Kovac, et al. Control of Blooming inCharge-Coupled Imagers. RCA Rev.,1974,35:3~24
    [23] D.H. Seib. Carrier Diffusion Degradation of Modulation Transfer Function inCharge Coupled Imagers [J]. IEEE Transactions on Electron Devices,1974, ED-21(3):210~217
    [24] R.H. Dyck, W. Steffe. Effects of Optical Crosstalk in CCD Image Sensors [C].In Proc.5th Int. Conf on Applications of Charge-Coupled Devices,San Diego, CA,1978:1-55~1-61
    [25] E.G. Stevens. Photoresponse Nonlinearity of Solid-State Image Sensors withAntiblooming Protection [J]. IEEE Transactions on Electron Devices,1991,38(2):299~302
    [26] E.G. Stevens, Y.R. Lee, B.C. Burkey. The Effects of Smear on AntibloomingProtection and Dynamic Range of Interline CCD Image Sensors [J]. IEEE Transactionson Electron Devices,1992,39(11):2508~2514
    [27] S. Kawai, M. Morimoto, N. Mutoh, et al. Photo Response Analysis in CCDImage Sensors with a VOD Structure [J]. IEEE Transactions on Electron Devices,1995,42(4):652~655
    [28] M.F. Becker, C. Zhang, S.E. Watkins. Laser-Induced Damage to Silicon CCDImaging Sensors [C]. SPIE Vol.1105Materials for Optical Switches, isolators, andLimiters,1989:68~77
    [29] M.F. Becker, C.Z. Zhang, L. Blarre. Laser-Induced Functional Damage toSilicon CCD Sensor Arrays [C]. SPIE Vol.1624Laser-Induced Damage in OpticalMaterials,1991:67~79
    [30] C.Z. Zhang, E.W. Steve, M.W. Rodger. Laser-Induced Damage to SiliconCharge-coupled Imaging Devices. Optical Engineering,1991,30(5):651~656
    [31] C.Z. Zhang, L.D. Blarre, R.M. Walser. Mechanisms for Laser InducedFunctional Damage to Silicon Charge-Coupled Imaging Sensors [J]. Appl. Opt.,1993,32(27):5201~5210
    [32] F.M. Li, Nixon O, A. Nathan. Degradation Behavior and DamageMechanisms of CCD Image Sensor with Deep-UV Laser Radiation[J]. IEEETransactions on Electron Devices,2004,51(12):2229~2236
    [33] A. Durécu, P. Bourdon, O. Vasseur, Laser-Dazzling Effects on TV-Cameras:Analysis of Dazzling Effects and Experimental Parameters Weight Assessment [C].Proc. of SPIE,2007,6738:67380L-1~67380L-6
    [34] A. Durécu, O. Vasseur, P. Bourdon, Assessment of Laser-Dazzling Effects onTV-cameras by Means of Pattern Recognition Algorithms [C]. Proc. of SPIE,2007,6738:67380J-1~67380J-9
    [35] A. Durécu, O. Vasseur, P. Bourdon, Quantitative Assessment ofLaser-dazzling Effects on a CCD-camera through Pattern-Recognition-AlgorithmsPerformance Measurements [C]. Proc. of SPIE,2009,7483:74830N-1~74830N-11
    [36] M. Depas, T. Nigam, M.M. Heyns. Soft Breakdown of Ultra-Thin Gate OxideLayers [J]. IEEE Transactions on Electron Devices,1996,43(9):1499~1504
    [37] K. Shiga, J. Komori, M. Katsumata, et al. A New Test Structure forEvaluation of Extrinsic Oxide Breakdown [C]. Proc. IEEE,1998,11:98CH36157
    [38] D. Milam, R.A. Bradbury, M. Bass. Laser Damage Threshold for DielectricCoatings as Determined by Inclusions [J]. Appl. Phys. Lett.,1973,23(12):654~657
    [39] L.G. DeShazer, B.E. Newnamt, K.M. Leung. Role of Coating Defects inLaser-Induced Damage to Dielectric Thin Films [J]. Appl. Phys. Lett.,1973,23(11):607~609
    [40] D. Milam. Laser-Induced Damage at1064nm,125psec [J]. Appl. Opt.,1977,16(5):1204~1213
    [41] R.H. Picard, D. Milam, R.A. Bradbury. Statistical Analysis of Defect-CausedLaser Damage in Thin Films [J]. Appl. Opt.,1977,16(6):1563~1571
    [42] H. Krol, L. Gallais, C. Grézes-Besset, et al. Investigation of NanoprecursorsThreshold Distribution in Laser-Damage Testing [J]. Opt. Comm.,2005,256:184~189
    [43] K.H. Guenther. Nodular Defects in Dielectric Multilayers and Thick SingleLayers [J]. Appl. Opt.,1981,20(6):1034~1038
    [44] K.H. Guenther. Microstructure of Vapor-Deposited Optical Coatings [J]. Appl.Opt.,1984,23(21):3806~3816
    [45] D. Reicher, P. Black, K. Jungling, Defect Formation in Hafnium Dioxide ThinFilms [J]. Appl. Opt.,2000,39(10):1589~1599
    [46] C.J. Stolz, M.D. Feit, T.V. Pistor. Laser Intensification by SphericalInclusions Embedded within Multilayer Coatings [J]. Appl. Opt.,2006,45(7):1594~1601
    [47] D.G. Stearns, P.B. Mirkarimi, E. Spillerc. Localized Defects in MultilayerCoatings [J]. Thin Solid Films,2004,446:37~49
    [48] T.W. Walker, A.H. Guenther, P.E. Nielsen. Pulsed Laser-Induced Damage toThin-Film Optical Coatings-Part I: Experimental [J]. IEEE Journal of QuantumElectronics,1981, QE-17(10):2041~2052
    [49] T.W. Walker, A.H. Guenther, P.E. Nielsen. Pulsed Laser-Induced Damage toThin-Film Optical Coatings-Part Ⅱ: Theory [J]. IEEE Journal of Quantum Electronics,1981, QE-17(10):2053~2065
    [50] W.H. Lowdewilk, D. Milam. Laser-Induced Surface and Coating Damage [J].IEEE Journal of Quantum Electronics,1981, QE-17(9):1888~1903
    [51] J.M. Bennett, E. Pelletier, G. Albrand, et al. Comparison of the Properties ofTitanium Dioxide Films Prepared by Various Techniques [J]. Appl. Opt.,1989,28(15):3303~3317
    [52] F. Rainer, T.F. Deaton. Laser Damage Thresholds at Short Wavelengths [J].Appl. Opt.,1982,21(10):1722~1724
    [53] L.J. Shaw-Klein, S.J. Burns, S.D. Jacobs. Model for Laser DamageDependence on Thin-Film Morphology [J]. Appl. Opt.,1993,32(21):3925~3929
    [54] M. Reichling, A. Bodemann, N. Kaiser. Defect Induced Laser Damage inOxide Multilayer Coatings for248nm [J]. Thin Solid Films,1998,320:264~279
    [55] D. Ristau, M. Jupé, K. Starke. Laser Damage Thresholds of Optical Coatings[J]. Thin Solid Films,2009,518:1607~1613
    [56] K.N. Rao. Influence of Deposition Parameters on Optical Properties of TiO2Films [J]. Opt. Eng.,2002,41(9):2357~2364
    [57] L. Gallais, J. Capoulade, J.Y. Natoli, et al. Investigation of NanodefectProperties in Optical Coatings by Coupling Measured and Simulated Laser DamageStatistics [J]. J. Appl. Phys.,2008,104:053120
    [58] J. Natoli, L. Gallais, H. Akhouayri, et al. Laser-Induced Damage of Materialsin Bulk, Thin-Film, and Liquid Forms [J]. Appl. Opt.,2002,41(16):3156~3166
    [59] M. Alvisia, M.D. Giulioa, S.G. Marroneb. HfO2Films with High LaserDamage Threshold [J]. Thin Solid Films,2000,358:250~258
    [60] M. Alvisia, F. De Tomasib, M.R. Perroneb. Laser Damage Dependence onStructural and Optical Properties of Ion-Assisted HfO2Thin Films [J]. Thin Solid Films,2001,396:44~52
    [61] D. Du, X. Liu, G. Korn, Laser-Induced Breakdown by Impact Ionization inSiO2with Pulse Widths from7ns to150fs [J]. Appl. Phys. Lett.,1994,64(23):3071~3073
    [62] B.C. Stuart, M.D. Feit, S. Herman, et al. Nanosecond-to-FemtosecondLaser-Induced Breakdown in Dielectrics [J]. Phys. Rev. B,1996,53(4):1749~1761
    [63] M. Lenzner, J. Krüger, S. Sartania, et al. Femtosecond Optical Breakdown inDielectrics [J]. Phys. Rev. Lett.,1998,80(18):4076~4079
    [64] A.C. Tien, S. Backus, H. Kapteyn, et al. Short-Pulse Laser Damage inTransparent Materials as a Function of Pulse Duration [J]. Phys. Rev. Lett.,1999,82(19):3883~3886
    [65] J. Jasapara, A.V.V. Nampoothiri, W. Rudolph, et al. Femtosecond Laser PulseInduced Breakdown in Dielectric Thin Films [J]. Phys. Rev. B,2001,63:045117
    [66] J. Bonse, S.Baudach, W. Kautek, et al. Femtosecond Laser Damage of a HighReflecting Mirror [J]. Thin Solid Films,2002,408:297~301
    [67] L. Gallais, B. Mangote, M. Commandré, et al. Transient InterferenceImplications on the Subpicosecond Laser Damage of Multidielectrics [J]. Appl. Phys.Lett.,2010,97:051112
    [68]钟海荣,陆启生,文铁峰,等.激光辐射CCD的破坏机理分析[J].强激光与粒子束,1998,10(4):537~542
    [69]强希文,张建泉,刘峰,等.强激光辐照半导体材料的温升及热应力损伤的理论研究[J].中国激光,2000,27(8):26~30
    [70]黄绍艳,张永生,唐本奇,等.500fs超短脉冲激光对CCD探测器的破坏效应[J].强激光与粒子束,2005,17(10):1445~1448
    [71]姜楠,张雏,牛燕雄,等.脉冲激光辐照CCD探测器的硬破坏效应数值模拟研究[J].激光与红外,2008,38(10):1004~1007
    [72]邱冬冬,张震,王睿,等.脉冲激光对CCD成像器件的破坏机理研究[J].光学学报,2011,31(2):0214006
    [73]江继军,罗福,陈建国. CCD在fs激光辐照下的损伤研究[J].强激光与粒子束,2005,17(4):515~517
    [74]郭少锋,程湘爱,傅喜泉,等.高重复频率飞秒激光对面阵CCD的干扰和破坏[J].强激光与粒子束,2007,19(11):1783~1786
    [75]蔡跃,叶锡生,马志亮,等.170ps激光脉冲辐照可见光面阵Si-CCD的实验[J].光学精密工程,2011,19(2):457~462
    [76] M.F. Becker, C.Z. Zhang, S.E. Watkins. Laser-Induced Damage to SiliconCCD Imaging Sensors [C]. SPIE, Materials for optical swithches, isolators, and limiters,1989,1105:68~77
    [77]付雄鹰,孔明东,胡建平,等.波长1064nm脉冲激光高阈值反射膜的研制[J].强激光与粒子束,1999,11(4):413~417
    [78]胡海洋,范正修,刘晔,等.杂质对光学薄膜激光损伤阈值的影响[J].中国激光,1999,26(6):489~492
    [79]马孜,吕百达.1um激光对光学薄膜的损伤[J].四川联合大学学报(工程科学版),1999,3(3):136~139
    [80] Yuanan Zhao, Weidong Gao, Jianda Shao, et al. Roles of Absorbing Defectsand Structural Defects in Multilayer Under Single-Shot and Multi-Shot Laser Radiation[J]. Appl. Sur. Sci.,2004,227:275~281
    [81] Cheng Xu, Jianke Yao, Jianyong Ma, et al. Laser-Induced Damage Thresholdin n-on-1Regime of Ta2O5Films at532,800, and1064nm [J]. Chin. Opt. Lett.,2007,5(12):727~729
    [82] H. He, H. Hu, Z. Tang, et al. Laser-Induced Damage Morphology ofHigh-Reflective Optical Coatings [J]. Appl. Sur. Sci.,2005,241:442~448
    [83] Hongbo He, Haiyang Hu, Zhiping Tang, et al. Laser-Induced DamageMorphology of High-Reflective Optical Coatings [J]. Appl. Sur. Sci.,2005,241:442~448
    [84]刘强,林理彬,甘荣兵,等.光学膜层激光损伤阈值均匀性的实验研究[J].强激光与粒子束,2003,15(11):1061~1064
    [85]赵元安,王涛,张东平,等.脉冲激光辐照光学薄膜的缺陷损伤模型[J].光子学报,2005,34(9):1372~1375
    [86]夏志林,邵建达,范正修.薄膜体内缺陷对损伤概率的影响[J].物理学报,2007,56(1):400~406
    [87] Cheng Xu, Yinghuai Qiang, Yabo Zhu, et al. Effects of Deposition Parameterson Laser-Induced Damage Threshold of Ta2O5Films [J]. Optics&Laser Technology,2010,42:497~502
    [88] Xiulan Ling, Yuanan Zhao, Dawei Li, et al. Impact of Organic Contaminationon the Laser-Induced Damage in Vacuum [J]. Appl. Sur. Sci.,2009,255:9255~9258
    [89] Cheng Xu, Hongcheng Dong, Lei Yuan, et al. Investigation of AnnealingEffects on the Laser-Induced Damage Threshold of Amorphous Ta2O5Films [J]. Optics&Laser Technology,2009,41:258~263
    [90] X.T. Zu, X.Q. Chen, W.G. Zheng, et al. Comparative Studies ofLaser-Induced Damage of Several Single-Layer Optical Films [J]. Nuclear Instrumentsand Methods in Physics Research B,2008,266:3195~3199
    [91] D. Zhang, S. Fan, Y. Zhao, et al. High Laser-Induced Damage ThresholdHfO2Films Prepared by Ion-Assisted Electron Beam Evaporation [J]. Appl. Sur. Sci.,2005,243:232~237
    [92]郭袁俊,祖小涛,蒋晓东,等.物理法和化学法制备的单层ZrO2膜的激光损伤行为差异[J].强激光与粒子束,2007,19(11):1849~1852
    [93]周业为,谢建,李育德,等. HfO2/SiO2多层高反膜脉冲YAG激光预处理机理的研究[J].激光杂志,2000,21(2):13~14
    [94] Yuanan Zhao, Tao Wang, Dawei Zhang, et al. Laser Conditioning andMulti-Shot Laser Damage Accumulation Effects of HfO2/SiO2Antireflective Coatings[J]. Appl. Sur. Sci.,2005,245:335~339
    [95] Jianke Yao, Jianda Shao, Hongbo He, et al. Effects of Annealing onLaser-Induced Damage Threshold of TiO2/SiO2High Reflectors [J]. Appl. Sur. Sci.,2007,253:8911~8914
    [96] Cheng Xu, Qiling Xiao, Jianyong Ma, et al. High Temperature AnnealingEffect on Structure, Optical Property and Laser-Induced Damage Threshold of Ta2O5Films [J]. Appl. Sur. Sci.,2008,254:6554~6559
    [97] Dongping Zhang, Congjuan Wang, Ping Fan, et al. Influence of PlasmaTreatment on Laser-Induced Damage Characters of HfO2Thin Films at355nm [J]. Opt.Express,2009,17(10):8246~8252
    [98]尹益辉,苏毅,陈裕泽.短脉冲激光辐照下光学膜层迎光剥落的理论模型[J].中国激光,2001,28(8):705~708
    [99]周维军,袁永华,张大勇,等.1.06μm连续激光辐照TiO2/SiO2薄膜元件的损伤效应研究[J].激光技术,2001,30(1):76~78
    [100]陈发良,胡鹏.两种反射膜系的激光热力损伤特性[J].强激光与粒子束,2005,17(11):1610~1616
    [101]胡江川,王万录,冯庆,等.高反射膜抗激光损伤的研究进展[J].材料导报,2003,17:238~241
    [102]李大伟,陶春先,李笑,等.1064nm与532nm激光对电子束蒸发制备的HfO2/SiO2高反膜损伤比较[J].强激光与粒子束,2008,20(9):1457~1460
    [103]胡海洋,范正修,罗福.1064nm窄带干涉滤光片激光破坏研究[J].光学学报,2001,21(7):829~834
    [104]高卫东,黄建兵,徐学科,等. Ta2O2/SiO2硬膜双腔滤光片激光损伤特性研究[J].中国激光,2005,32(3):384~388
    [105]胡建平,邱服民,马平. HfO2/SiO2高反膜,增透膜及偏振膜的1064nm激光损伤特性[J].光学技术,2001,27(6):507~509
    [106]胡建平,邱服民,付雄鹰,等. SiO2半波覆盖层对HfO2/SiO2高反射膜激光损伤的影响[J].强激光与粒子束,2001,13(2):137~141
    [107] Jianke Yao, Zhengxiu Fan, Hongbo He, et al. Influence of Overcoat onLaser-Induced Damage Threshold of532and800nm TiO2/SiO2High Reflectors [J].Optik,2009,120:509~513
    [108] Cheng Xu, Dawei Li, Jianyong Ma, et al. Influence of SiO2AdditionalLayers on the Laser Induced Damage Threshold of Ta2O5Films [J]. Optics&LaserTechnology,2008,40:545~549
    [109]代福,熊胜明,高卫东.高重复频率脉冲激光辐照光学薄膜的温升实验[J].红外与激光工程,2008,37(3):509~512
    [110]王涛,赵元安,黄建兵,等.多脉冲激光作用下光学薄膜损伤的累积效应[J].光子学报,2006,35(6):859~862
    [111]王涛,赵元安,黄建兵,等.重复率激光作用下光学薄膜损伤的累积效应[J].强激光与粒子束,2005,17:171~174
    [112] Lei Yuan, Yuanan Zhao, Hongbo He, et al. Femtosecond Laser InducedDamage of Optical Coatings [J]. Chin. Opt. Lett.,2007, Supplement: S257~S259
    [113]袁磊,赵元安,贺洪波,等.单脉冲和多脉冲飞秒激光对单层光学薄膜的损伤[J].强激光与粒子束,2006,18(4):595~598
    [114]袁磊,赵元安,贺洪波,等.单脉冲飞秒脉冲激光对单层和高反光学薄膜的损伤[J].光子学报,2008,37(3):417~420
    [115]李成斌,贾天卿,孙海轶,等.飞秒激光对高反膜的破坏及其超快动力学过程[J].光学学报,2006,26(3):458~462
    [116] Liu Na, Wang Yingjian, Zhou Ming, et al. Laser Resistance of Ta2O2/SiO2and ZrO2/SiO2Optical Coatings under2μm Femtosecond Pulsed Irradiation [J]. Chin.Phys. Lett.,2010,27(7):074215
    [117]孙海轶,贾天卿,李晓溪,等.飞秒激光作用下全向高反膜破坏的激发过程[J].物理学报,2005,54(10):4736~4740
    [118]王庆友.图像传感器应用技术[M].天津:电子工业出版社,2003:30~35
    [119] A.M. Mohsen, R. Bower, T.C. Mcgill, et al. Overlapping Gate ChargeCoupled Devices [J]. Electronics Lett.,1973,9(17):396~398
    [120] W.K. Henson, N.Yang, J.J. Wortman. Observation of Oxide Breakdown andIts Effects on the Characteristics of Ultra-Thin-Oxide nMOSFET’s [J]. IEEE ElectronDevices Letters,1999,20(12):605~607
    [121] E. Rosenbaum, J. Wu. Trap Generation and Breakdown Processes in VeryThin Gate Oxides [J]. Microelectronics Reliability,2001,41:625~632
    [122] B. Kaczer, R. Degraeve, M. Rasras, et al. Impact of MOSFET Gate OxideBreakdown on Digital Circuit Operation and Reliability [J]. IEEE Transaction onElectron Devices,2002,49(3):500~506
    [123] H.C. Lin, D.Y. Lee, C.Y. Lee, et al. New Insights into Breakdown Modesand Their Evolution in Ultra-Thin Gate Oxide [C]. Proc. IEEE,2001,0-7803-6412-0:37~40
    [124] J.S. Suehle. Ultrathin Gate Oxide Reliability: Physical Models, Statistics,and Characterization [J]. IEEE Transaction on Electron Devices,2002,49(6):958~971
    [125] R. Degraeve, G. Groeseneken, R. Bellens, et al. A Consistent Model for theThickness Dependence of Intrinsic Breakdown in Ultra-Thin Oxides [J]. Proc. IEEE,1995, IEDM95:863~866
    [126] R.J. Tench, R. Chow, M.R. Kozlowski. Characterization of DefectGeometries in Multilayer Optical Coatings [J]. J. Vac. Sci. Technol. A,1994,12:2808~2813
    [127] Z. Xia, J. Shao, Z. Fan, et al. Thermodynamic Damage Mechanism ofTransparent Films Caused by a Low-Power Laser [J]. Appl. Opt.,2006,45(32):8253~8261
    [128] H. Hu, Z. Fan, F. Luo. Laser-Induced Damage of a1064-Nm ZnSyMgF2Narrow-Band Interference Filter [J]. Appl. Opt.,2001,40(12):1950~1956
    [129] Jianke Yao, Zhengxiu Fan, Yunxia Jin, et al. Investigation of DamageThreshold to TiO2Coatings at Different Laser Wavelength and Pulse Duration [J]. ThinSolid Films,2008,516:1237~1241
    [130] L. Gallais, J. Capoulade, F. Wagner, et al. Analysis of MaterialModifications Induced During Laser Damage in SiO2Thin Films [J]. Opt. Comm.,2007,272:221~226
    [131] D.G. Cahill, T.H. Allen. Thermal Conductivity of Sputtered and EvaporatedSioa and TiO2Optical Coatings [J]. Appl. Phys. Lett,1994,65(3):309~311
    [132] H.R. Philipp. The Infrared Optical Properties of SiO2and SiO2Layers onSilicon [J]. J. Appl. Phys.,1979,50(2):1053~1057
    [133] D. von der Linde, K.S. Tinten, J. Bialkowski, Laser-Solid Interaction in theFemtosecond Time Regime [J]. Appl. Sur. Sci.,1997,109/110:1~10
    [134] B. Rethfeld. Unified Model for the Free-Electron Avalanche inLaser-Irradiated Dielectrics [J]. Phys. Rev. Lett.,2004,92(18):187401
    [135] B. Chimier, O. Utéza, N. Sanner, et al. Damage and Ablation Thresholds ofFused-Silica in Femtosecond Regime [J]. Phys. Rev. B,2011,84:094104
    [136] B.N. Chichkov, C. Momma, S. Nolte, et al. Femtosecond, Picosecond andNanosecond Laser Ablation of Solids [J]. Appl. Phys. A,1996,63:109~115
    [137] H. Varel, D. Ashkenasi, A. Rosenfeld, et al. Laser-Induced Damage in SiO2and CaF2with Picosecond and Femtosecond Laser Pulses [J]. Appl. Phys. A,1996,62:293~294
    [138] B. Rethfeld. Free-Electron Generation in Laser-Irradiated Dielectrics [J].Phys. Rev. B,2006,73:035101
    [139] S. Shimizu, J. Kou, S. Kawato, et al. Coulomb Explosion of BenzeneIrradiated by an Intense Femtosecond Laser Pulse [J]. Chem. Phys. Lett.,2000,317:609~614
    [140] A.P. Joglekar, H. Liu, G.J. Meyh fer, et al. A Study of the DeterministicCharacter of Optical Damage by Femtosecond Laser Pulses and Applications toNanomachining [J]. Appl. Phys. B,2003,77:25~30
    [141] P.P. Pronko, S.K. Dutta, J. Squier, et al. Machining of Sub-Micron HolesUsing a Femtosecond Laser at800nm [J]. Opt. Comm.,1995,114:106~110
    [142] D. Grojo, M. Gertsvolf, S. Lei, et al. Exciton-Seeded Multiphoton Ionizationin Bulk SiO2[J]. Phys. Rev. B,2010,81:212301
    [143] A. Marcinkevicius, S. Juodkazis, M. Watanabe, et al. FemtosecondLaser-Assisted Three-Dimensional Microfabrication in Silica [J]. Opt. Lett.,2001,26(5):277~279
    [144] T. Otobe, M. Yamagiwa, J.I. Iwata, et al. First-Principles Electron DynamicsSimulation for Optical Breakdown of Dielectrics under an Intense Laser Field [J]. Phys.Rev. B,2008,77(16):165104
    [145] C.W. Carr, H.B. Radousky, S.G. Demos. Wavelength Dependence ofLaser-Induced Damage: Determining the Damage Initiation Mechanisms [J]. Phys. Rev.Lett.,2003,91(12):127402
    [146] M.R. Kasaai, V. Kacham, F. Theberge, et al. The Interaction of Femtosecondand Nanosecond Laser Pulses with the Surface of Glass [J]. Journal of Non-CrystallineSolids,2003,319:129~135
    [147] I.N. Zavestovskaya, P.G. Eliseev, O.N. Krokhin, et al. Analysis of theNonlinear Absorption Mechanisms in Ablation of Transparent Materials byHigh-Intensity and Ultrashort Laser Pulses [J]. Appl. Phys. A,2008,92:903~906
    [148] M. Jupé, L. Jensen, A. Melninkaitis, et al. Calculations and ExperimentalDemonstration of Multi-Photon Absorption Governing fs Laser-Induced Damage inTitania [J]. Opt. Express,2009,17(15):12269~12278
    [149] A. Couairon, L. Sudrie, M. Franco, et al. Filamentation and Damage inFused Silica Induced by Tightly Focused Femtosecond Laser Pulses [J]. Phys. Rev. B,2005,71(12):125435
    [150] L.V.Keldys. Ionization in the Field of a Strong Electromagnetic Wave [J].Sov. Phys. JETP,1965,20:1307~1314
    [151] Xufeng Jing, Jianda Shao, Junchao Zhang, et al. Calculation of FemtosecondPulse Laser Induced Damage Threshold for Broadband Antireflective MicrostructureArrays [J]. Opt. Express,2009,17(26):24137~24152]152] T.E. Itina, N. Shcheblanov. Electronic Excitation in Femtosecond LaserInteractions with Wide-Band-Gap Materials [J]. Appl. Phys. A,2010,98:769~775
    [153] B.C. Stuart, M.D. Feit, S. Herman, et al. Optical Ablation by High-PowerShort-Pulse Lasers [J]. J. Opt. Soc. Am. B,1996,13(2):459~468
    [154] M. Mero, J. Liu, W. Rudolph, et al. Scaling Laws of Femtosecond LaserPulse Induced Breakdown in Oxide Films [J]. Phys. Rev. B,2005,71:115109
    [155] P.P. Pronko, P.A. Vanrompa, C. Horvath, et al. Avalanche Ionization andDielectric Breakdown in Silicon with Ultrafast Laser Pulses [J]. Phys. Rev. B,1998,58(5):2387~2390
    [156] X. Wang, Z.H. Shen, J. Lu, et al. Laser-Induced Damage Threshold ofSilicon in Millisecond, Nanosecond, and Picosecond Regimes [J]. J. Appl. Phys.,2010,108:033103
    [157] K.L. Merkle, H. Baumgart, R.H. Uebbing, et al. Picosecond Laser-PulseIrradiation of Crystalline Silicon [J]. Appl. Phys. Lett,1982,40(8):729~731
    [158] J.M. Moison, F. Barthe, M. Bensoussan. Laser-Induced NonlinearAbsorption in Silicon: Free-Carrier Absorption versus Thermal Effects [J]. Phys. Rev. B,1983,27(6):3611~3619
    [159] Xinzhu Sang, En-Kuang, Ozdal Boyraz. Applications of Two-PhotonAbsorption in Silicon [J]. Journal of Optoelectronics and Advanced Materials,2008,11(1):15~25
    [160] http://pveducation.org/pvcdrom/appendicies/optical-properties-of-silicon
    [161] D. Hulin, M. Combescot, J. Bok, et al. Energy-Transfer during SiliconIrradiation by Femtosecond Laser-Pulse [J]. Phys. Rev. Lett.,1984,52(22):1998~2001
    [162] R.A. Soref, B.R. Bennett. IEEE J. Quantum Electronics,1987,23:123
    [163] K.G. Svantesson. J. Phys. D,1979,12:425
    [164]吕百达.激光光学[M].高等教育出版社,2003第三版:77~78
    [165] G. Dai, Y. Chen, J. Lu, et al. Analysis of Laser Induced Thermal MechanicalRelationship of HfO2/SiO2High Reflective Optical Thin Film at1064nm [J]. Chin. Opt.Lett.,2009,7(7):601~604
    [166] M. Mero, B. Clapp, J.C. Jasapara, et al. On the Damage Behavior ofDielectric Films when Illuminated with Multiple Femtosecond Laser Pulses [J]. Opt.Eng.,2005,44(5):051107
    [167] M. Mero, A.J. Sabbah, J. Zeller, et al. Femtosecond Dynamics of DielectricFilms in the Pre-Ablation Regime [J]. Appl. Phys. A,2005,81:317~324
    [168] C.B. Schaffer, A. Brodeur, E. Mazur. Laser-Induced Breakdown andDamage in Bulk Transparent Materials Induced by Tightly Focused Femtosecond LaserPulses [J]. Meas. Sci. Technol.,2001,12:1784~1794
    [169] B. Rethfeld, A. Kaiser, M. Vicanek, et al. Ultrafast Dynamics ofNonequilibrium Electrons in Metals under Femtosecond Laser Irradiation [J]. Phys. Rev.B,2002,65:214303
    [170] M.J. Weber. Handbook of Optical Materials [M], CRC Press, New York,2003,145
    [171] S. Kasap, P. Capper. Springer Handbook of Electronic and PhotonicMaterials [M], Springer Science+Business media, Inc., New York,2006,52
    [172] D.G. Papazoglou, S. Tzortzakis. Physical Mechanisms of Fused SilicaRestructuring and Densification after Femtosecond Laser Excitation [J]. Opt. Mater.Express,2011,1(4):625~632
    [173]季家镕.高等光学教程[M],长沙,国防科大出版社,2007:203~207
    [174]孙可,江厚满,程湘爱.强光辐照下主镜表面散射引起的视场内杂光分布[J],光学精密工程,2011,19(2):493~499
    [175] H.M.A. Schleijpen, S.R. Carpenter, B. Mellier, et al. Imaging SeekerSurrogate for IRCM Evaluation [C]. Proc. of SPIE,2006,6397:63970E
    [176]江天.激光辐照3CCD相机的饱和干扰效应及效果评估研究[D].长沙:国防科技大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700