用户名: 密码: 验证码:
基于压缩感知的ISAR成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分辨ISAR成像技术对于雷达目标识别和特征提取具有重要意义。本文针对传统ISAR成像系统面临的采样率高、数据量大、回波数据有限及目标复杂运动条件下方位向采样不均匀时成像困难等问题,充分利用雷达目标散射率分布的稀疏性和压缩感知信息处理的巨大优势,围绕基于压缩感知的ISAR成像技术展开研究,重点研究了基于压缩感知的转台目标成像技术、高速运动目标成像技术和复杂运动目标成像技术。
     第一章阐述了课题研究背景及意义,介绍了高分辨成像雷达的发展概况和ISAR成像技术研究现状,概述了压缩感知理论的发展及其应用,对基于压缩感知的雷达成像技术进行了归纳总结和分析,最后介绍了本文的主要研究工作。
     第二章为基础理论研究。首先介绍了压缩感知的基本原理,对压缩感知的数学模型及关键要素进行了分析和讨论;然后从光学区散射中心理论、雷达成像根本原理的角度分析了雷达回波数据的稀疏性机理;最后从系统实际出发,提出了基于随机卷积的压缩感知雷达成像方法,该方法能够在少量观测数据条件下获得较好的成像结果,便于物理实现,且不受雷达发射波形的限制。
     第三章研究了基于压缩感知的转台目标成像技术和快速重构算法。针对宽带线性调频雷达直接采样面临的数据采集和存储压力,构造了一种包含Stretch处理和傅里叶变换信息的稀疏字典,据此提出一种基于压缩感知的成像算法,所提方法省略了解线频调步骤,在实现高分辨成像的同时大大降低了雷达成像系统的数据率。针对频率步进雷达数据利用率低的问题,提出了基于压缩感知的二维联合和二维解耦成像算法。两种算法均可利用少量测量数据获得清晰的ISAR图像,并由于将相干混频处理过程融入稀疏字典中,简化了雷达系统的硬件设计。针对压缩感知成像算法复杂度高的问题,根据稀疏字典及测量矩阵的二维可分离特性,研究了压缩感知成像的快速重构算法,并提出一种改进的贪婪算法用于雷达图像重构,大大降低了存储量和计算量,提高了成像效率。
     第四章研究了不同雷达信号体制下基于压缩感知的高速运动目标成像技术。针对线性调频雷达,根据解调后高速目标回波在分数阶傅里叶域的稀疏性,提出采用模拟信息转换方式对回波进行压缩测量,通过非线性优化重构雷达目标图像,并以重构一维距离像的稀疏性为准则,采用黄金分割法搜索最佳变换阶数来确定稀疏字典。所提方法无需额外的速度补偿步骤,同时解决了成像模糊和宽带雷达数据量过大的问题。针对频率步进雷达数据利用率低,且敏感于多普勒的问题,利用相位对消技术和脉冲重复间隔设计原理,提出一种基于随机频率步进波形设计的压缩感知成像方法,能够在降低数据率的同时克服多普勒效应的影响。针对线性调频步进雷达总数据率较高,且脉间压缩敏感于多普勒的问题,提出了基于随机调频步进波形设计的压缩感知成像方法,能够在降低总数据率的同时,获得运动目标的高分辨距离像。实验结果表明,对于高速运动目标,利用所提CS成像方法能够获得高质量的ISAR图像。
     第五章研究了基于压缩感知的非匀速旋转目标、高速自旋目标和弹道中段进动目标成像技术。针对稀疏孔径和短孔径条件下非匀速旋转目标的ISAR成像问题,根据运动补偿后目标回波在匹配傅里叶域的稀疏性,提出了基于压缩感知的成像方法,并基于稀疏表示和优化搜索实现相对旋转参数的估计。所提方法解决了有限脉冲数据与方位分辨率之间的矛盾,且成像效果优于现有方法。针对高速自旋目标的二维/三维成像问题,提出了基于轨道运动的二维成像方法,利用压缩感知思想有效降低了所需采集的脉冲数。在此基础上利用自旋信息通过后向投影变换或压缩感知方法进行二维投影切片成像,从而得到目标三维散射点的相对位置分布。该方法通过预先获得散射点的高度维信息,大大降低了三维成像的复杂度。针对弹道中段进动目标的ISAR成像问题,通过对旋转对称目标回波模型的线性化处理,引入压缩感知思想,基于少量回波数据实现了进动目标的高分辨成像。所提方法相比现有方法改善了成像质量,提高了对进动参数的稳定性。
     第七章总结了论文的研究工作和主要创新点,指出需要进一步研究的问题。
High resolution inverse synthetic aperture radar (ISAR) imaging technique is of greatsignificance to radar target recognition and feature extraction. Taking full advantage ofthe sparsity of radar target reflectivity and the direct information sampling property ofcompressed sensing (CS), this dissertation focuses on ISAR imaging technique based onCS, serving for overcoming the inherent limitations of traditional ISAR imagingsystems. The main research efforts include the high resolution imaging techniques ofrotary platform targets, high-speed targets and targets with complex motion.
     Chapter1illustrates the background and significance of this research subject, andintroduces the present status of high resolution imaging radar and ISAR imagingtechnique. Then the development and applications of CS theory, particularly in radarimaging domain, are reviewed and summarized, after which the main content of thisthesis is presented briefly.
     Chapter2introduces the basic principle of CS, and makes a careful analysis of themathematic model and essentials of CS firstly. Then, the sparsity mechanism of radarechoed signal is analyzed based on the scattering center theory in high frequencydomain and radar imaging principle. Finally, an imaging method based on CS byrandom convolution is studied from a practical perspective, which is convenient torealize and applicable to various radar waveforms.
     Chapter3focuses on the CS-based imaging technique of rotary platform targets andfast reconstruction algorithms. Firstly, to alleviate the direct sampling pressure ofwideband linear frequency modulated (LFM) radar, a sparse dictionary constructionmethod based on stretch processing and FFT operation is presented, following which anovel compressive radar imaging method is proposed, and it can remarkably reduce thedata rate of radar imaging system while maintaining imaging quality. Then, in view ofthe low data usage factor of stepped frequency radar, two imaging methods, termedCS-based2D joint imaging algorithm and CS-based2D decoupled imaging algorithm,are proposed. Both can get clear ISAR image with less data samples, and simplify thehardware design of radar system because the coherent mixing operation is incorporatedinto the sparse dictionary. Afterwards, considering the high computation complexity ofCS imaging methods, in light of the2D separability of sparse dictionary andcompressive measurement, several fast algorithms for radar image formation are studied,and an improved OMP algorithm is proposed, which possesses prominent superiorityover conventional CS algorithms in terms of storage and computation.
     Chapter4researches into the CS-based imaging technique of high-speed targets. ForLFM radar, according to the sparsity of the dechirped high-speed target echo infractional Fourier domain, Analog-to-Information Conversion (AIC) is recommended totake compressive measurements, following which the radar image can be recovered via nonlinear optimization, and the efficient golden section method is adopted to find theoptimal transform order taking the sparsity of range profile as search criteria. Theproposed method can achieve high resolution imaging of high-speed targets withoutadditional velocity compensation, but with less data samples and higher imaging quality.In allusion to the sensitivity to Doppler and low data usage factor of stepped frequencyradar, making use of the predesigned pulse repetition interval (PRI) and/or the phasecancellation principle, a compressive imaging method based on random steppedfrequency waveform design is put forward, which can effectively reduce the data ratewhile overcoming the negative influence of Doppler effect. Similarly, as for linearlymodulated stepped frequency (LMSF) radar, to overcome the sensitivity of inter-pulsecompression to Doppler and reduce the total data rate, a compressive imaging methodbased on random LMSF waveform design is proposed. Simulation experiments indicatethat the proposed CS-based methods can get high quality ISAR images of targets withhigh-speed motion.
     Chapter5studies the CS-based imaging technique of targets with complex motion.First, in light of the sparsity of the range cell echo of radar targets with non-uniformrotation in matching Fourier domain, an imaging method based on CS is proposed forboth sparse aperture and short aperture cases, and the relative rotation parameter isestimated by the optimal search in fractional Fourier domain for the sparse dictionaryconstruction. The proposed method resolves the contradiction between limited pulsedata and high azimuth resolution, and performs better than the existing methods. Second,for rapidly spinning targets, a2D imaging method using the orbital information ispresented, where CS is incorporated for reducing the requisite pulses. Then, thespinning information is utilized for2D slice imaging via the complex-valuedback-projection transform or CS method, consequently the high resolution3D image isobtained. The method proposed here reduces the complexity of3D imaging effectivelythrough pre-estimating the altitude information of scattering centers. Third, CS conceptis introduced into the ISAR imaging problem of precession targets with rotationallysymmetrical structure, and high resolution imaging can be achieved with a smallnumber of measurements. The proposed method performs better than existing methodsin terms of imaging quality and robustness to precession parameter.
     Chapter6summarizes the research work and main innovations, and points out thefuture work to be researched.
引文
[1] Sullivan R J. Radar Foundations for Imaging and Advanced Concepts [M].Virginia: SciTech Publishing, Inc.,2004.
    [2]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [3]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [4] Bhattacharya S, Blumensath T, Mulgrew B, et al. Fast encoding of syntheticaperture radar raw data using compressed sensing [C]. IEEE Workshop onStatistical Signal Process., Madison, Wisconsin,2007:448–452.
    [5] Stuff M, Thelen B, Subotic N, et al. Optimization and waveforms for compressivesensing applications in the presence of interference [C].2009InternationalWD&D Conference,2009:213–217.
    [6]王琦.空间目标ISAR成像的研究[D].西安:西安电子科技大学,2007.
    [7]王成.超分辨多雷达成像[D].长沙:国防科学技术大学,2006.
    [8] Donoho D L. Compressed sensing [J]. IEEE Trans. Inform. Theory,2006,52(4):1289–1306.
    [9] Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signalreconstruction from highly incomlete frequency information [J]. IEEE Trans.Inform. Theory,2006,52(2):489–509.
    [10] Candès E J, Tao T. Near-optimal signal recovery from random projections:Universal encoding strategies?[J]. IEEE Trans. Inform. Theory,2006,52(12):5406–5425.
    [11] Candès E J, Wakin M B. People hearing without listening: an introduction tocompressive sampling [J]. IEEE Signal Process. Mag.,2008,25(2):21–30.
    [12]杜小勇.稀疏成份分析及在雷达成像处理中的应用[D].长沙:国防科学技术大学,2005.
    [13]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2006.
    [14] Camp W W, Mayhan J T, and O’Donnell R M. Wideband radar for ballisticmissile defense and Range-Doppler imaging of satellites [J]. Lincoln LaboratoryJournal,2000,12(2):267–280.
    [15] Avent R K, Shelton J D, and Brown P. The ALCOR C-band imaging radar [J].IEEE Antennas and Propagation Magazine,1996,38(3):16–27.
    [16] Abouzahra M D, Avent R K. The100-kW millimeter-wave radar at the KwajaleinAtoll [J]. IEEE Antennas and Propagation Magazine,1994,36(2):7–19.
    [17] Lemnios W Z, Grometstein A A. Overview of the Lincoln Laboratory BallisticMissile Defense Program [J]. Lincoln Laboratory Journal.2002,9(32):9–32.
    [18] Stone M L, Banner G P. Radars for the Detection and Tracking of BallisticMissiles, Satellites, and Planets [J]. Lincoln Laboratory Journal,2000,12(2):217–244.
    [19] Haystack Upgrade Program [EB/OL], http://www.haystack.mit.Edu/obs/haystack/LincolnUpgrade.pdf.
    [20] Major upgrade to Haystack radar will enable enhanced imaging of space [EB/OL],http://www.hanscom.af.mil/news/story.asp?id=123205407
    [21]佛显超,贾祥瑞,林青松.导弹防御系统的X波段雷达能力分析[J].火控雷达技术,2009,38(3):8–12.
    [22]陈晓栋.美国海基X波段雷达发展现状[J].现代雷达,2011,33(6):29–31.
    [23] A Sourcebook for the Use of the FGAN Tracking and Imaging Radar for SatelliteImaging [EB/OL]. http://www.fhr.fgan.de/fhr/fhr_en.html.
    [24]文树梁,袁起,秦忠宇.宽带相控阵雷达的设计准则与发展方向[J].系统工程与电子技术,2005,27(6):1007–1011.
    [25] http://www.thalesgroup.com
    [26]曹向东.空间目标成像的ISAR技术研究[D].南京:南京理工大学,2007.
    [27]高磊.压缩感知理论在宽带成像雷达Chirp回波处理中的应用研究[D].长沙:国防科学技术大学,2011.
    [28]许人灿,杜琳琳,陈曾平.一种改进的空间目标高速运动补偿方法[J].宇航学报,2010,31(4):1118–1124.
    [29]曹敏,付耀文,黄雅静,等.弹道目标高分辨一维距离像运动补偿研究[J].电子与信息学报,2009,31(3):601–605.
    [30]金光虎.中段弹道目标ISAR成像及物理特性反演技术研究[D].长沙:国防科学技术大学,2009.
    [31] Du L P, Su G C. Adaptive Inverse Synthetic Aperture Radar Imaging forNonuniformly Moving Targets [J]. IEEE Geosci. Remote Sens. Lett.,2005,2(3):247–249.
    [32]尹治平.分数阶Fourier变换在逆合成孔径雷达成像处理中的应用[D].合肥:中国科学技术大学,2008.
    [33]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理[J].航空学报,2001,22(6):16–25.
    [34] Berizzi F, Martorella M, and Capria A. A contrast-Based algorithm for syntheticrange-profile motion compensation [J]. IEEE Trans. Geosci. Remote Sens.,2008,46(10):3053–3061.
    [35]刘峥,张守宏.步进频率雷达目标的运动参数估计[J].电子学报,2000,28(3):1243–1245.
    [36] Bai J L, Gao M G, Xu C F. Method of Stepped Frequency Signal ProcessingBased on FrFT [C]. Proc. IEEE8th Int. Conf. Signal Process.(ICSP),2008:2550–2553.
    [37]陈行勇.微动目标雷达特征提取技术研究[D].长沙:国防科学技术大学,2006.
    [38]林云,司锡才.一种改进的频率步进雷达信号性能分析[J].宇航学报,2010,31(10):2381–2387.
    [39] Hu J M, Jiang W D, Fu Y W, et al. A Novel Approach to Synthesize the RangeProfile via Predesigned Stepped-Frequency Waveforms [C].2nd Int. Conf.Computer Engineering and Technology,2010, Vol.5:363–367.
    [40]龙腾,毛二可,何佩琨.调频步进雷达信号分析与处理[J].电子学报,1998,26(12):84–88.
    [41] Liu Y B, Xing M D, Zhang L, et al. Novel range profile synthesis algorithm forlinearly stepped-frequency modulated inversed synthetic aperture radar imagingof remote manoeuvring target [J]. IET Radar, Sonar and Navig.,2010,5(4):496–506.
    [42]罗迎,张群,柏又青,等.线性调频步进信号雷达微多普勒效应分析及目标特征提取[J].电子学报,2009,37(12):2741–2746.
    [43]李亚超,梁毅,邢孟道,等.基于线性调频步进ISAR参数估计和成像算法研究[J].电子学报,2008,36(12):2464–2472.
    [44] Chen C C, Andrews H C. Target motion induced radar imaging [J]. IEEE Trans.Aerosp. Electron. Syst.,1980,16(1):2–14.
    [45]邢孟道,保铮.一种逆合成孔径雷达成像包络对齐的新方法[J].西安电子科技大学学报,2000,27(1):93–96.
    [46] Wang J, Kasilingam D. Global Range Alignment for ISAR [J]. IEEE Trans.Aerosp. Electron. Syst.,2003,39(1):351–357.
    [47] Wang L, Zhu D Y, Zhu Z D. New Range Alignment Algorithm for ISAR Based onHigh Order Moment [J]. Journal of Electronics,2007,24(04):509–514.
    [48]唐波,汤俊,彭应宁.基于凸泛函准则的ISAR中包络对齐方法[J].清华大学学报,2010,50(1):136–139,144.
    [49] Li J, Wu R, Chen V C. Robust autofocus algorithm for ISAR imaging of movingtargets [J]. IEEE Trans. Aerosp. Electron. Syst.,2001,37(3):1056–1068.
    [50] Martorella M, Berizzi F, Haywood B. Contrast maximization based technique for2-D ISAR autofocusing [J]. IEE Proc.-Radar, Sonar and Navig.,2005,152(4):253–262.
    [51] Eerland K K. Application of ISAR on aircraft [C]. IEEE Int. Radar Conf., Paris,1984:618–623.
    [52]曹敏.空间目标高分辨雷达成像技术研究[D].长沙:国防科学技术大学,2009.
    [53]霍凯.基于OFDM新体制雷达信号的微动目标特征提取研究[D].长沙:国防科学技术大学,2011.
    [54] Jain A, Patel I. SAR/ISAR imaging of a non-uniformly rotating target [J]. IEEETrans. Aerosp. Electron. Syst.,1992,28(1):317–320.
    [55] Chen V C, Qian S. Joint time-frequency analysis for radar imaging ofmaneouvering targets [J]. IEEE Trans. AES.,1998,42(4):486–499.
    [56] Du L, Su G. Adaptive Inverse Synthetic Aperture Radar Imaging forNonuniformly Moving Targets [J]. IEEE GRS letter,2005,2(3):247–249.
    [57] Thayaparan T, Stankovic L j, Wernik C, et al. Real-time motion compensation,image formation and image enhancement of moving targets in ISAR and SARusing S-method-based approach [J]. IET Radar Sonar Navig.,2008,2(3):247–264.
    [58]李彧晟.自旋稳定目标的ISAR成像技术研究[D].南京:南京理工大学,2004.
    [59] Yang Y H, Yin Z P, Wang D J, et al. ISAR Imaging for Rapidly Spinning Targets[C].2nd Asian-Pacific Conf. Synthetic Aperture Radar, Xi'an,2009:614–617.
    [60] Quan Y H, Zhang L, Xing M D, et al. Coherent Single Range DopplerInterferometry Algorithm For High-Speed Spinning Targets2D Imaging [C].2ndAsian-Pacific Conf. Synthetic Aperture Radar, Xi'an,2009:1–5.
    [61] Bai X R, Sun G C, Wu Q S, et al. Narrow-band radar imaging of spinning targets[J]. Sci. China Inf. Sci.,2011,54(4):873–883.
    [62] Zhang L, Li Y C, Liu Y, et al. Time-frequency characteristics based motionestimation and imaging for high speed spinning targets via narrowbandwaveforms [J]. Sci. China Inf. Sci.,2010,53(8):1628–1640.
    [63]王虹现,梁毅,邢孟道,等.基于稀疏信号表示的空间碎片成像[J].宇航学报,2011,32(10):2194–2199.
    [64]魏建功.弹道中段目标ISAR成像与特征提取研究[D].长沙:国防科学技术大学,2006.
    [65] Ding X F, Fan M M, Wei X Z, et al. Narrowband imaging method for spatialprecession cone-shaped targets [J]. Sci. China Tech. Sci.,2010,53(4):942–949.
    [66]刘进,王雪松,李文臣,王涛.基于进动的旋转对称弹头雷达成像方法[J].信号处理,2009,25(9):1333–1337.
    [67]雷腾,刘进忙,李松,等.基于MP稀疏分解的弹道中段目标微动ISAR成像新方法[J].系统工程与电子技术,2011,33(12):2649–2654.
    [68] Wang T, Wang X S, Chang Y L, et al. Estimation of precession parameters andgeneration of ISAR images of ballistic missile targets [J]. IEEE Trans. Aerosp.Electron. Syst.,2010,46(4):1983–1995.
    [69]胡杰民.复杂运动目标高分辨雷达成像技术研究[D].长沙:国防科学技术大学,2011.
    [70]马长征.雷达目标三维成像技术研究[D].西安:西安电子科技大学,1999.
    [71] Zhang Q, Yeo T S, Du G, et al. Estimation of three dimensional motion parametersin interferometric ISAR imaging [J]. IEEE Trans. Geosci. Remote Sens.,2004,42(2):292–300.
    [72] Given J A, Schmidt W R. Generalized ISAR-Part II: interferometric techniquesfor three-dimensional location of scatterers [J]. IEEE Trans. Image Process.,2005,14(11):1792–1797.
    [73] Mayhan J T, Burrows M L, Cuomo K M, et al. High resolution3D “Snapshot”ISAR imaging and feature extraction [J]. IEEE Trans. Aerosp. Electron. Syst.,2001,37(2):630–642.
    [74]周剑雄.光学区雷达目标三维散射中心重构理论与技术[D].长沙:国防科学技术大学,2006.
    [75] Wang J, Yang D, Zhang Y X. Two Methods of3-D Scattering Center Extractionfor Targets with Micro-Motion [C]. Proc. IEEE10th Int. Conf. Signal Process.(ICSP), Beijing,2010:2100–2104.
    [76]吴亮.复杂运动目标ISAR成像技术研究[D].长沙:国防科学技术大学,2012.
    [77] Xing M D, Wang Q, Wang G Y, et al. A matched-filter-bank-based3-D imagingalgorithm for rapidly spinning targets [J]. IEEE Trans. Geosci. Remote Sens.,2009,47(7):2106–2113.
    [78] Zhang L, Xing M D, Qiu C W, et al. Two-dimensional spectrum matched filterbanks for high-speed spinning-target three-dimensional ISAR imaging [J]. IEEEGeosci. Remote Sens. Lett.,2009,6(3):368–372.
    [79] Wang Q, Xing M, Liu G, et al. High resolution three-dimensional radar imagingfor rapidly spinning targets [J]. IEEE Trans. Geosci. Remote Sens.,2008,46(1):22–31.
    [80] Bai X R, Xing M D, Zhou F, et al. High-resolution three-dimensional imaging ofspinning space debris [J]. IEEE Trans. Geosci. Remote Sens.,2009,47(7):2352–2362
    [81]李军.高分辨二维和三维ISAR成像方法研究[D].西安:西安电子科技大学,2011.
    [82] Kroeker K L. Rethinking Signal Processing [J]. Communications of the ACM,2009,52(5):13–15.
    [83]焦李成,杨淑媛,刘芳,等.压缩感知回顾与展望[J].电子学报,2011,39(7):1651–1662.
    [84] Candès E J. The restricted isometry property and its implications for compressedsensing [J]. C. R. Acad. Sci. Paris, Ser. I,2008, vol.346:589–592.
    [85] Rubinstein R, Bruckstein A M, Elad M. Dictionaries for Sparse RepresentationModeling [J]. Proceedings of the IEEE,2010,98(6):1045–1057.
    [86] Candès E J, Romberg J. Sparsity and incoherence in compressive sampling [J].Inverse Problems,2007,23(3):969–985.
    [87] Zhao R Z, Wang B G, Lin W J, et al. Signal Pre-processing Method Suitable forCompressive Sensing Based on Frequency Modulation [C]. Proc. IEEE10th Int.Conf. Signal Process.(ICSP), Beijing,2010:62–65.
    [88] Chae D H, Sadeghi P, Kennedy R A. Effects of basis-mismatch in compressivesampling of continuous sinusoidal signals [C].2nd Int. Conf. Future Computerand Communication,2010: V2-740–V2-743.
    [89] Chi Y J, Scharf L L, Pezeshki A, et al. Sensitivity to basis mismatch incompressed sensing [J]. IEEE Trans. Signal Process.,2011,59(5):2182–2195.
    [90] Candès E J, Eldar Y C, Needell D. Compressed Sensing with Coherent andRedundant Dictionaries [J]. Appl. Comput. Harmon. Anal.,2011,31(1):59–73.
    [91] Elad M. Optimized projections for compressed sensing [J]. IEEE Trans. SignalProcess.,2007,55(12):5695–5702.
    [92] Abolghasemi V, Ferdowsi S, Makkiabadi B, et al. On Optimization of TheMeasurement Matrix For Compressive Sensing [C].18th European SignalProcessing Conference, Aalborg, Denmark,2010:427–431.
    [93] Duarte-Carvajalino J M, Sapiro G. Learning to Sense Sparse Signals:Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization [J]. IEEETrans. Image Process.,2009,18(7):1395–1408.
    [94] Bajwa W U, Sayeed A M, and Nowak R. A restricted isometry property forstructurally-subsampled unitary matrices [C]. Proc.47th Annu. Allerton Conf.Communication, Control, and Computing, Monticello, IL,2009:1005–1012.
    [95] Tropp J A, Wakin M B, Duarte M F, et al. Random filters for compressivesampling and reconstruction [C]. Proc. Int. Conf. Acoustics, Speech, and SignalProcess.(ICASSP),2006:872–875.
    [96] Romberg J. Compressive sensing by random convolution [J]. SIAM Journal onImaging Sciences,2009,2(4):1098–1128.
    [97] Rauhut H, Romberg J, Tropp J A. Restricted Isometries for Partial RandomCirculant Matrices [J]. Appl. Comput. Harmon. Anal.,2012,32(2):242–254.
    [98] DeVore R A. Deterministic constructions of compressed sensing matrices [J].Journal of Complexity,2007,23:918–925.
    [99] Calderbank R, Howard S, Jafarpour S. Construction of a large class ofdeterministic sensing matrices that satisfy a statistical isometry property [J]. IEEEJ. Select. Top. Signal Process.,2010,4(2):358–374.
    [100] Yu L, Barbot J P, Zheng G, et al. Compressive Sensing with Chaotic Sequence [J].IEEE Signal Process. Lett.,2010,17(8):731–734.
    [101] Haupt J, Applebaum L, Nowak R. On the Restricted Isometry of deterministicallysubsampled Fourier matrices [C].44th Annual Conf. Information Sciences andSystems (CISS), Princeton, NJ,2010:1–6.
    [102] Do Thong T, Gan L, Nguyen N H, et al. Fast and Efficient Compressive SensingUsing Structurally Random Matrices [J]. IEEE Trans. Signal Process.,2012,60(1):139–154.
    [103] Yin W, Morgan S, Yang J, et al. Practical compressive sensing with toeplitz andcirculant matrices [R]. Technical report of Rice CAAM TR10-01,2010.
    [104] Tropp J A, Wright S J. Computational Methods for Sparse Solution of LinearInverse Problems [J]. Proceedings of the IEEE,2010,98(6):948–958.
    [105] Lei J. Generalized reconstruction algorithm for compressed sensing [J].Computers and Electrical Engineering,2011,37:570–588.
    [106] Do Thong T, Gan L, Nguyen N, et al. Sparsity adaptive matching pursuitalgorithm for practical compressed sensing [C].42nd Asilomar Conf. Signals,Systems, and Computers, Pacific Grove, CA,2008:581–589.
    [107] Giryes R, Elad M. RIP-Based Near-Oracle Performance Guarantees for SP,CoSaMP, and IHT [J]. IEEE Trans. Signal Process.,2012,60(3):1465–1468.
    [108] Asif M S, Romberg J. Streaming Measurements in Compressive Sensing: l1Filtering [C].42nd Asilomar Conf. Signals, Systems and Computers, PacificGrove, CA,2008:1051–1058.
    [109] Malioutov D M, Sanghavi S, Willsky A S. Sequential Compressed Sensing [J].IEEE J. Select. Top. Signal Process.,2010,4(2):435–444.
    [110] Mileounis G, Babadi B, Kalouptsidis N, et al. An adaptive greedy algorithm withapplication to nonlinear communications [J]. IEEE Trans. Signal Process.,2010,58(6):2998–3007.
    [111] Chatterjee S, Sundman D, Vehkapera M, et al. HYBRID GREEDY PURSUIT [C].19th European Signal Processing Conference, Barcelona, Spain,2011:343–347.
    [112] Sturm B L. Sparse Vector Distributions and Recovery from Compressed Sensing[EB/OL]. http://arxiv.org/abs/1103.6246, Jul2011.
    [113] Baraniuk R G, Cevher V, Duarte M F, et al. Model-Based Compressive Sensing [J].IEEE Trans. Inform. Theory,2010,56(4):1982–2001.
    [114] Duarte M F. Fast reconstruction from random incoherent projections [R]. FinalReport for ELEC599-First Year Graduate Student Project, Rice University.
    [115] Eldar Y C, Kuppinger P, and B lcskei H. Block-sparse signals: Uncertaintyrelations and efficient recovery [J]. IEEE Trans. Signal Process.,2010,58(6):3042–3054.
    [116] Baron D, Duarte M F, Wakin M B. Distributed Compressive Sensing [EB/OL].http://arxiv.org/abs/0901.3403, Jan2009.
    [117] Wang Q, Liu Z W. A robust and efficient algorithm for distributed compressedsensing [J]. Computers and Electrical Engineering,2011,37:916–926.
    [118] Berg E V D, Friedlander M P. Joint-sparse recovery from multiple measurements[R]. Department of Computer Science, University of British Columbia TechnicalReport TR-2009-07, Apr2009.
    [119] Zhang Z L, Rao B D. Exploiting Correlation in Sparse Signal Recovery ProblemsMultiple Measurement Vectors, Block Sparsity, and Time-Varying Sparsity[EB/OL]. http://arxiv.org/abs/1105.0725, Jun2011.
    [120] Hormati A, Vetterli M. Compressive Sampling of Multiple Sparse Signals HavingCommon Support Using Finite Rate of Innovation Principles [J]. IEEE SignalProcess. Lett.,18(5):331–334.
    [121] Duarte M F, Eldar Y C. Structured Compressed Sensing: From Theory toApplications [J]. IEEE Trans. Signal Process.,2011,59(9):4053–4085.
    [122] Duarte M F, Baraniuk R G. Kronecker product matrices for compressive sensing[C]. IEEE Int. Conf. Acoustics, Speech, and Signal Process.(ICASSP), Texas,Dallas,2010:3650–3653.
    [123] Gleichman S, Eldar Y C. Blind Compressed Sensing [EB/OL]. http://arxiv.org/pdf/1002.2586.pdf, Feb2010.
    [124] Boufounos P T, Baraniuk R G.1-Bit Compressive Sensing [C].42nd Annual Conf.Information Sciences and Systems (CISS), Princeton, NJ,2008:16–21.
    [125] Ji S, Xue Y, Carin L. Bayesian compressive sensing [J]. IEEE Trans. SignalProcess.,2008,56(6):2346–2356.
    [126] Baron D, Sarvotham S, Baraniuk R G. Bayesian compressive sensing via beliefpropagation [J]. IEEE Trans. Signal Process.,2010,58(1):269–280.
    [127] Adcock B, Hansen C A. Generalized sampling and infinite dimensionalcompressed sensing [R]. DAMTP Tech. Rep.2011/NA02.
    [128] Elad M. Sparse and Redundant Representations: From Theory to Applications inSignal and Image Processing [M]. New York: Springer Science,2010.
    [129] Lustig M, Donoho D, Santos J, et al. Compressed sensing MRI [A look at how CScan improve on current imaging techniques][J]. IEEE Signal Process. Mag.,2008,25(2):72–82.
    [130] Kim Y C, Narayanan S S, Nayak K S. Accelerated three-dimensional upperairway MRI using compressed sensing [J]. Magnetic Resonance in Medicine,2009,61:1434–1440.
    [131] Ni K Y, Mahanti P, Datta S, et al. Image reconstruction by deterministiccompressed sensing with chirp matrices [C]. Proc. SPIE: Medical Imaging,Parallel Processing of Images, and Optimization Techniques,2009,7497:74971S-1–74971S-8.
    [132] Chan W L, Charan K, et al. A single-pixel terahertz imaging system based oncompressive sensing [J]. Applied Physics Letters,2008,93(12):101–105.
    [133] Ma J W. Single-pixel remote sensing [J]. IEEE Trans. Geosci. Remote Sens. Lett.,2009,6(2):199–203.
    [134] Fannjiang A C, Strohmer T, and Yan P C. Compressed Remote Sensing of SparseObjects [J]. SIAM J. IMAGING SCIENCES,2010,3(3):595–618.
    [135] Fowler J E, Du Q. Reconstructions from Compressive Random Projections ofHyperspectral Imagery [J]. in Optical Remote Sensing: Advances in SignalProcessing and Exploitation Techniques, Prasad S, Bruce L M, and Chanussot J,Eds. Springer,2011, ch.3,31–48.
    [136] Haupt J, Bajwa W U, Raz G, et al. Toeplitz compressed sensing matrices withapplications to sparse channel estimation [J]. IEEE Trans. Inform. Theory,2010,56(11):5862–5875.
    [137] Liang J H, Liu Y, Zhang W J, et al. Joint Compressive Sensing in WidebandCognitive Networks [C]. IEEE Wireless Communications and NetworkingConference (WCNC), Sydney, Australia,2010:1–5.
    [138] Bajwa W U, Leus G, Scaglione A, et al. Special issue on compressive sensing incommunications [J]. Physical Communication, Guest editorial,2012,5:61–63.
    [139] Wright J, Yang A Y, Ganesh A. Robust face recognition via sparse representation[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,2009,31(2):210–227.
    [140] Dai W, Sheikh M, Milenkovic O, et al. Compressive sensing DNA microarrays[R]. Rice University Technical. Report ECE-07-06, May2007.
    [141] Carin L, Liu D H, Lin W B, et al. Compressive Sensing for Multi-Static ScatteringAnalysis [J]. Journal of Computational Physics,2009,228:3464–3477.
    [142] Solimene R, Ahmad F, and Soldovieri F. A Novel CS-TSVD Strategy to PerformData Reduction in Linear Inverse Scattering Problems [J]. IEEE Geosci. RemoteSens. Lett.,2012,9(5):881–885.
    [143] Baraniuk R, Steeghs P. Compressive radar imaging [C]. IEEE Radar Conference,Boston, MA,2007:128–133.
    [144] Herman M, Strohmer T. High-resolution radar via compressive sensing [J]. IEEETrans. Signal Process.,2009,57(6):2275–2284.
    [145] Herrmann F J, Erlangga Y A, and Lin T T Y. Compressive simultaneousfull-waveform simulation [J]. Geophysics,2009,74: A35–A40.
    [146] Neelamani N, Krohn C, Krebs J, et al. Efficient seismic forward modeling usingsimultaneous random sources and sparsity [C]. SEG Int. Exposition and78thAnnual Meeting, Las Vegas,2008:2107–2110.
    [147] Davenport M A, Wakin M B, and Baraniuk R G. Detection and estimation withcompressive measurements [R]. Tech. Rep. TREE0610, Rice University ECEDepartment,2007.
    [148] Davenport M, Boufounos P, Wakin M, et al. Signal processing with compressivemeasurements [J]. IEEE J. Select. Top. Signal Process.,2010,4(2):445–460.
    [149] Fowler J E, Du Q. Anomaly Detection and Reconstruction From RandomProjections [J]. IEEE Trans. Image Process.,2012,21(1):184–195.
    [150] Gedalyahu K, Eldar Y C. Time-Delay Estimation from Low-Rate Samples: AUnion of Subspaces Approach [J]. IEEE Trans. Signal Process.,2010,58(6):3017–3031.
    [151] Kim J M, Lee O K, Ye J C. Compressive MUSIC Revisiting the Link BetweenCompressive Sensing and Array Signal Processing [J]. IEEE Trans. Inform.Theory,2012,58(1):278–301.
    [152] Laska J N, Kirolos S, Duarte M F, et al. Theory and implementation of ananalog-to-information converter using random demodulation [C]. Proc. IEEE Int.Sym. Circuits and System,2007:1959–1962.
    [153] Tropp J A, Laska J N, Duarte M F, et al. Beyond Nyquist: Efficient sampling ofsparse bandlimited signals [J]. IEEE Trans. Inform. Theory,2010,56(1):520–544.
    [154] Mishali M, Eldar Y C. From theory to practice: sub-Nyquist sampling of sparsewideband analog signals [J]. IEEE J. Select. Top. Signal Process.,2010,4(2):375–391.
    [155] Taheri O, Vorobyov S A. Segmented Compressed Sampling for Analog-to-Information Conversion: Method and Performance Analysis [J]. IEEE Trans.Signal Process.,2011,59(2):554–572.
    [156] Mishali M, Eldar Y C. Xampling: Compressed sensing for analog signals. inCompressed Sensing: Theory and Applications [M], Y. C. Eldar and G. Kutyniok,Eds. Cambridge, U.K.: Cambridge Univ. Press,2012.
    [157] Edwards J. Focus on Compressive Sensing [Special Reports][J]. IEEE SignalProcess. Mag., Mar.2011,28(2):11–13.
    [158] Duarte M F, Davenport M, Takhar D, et al. Single-pixel imaging via compressivesampling [J]. IEEE Signal Process. Mag.,2008,25(2):83–91.
    [159] Zhu L, Qiu C T. Application of Compressed Sensing Theory to Radar SignalProcessing [C].3rd IEEE Int. Conf. Computer Science and InformationTechnology (ICCSIT), Chengdu,2010:315–318.
    [160] Ender J H G. On compressive sensing applied to radar [J]. Signal Process.,2010,90(5):1402–1414.
    [161] You Y N, Li C S, Yu Z. Parallel frequency radar via compressive sensing [C].IEEE Int. Geosci. Remote Sens. Symp.(IGARSS),2011:2696–2699.
    [162] Potter L C, Ertin E, Parker J T, et al. Sparsity and Compressed Sensing in RadarImaging [J]. Proceedings of the IEEE,2010,98(6):1006–1020.
    [163] http://workshops.fhr.fraunhofer.de/cosera/index.html
    [164] Yoon Y S, Amin G M. Compressed sensing technique for high-resolution radarimaging [C]. Proc. SPIE: Signal Process., Sensor Fusion, and Target Recognition,2008,69681A:1–10.
    [165] Yoon Y S, Amin G M. Through-the-wall radar imaging using compressive sensingalong temporal frequency domain [C]. Proc. IEEE Int. Conf. Acoustics, Speechand Signal Process.(ICASSP), Dallas, TX, USA,2010:2806–2809.
    [166] Huang Q, Qu L L, Wu B H, et al. UWB Through-Wall Imaging Based onCompressive Sensing [J]. IEEE Trans. Geosci. Remote Sens.,2010,48(3):1408–1415.
    [167] Amin M G, Ahmad F, Zhang W J. Target RCS Exploitations in CompressiveSensing for Through Wall Imaging [C]. International Waveform Diversity andDesign Conference (WDD), Niagara Falls, ON,2010:000150–000154.
    [168] Leigsnering M, Debes C, Zoubir A M. Compressive sensing in through-the-wallradar imaging [C]. Proc. Int. Conf. Acoustics, Speech, and Signal Process.(ICASSP),2011:4008–4011.
    [169] Yang J, Bouzerdoum A, and Amin M G. Multi-View Through-The-Wall RadarImaging using Compressed Sensing [C].18th European Signal ProcessingConference (EUSIPCO), Aalborg, Denmark,2010:1429–1433.
    [170] Yang J, Bouzerdoum A, Tivive F H C, et al. Multiple-Measurement Vector modeland its application to Through-the-Wall Radar Imaging [C]. Proc. Int. Conf.Acoustics, Speech, and Signal Process.(ICASSP), Prague, Czech Republic,2011:2672–2675.
    [171] Shah S, Yu Y, Petropulu A. Step-Frequency Radar with Compressive Sampling(SFR-CS)[C]. Proc. Int. Conf. Acoustics, Speech, and Signal Process.(ICASSP),Dallas, TX,2010:1686–1689.
    [172] Krichene H A, Pekala M J, Sharp M D, et al. Compressive sensing and stretchprocessing [C]. IEEE Radar Conference, Georgia, USA,2011:362–367.
    [173] Hyder M M, Mahata K. Range-Doppler Imaging via Sparse Representation [C].2011IEEE Radar Conference, Kansas City, Missouri, USA,2011:486–491.
    [174] Huang T Y, Liu Y M, Meng H D, et al. Randomized step frequency radar withadaptive compressed sensing [C]. IEEE Radar Conference, Georgia, USA,2011:411–414.
    [175]谢晓春,张云华.基于压缩感知的二维雷达成像算法[J].电子与信息学报,2010,32(5):1234–1238.
    [176] Xie X C. Application of Compressive Sensing in3D Radar Imaging [C]. Proc.IEEE10th Int. Conf. Signal Process.(ICSP), Beijing,2010:2117–2120.
    [177] Xie X C. Real-Time Measurement in Compressive Radar Imaging Based on AIC[C]. Proc. IEEE10th Int. Conf. Signal Process.(ICSP), Beijing,2010:2113–2116.
    [178] Xie X C, Zhang Y H. High-resolution imaging of moving train by ground-basedradar with compressive sensing [J]. Electron. Lett.,2010,46(7):529–531.
    [179] Wang H X, Quan Y H, Xing M D, et al. ISAR Imaging via Sparse ProbingFrequencies [J]. IEEE Geosci. Remote Sens. Lett.,2011,8(3):451–455.
    [180] Hu Y, Liu Y M, Meng H D, et al. Extended Range Profiling in Stepped-FrequencyRadar with Sparse Recovery [C]. IEEE Radar Conference, Kansas, Missouri,USA,2011:1046–1049.
    [181] Xu J P, Pi Y M. Compressive Sensing in Radar High Resolution Range Imaging[J]. Journal of Computational Information Systems,2011,7(3):778–785.
    [182] Lei Q, Li H W, Zhang Q, et al. High Resolution Radar Imaging Based onCompressed Sensing Using Sparse Stepped-frequency Signal [C].9th Int. Symp.Antennas Propagation and EM Theory (ISAPE), Guangzhou,2010:670–671.
    [183] Zhu F, Zhang Q, Lei Q, et al. Reconstruction of Moving Target’s HRRP UsingSparse Frequency-Stepped Chirp Signal [J]. IEEE Sensors Journal,2011,11(10):2327–2334.
    [184]何劲,罗迎,张群,等.随机线性调频步进雷达波形设计及成像算法研究[J].电子与信息学报,2011,33(9):2068–2075.
    [185]王虹现,梁毅,邢梦道,等.基于稀疏线性调频步进信号的ISAR成像[J].中国科学:信息科学,2011,41(12):1529–1540.
    [186] Zhang L, Qiao Z J, Xing M D, et al. High-Resolution ISAR Imaging With SparseStepped-Frequency Waveforms [J]. IEEE Trans. Geosci. Remote Sens.,2011,49(11):4630–4651.
    [187] Zhang L, Xing M D, Qiu C W, et al. Achieving Higher Resolution ISAR ImagingWith Limited Pulses via Compressed Sampling [J]. IEEE Geosci. Remote Sens.Lett.,2009,6(3):567–571.
    [188] Zhang L, Xing M D, Qiu C W, et al. Resolution enhancement for inversedsynthetic aperture radar imaging under low SNR via improved compressivesensing [J]. IEEE Trans. Geosci. Remote Sens.,2010,48(10):3824–3838.
    [189] Quan Y H, Zhang L, Guo R, et al. Generating dense and super-resolution ISARimage by combining bandwidth extrapolation and compressive sensing [J]. Sci.China Inf. Sci.,2011,54(10):2158–2169.
    [190] Zhao G H, Wang Z Y, Wang Q, et al. Robust ISAR imaging based on compressivesensing from noisy measurements [J]. Signal Processing,2012,92(1):120–129.
    [191] Raghu G R, Masoud F. ISAR Imaging in Sea Clutter via Compressive Sensing [C].International Waveform Diversity and Design Conference (WDD), Niagara Falls,ON,2010:200–205.
    [192] Zhong L H, Hu D H, Ding C B. ISAR Imaging Based On Antenna Array andCompressed Sensing [C]. IEEE CIE Int. Conf. Radar, Chengdu,2011:1547–1550.
    [193] Li J, Xing M D, Wu S J. Application of Compressed Sensing in Sparse ApertureImaging of Radar [C]. Proc.2nd Asian-Pacific Conf. Synthetic Aperture Radar,Xi'an,2009:1119–1122.
    [194] Liu Y B, Quan Y H, Li J, et al. SAR Imaging of Multiple Ships Based onCompressed Sensing [C]. Proc.2nd Asian-Pacific Conf. Synthetic Aperture Radar,Xi'an,2009:112–115.
    [195] Zhang L, Qiao Z J, Xing M D, et al. High-Resolution ISAR Imaging byExploiting Sparse Apertures [J]. IEEE Trans. Antennas and Propagation,2012,60(2):997–1008.
    [196] Li G, Zhang H, Wang X Q, et al. ISAR imaging of maneuvering targets viamatching pursuit [C]. IEEE Int. Geosci. Remote Sens. Symp.(IGARSS),2010:1625–1628.
    [197] Rao W, Li G, Wang X Q, et al. ISAR imaging of uniformly rotating targets viaparametric weighted L1minimization [C]. IEEE Int. Geosci. Remote Sens. Symp.(IGARSS),2011:1682–1685.
    [198] Gunnala S K, Hall J, Bredow J W, et al. Localization of scattering centers in ISARimaging using sparsity constraints [C]. Proc. SPIE: Algorithms for SyntheticAperture Radar Imagery XVI, Orlando,2009, Vol.7337:73370J-1–73370J-8.
    [199] Gunnala S K, Tjuatja S. Superresolution inverse synthetic aperture radar (ISAR)imaging using compressive sampling [C]. Proc. SPIE: Algorithms for SyntheticAperture Radar Imagery XVI, Orlando,2010,7699:76990A–7699010.
    [200] Gunnala S K, Camacho L M, and Tjuatja S. Target detection above rough surfacesin microwave imaging using Compressive Sampling [C]. IEEE Int. Geosci.Remote Sens. Symp.(IGARSS),2010:3498–3501.
    [201] Zhu F, Zhang Q, Xiang Y, et al. Compressive Sensing in ISAR Spectrogram DataTransmission [C].2nd Asian-Pacific Conf. Synthetic Aperture Radar (APSAR),Xi'an,2009:89–92.
    [202] Ye F, Liang D, and Zhu J. ISAR enhancement technology based on compressedsensing [J]. Electronics Letters,2011,47(10):620–621.
    [203] Zou X, Zhou J X, Fu Q. Three-dimensional Radar Imaging Based on SparseMeasurements [C].3nd Int. Conf. Signal Process. Syst.(ICSPS),2011:72–75.
    [204] Cetin M, Karl W C. Feature-enhanced synthetic aperture radar image formationbased on nonquadratic regularization [J]. IEEE Trans. Image Process.,2001,10(4):623–631.
    [205] Zhu X X, Bamler R. Tomographic SAR inversion by L1norm regularization—The compressive sensing approach [J]. IEEE Trans. Geosci. Remote Sens.,2010,48(10):3839–3846.
    [206] Zhu X X, Bamler R. Super-Resolution Power and Robustness of CompressiveSensing for Spectral Estimation with Application to Spaceborne TomographicSAR [J]. IEEE Trans. Geosci. Remote Sens.,2012,48(10):247–258.
    [207] Lin Y G, Zhang B C, Hong W, et al. Displaced phase center antenna SAR imagingbased on compressed sensing [C]. IEEE Int. Geosci. Remote Sens. Symp.(IGARSS),2011:2692–2695.
    [208] Chen J, Gao J H, Zhu Y Q, et al. A novel image formation algorithm forhigh-resolution wide-swath spaceborne SAR using compressed sensing onazimuth displacement phase center antenna [J]. Progress In ElectromagneticsResearch,2012, Vol.125:527–543.
    [209] Lin Y, Hong W, Tan W X, et al. Compressed sensing technique for circular SARimaging [C]. IET International Radar Conference,2009:1–4.
    [210] Ferrara M, Jackson J A, and Austin C. Enhancement of multi-pass3D circularSAR images using sparse reconstruction techniques [C]. Proc. SPIE: Algorithmsfor Synthetic Aperture Radar Imagery XVI,2009,7337:733702-1–733702-10.
    [211] Wei S J, Zhang X L, and Shi J. Linear Array SAR Imaging via CompressedSensing [J]. Progress In Electromagnetics Research,2011, Vol.117:299–319.
    [212] Budillon A, Evangelista A, and Schirinzi G. Three-dimensional SAR focusingfrom multipass signals using compressive sampling [J]. IEEE Trans. Geosci.Remote Sens.,2011,49(1):488–499.
    [213] Patel V M, Easley G R, Healy D M, et al. Compressed Synthetic Aperture Radar[J]. IEEE J. Select. Top. Signal Process.,2010,4(2):244–254.
    [214] Tian J H, Sun J P, Zhang Y X, et al. The Effects of Input Signal-to-Noise Ratio onCompressive Sensing SAR Imaging [C].2nd Int. Conf. Signal Process. Syst.(ICSPS),2010: V3-533–V3-537.
    [215] Wei S J, Zhang X L, Shi J, et al. Sparse Reconstruction for SAR Imaging Basedon Compressed Sensing [J]. Progress In Electromagnetics Research,2010, Vol.109:63–81.
    [216] Bu H X, Bai X, Tao R. A Novel Algorithm for Synthetic Aperture Radar ImagingBased on Compressed Sensing [C]. Proc. IEEE10th Int. Conf. Signal Process.(ICSP), Beijing,2010:2210–2213.
    [217] Nguyen L H, Tran T D. Robust recovery of synthetic aperture radar data fromuniformly under-sampled measurements [C]. IEEE Int. Geosci. Remote Sens.Symp.(IGARSS),2011:3554–3557.
    [218] Kajbaf H, Case J T, Zheng Y R, et al. Quantitative and qualitative comparison ofSAR images from incomplete measurements using Compressed Sensing andNonuniform FFT [C]. IEEE Radar Conference, Kansas, Missouri,2011:592–596.
    [219]刘亚波. SAR/ISAR运动目标检测及成像新技术研究[D].西安:西安电子科技大学,2011.
    [220] Wu Q S, Xing M D, Qiu C W, et al. Motion Parameter Estimation in the SARSystem With Low PRF Sampling [J]. IEEE Geosci. Remote Sens. Lett.,2010,7(3):450–454.
    [221] Wang J, Li G, Liu Y M, et al. SAR Imaging of Moving Targets via CompressiveSensing [C].2010Int. Conf. Electrical and Control Engineering,2010:1855–1858.
    [222] Khwaja A S, Ma J W. Applications of Compressed Sensing for SAR MovingTarget Velocity Estimation and Image Compression [J]. IEEE Trans. Instrum.Meas.,2011,60(8):2848–2860.
    [223] Tian J H, Sun J P, Han X, et al. Motion compensation for compressive sensingSAR imaging with autofocus [C].6th IEEE Conf. Industrial Electronics andApplications, Beijing,2011:1564–1567.
    [224]徐建平,皮亦鸣.压缩感知SAR成像中的运动补偿[J].电子与信息学报,2012,34(2):294–299.
    [225] Coker J D, Tewfik A H. Random sampling strategies in multistatic SAR [C]. Proc.Int. Conf. Acoustics, Speech, Signal Process.(ICASSP),2008,2461–2464.
    [226] Coker J D, Tewfik A H. Compressed sensing and multi-static SAR [C]. Proc.IEEE Int. Conf. Acoustics, Speech and Signal Process.,2009:1097–1100.
    [227] Stojanovic I, Karl W C, Cetin M. Compressed sensing of mono-static andmulti-static SAR [A]. Proc. SPIE: Algorithms for Synthetic Aperture RadarImagery XVI [C],2009,733705:1–12.
    [228] Stojanovic I, Karl W C. Imaging of moving targets with multi-static SAR using anovercomplete dictionary [J]. IEEE J. Select. Top. Signal Process.,2010,4(1):164–176.
    [229] Varshney K R, Cetin M, Fisher J W, et al. Sparse representation in structureddictionaries with application to synthetic aperture radar [J]. IEEE Trans. SignalProcess.,2008,56(8):3548–3561.
    [230] Stojanovic I, Cetin M, Karl W C. Joint space aspect reconstruction of wide-angleSAR exploiting sparsity [C]. Proc. SPIE: Algorithms for Synthetic Aperture RadarImagery XV,2009,697005:1–12.
    [231] Varshney K R, Cetin M, FisherIII J W, et al. Joint image formation and anisotropycharacterization in wide-angle SAR [C]. Proc. SPIE: Defense and SecuritySymposium, Algorithms for Synthetic Aperture Radar Imagery XIII, Apr2006.
    [232] Gu F F, Chi L, Zhang Q, et al. An imaging method for MIMO radar with sparsearray based on Compressed Sensing [C]. IEEE Int. Conf. Signal Process.,Communications and Computing (ICSPCC), Xi'an,2011:1–4.
    [233] Xu H, He X Z, Yin Z P, et al. Compressive Sensing MIMO Radar Imaging Basedon Inverse Scattering Model [C]. Proc. IEEE10th Int. Conf. Signal Process.(ICSP), Beijing,2010:1999–2002.
    [234] Chen C Y, Vaidyanathan P P. Compressed Sensing in MIMO Radar [C]. AsilomarConf. Signal, Systems, and Computers, Pacific Grove, CA,2008:41–44.
    [235] Yu Y, Petropulu A P, Poor H V. Compressive sensing for MIMO Radar [C]. Proc.IEEE Int. Conf. Acoustics Speech and Signal Process., Taipei, Taiwan,2009:3017–3020.
    [236] Petropulu A P, Yu Y, Poor H V. Distributed MIMO Radar Using CompressiveSampling [EB/OL]. http://arxiv.org/abs/0907.4653, June2009.
    [237] Yu Y, Petropulu A P, Poor H V. MIMO radar using compressive sampling [J].IEEE J. Select. Top. Signal Process.,2010,4(1):146–163.
    [238] Yu Y, Petropulu A P, Poor H V. Reduced complexity angle-Doppler-rangeestimation for MIMO radar that employs compressive sensing [C]. Proc.43rdAsilomar Conf. Signals, Syst. Comput., Pacific Grove, CA,2009:1196–1200.
    [239] Yu Y, Petropulu A P, Poor H V. Measurement matrix design for compressivesensing based MIMO Radar [J]. IEEE Trans. Signal Process.,2011,59(11):1–15.
    [240] Liu Y, Wu M Y, Wu S J. Fast OMP algorithm for2D angle estimation in MIMOradar [J]. Electronics letters,2010,46(6):444–445.
    [241] Gurbuz A C, McClellan J H, Scott Jr. W R. A Compressive Sensing DataAcquisition and Imaging Method for Stepped Frequency GPRs [J]. IEEE Trans.Signal Process.,2009,57(7):2640–2650.
    [242] Gurbuz A C, McClellan J H, Scott Jr. W R. Compressive sensing for subsurfaceimaging using ground penetrating radar [J]. Signal Process.,2009,89(10):1959–1972.
    [243] Gurbuz A C, McClellan J H, Scott Jr. W R. Compressive sensing of undergroundstructures using GPR [J]. Digital Signal Process.,2012,22:66–73.
    [244] Suksmono A B, Bharata E, Lestari A A, et al. Compressive Stepped-FrequencyContinuous-Wave Ground Penetrating Radar [J]. IEEE Geosci. Remote Sens. Lett.,2010,7(4):665–669.
    [245]余慧敏,方广有.压缩感知理论在探地雷达三维成像中的应用[J].电子与信息学报,2010,32(1):12–16.
    [246]屈乐乐,黄琼,方广有.基于压缩感知的频率步进探地雷达成像算法[J].系统工程与电子技术,2010,32(2):295–297.
    [247] Nikolic M, Tang G G, Nehorai A.3D Electromagnetic Imaging UsingCompressive sensing [C].2010IEEE Sensor Array and Multichannel SignalProcessing Workshop,2010:37–40.
    [248] Song X F, Zhou S L, Willett P. The role of the ambiguity function in compressedsensing radar [C]. Proc. Int. Conf. Acoustics, Speech, Signal Proc.(ICASSP),2010:2758–2761.
    [249]贺亚鹏,庄珊娜,李洪涛,等.基于感知矩阵统计相关系数最小化的压缩感知雷达波形优化设计[J].电子与信息学报,2011,33(9):2097–2102.
    [250] Lellouch G, Pribic R, Genderen P V. Merging frequency agile OFDM waveformsand Compressive Sensing into a novel radar concept [C]. Proceedings of the6thEuropean Radar Conference, Rome, Italy,2009:137–140.
    [251] Chi Y J, Calderbank R, Pezeshki A. Golay Complementary Waveforms for SparseDelay-Doppler Radar Imaging [C].3rd IEEE Int. Workshop on ComputationalAdvances in Multi-Sensor Adaptive Processing (CAMSAP), Aruba, DutchAntilles,2009:177–180.
    [252] Shastry M C, Narayanan R M, Rangaswamy M. Compressive Radar ImagingUsing White Stochastic Waveforms [C]. International Waveform Diversity andDesign Conference (WDD), Niagara Falls, ON,2010:00090–00094.
    [253] Wang W, Ding Y P, Xu X, et al. The applying of Compressed Sensing inM-Sequence UWB Radar [C].2011Int. Conf. Instrumentation, Measurement,Computer, Communication and Control,2011:708–711.
    [254] Yin Z P, Xu H, Chen W D. A new hybrid-frequency radar system based oncompressed sensing theory [C]. ICMMT2010Proceedings,2010:1731–1734.
    [255] Ertin E. Frequency Diverse Waveforms for Compressive Radar Sensing [C].International Waveform Diversity and Design Conference (WDD), Niagara Falls,ON,2010:000216–000219.
    [256] Ertin E, Potter L C, and Moses R L. Sparse target recovery performance ofmulti-frequency chirp waveforms [C].19th European Signal ProcessingConference (EUSIPCO), Barcelona, Spain,2011:446–450.
    [257] Liu D H, Boufounos P T. High resolution SAR imaging using random pulsetiming [C]. IEEE Int. Geosci. Remote Sens. Symp.(IGARSS),2011:4091–4094.
    [258] Jiang H, Zhang B C, Lin Y G, et al. Random noise SAR based on compressedsensing [C]. IEEE Int. Geosci. Remote Sens. Symp.(IGARSS),2010:4624–4627.
    [259]朱丰,张群,洪文,等.基于压缩感知的条带随机噪声雷达稀疏成像方法[J].系统工程与电子技术,2012,34(1):56–63.
    [260] Yang M, Zhang G. Compressive Sensing Based Parameter Estimation forMonostatic MIMO Noise Radar [J]. Progress In Electromagnetics ResearchLetters,2012, Vol.30:133–143.
    [261] Shi G M, Lin J, Chen X Y, et al. UWB echo signal detection with ultra-low ratesampling based on compressed sensing [J]. IEEE Trans. Circuits and Systems-II:Express Briefs,2008,55(4):379–383.
    [262] Xu J P, Pi Y M, Cao Z J. UWB LFM echo signal detection and time-delayestimation based on compressive sensing [C]. Proc. IEEE10th Int. Conf. SignalProcess.(ICSP), Beijing,2010:2435–2438.
    [263] Lin J, Shi G M, Chen X Y, et al. High-resolution ranging method based onlow-rate parallel random sampling [J]. Digital Signal Process.,2012,22:219–225.
    [264] Subotic N S, Thelen B, Cooper K, et al. Distributed RADAR Waveform DesignBased on Compressive Sensing Considerations [C]. IEEE RADAR conference,Rome, Italy,2008:1–6.
    [265] Berger C R, Moura J M F. Noncoherent compressive sensing with application todistributed radar [C].45th IEEE Annual Conf. Information Sciences and Systems,Baltimore, MD, USA,2011:1–6.
    [266]臧博,张磊,唐禹,等.逆合成孔径成像激光雷达低信噪比稀疏多孔径成像方法研究[J].电子与信息学报,2010,32(12):2808–2813.
    [267]何劲,张群,杨小优,等.基于压缩感知理论的合成孔径激光雷达成像算法[J].宇航学报,2011,32(11):2342–2395.
    [268] Zhang H, Li G, Meng H D. A class of novel STAP algorithms using sparserecovery technique [EB/OL]. http://arxiv.org/abs/0904.1313, Apr2009.
    [269] Talaei F, Hashemi M M, Sadri S. Spectrum analysis of multiple PRF Radars basedon the compressive sensing method [C].19th IEEE Iranian Conf. ElectricalEngineering, Isfahan, Iran,2011:1–6.
    [270] Austin C D, Moses R L, Ash J N, et al. On the Relation between SparseReconstruction and Parameter Estimation with Model Order Selection [J]. IEEE J.Select. Top. Signal Process.,2010,4(3):560–570.
    [271] Borgnat P, Flandrin P. Time-Frequency Energy Distributions Meet CompressedSensing [J]. IEEE Trans. Signal Process.,2010,58(6):2974–2982.
    [272] Bajwa W U, Gedalyahu K, Eldar Y C. Identification of Parametric UnderspreadLinear Systems and Super-Resolution Radar [J]. IEEE Trans. Signal Process.,2011,59(6):2548–2561.
    [273] Baraniuk R G. A lecture on compressive sensing [J]. IEEE Signal Process. Mag.,2007,24(4):118–121.
    [274] Rauhut H, Schass K, Vandergheynst P. Compressed sensing and redundantdictionaries [J]. IEEE Trans. Inform. Theory,2008,54(5):2210–2219.
    [275] Applebaum L, Howard S, Searle S, et al. Chirp sensing codes: Deterministiccompressed sensing measurements for fast recovery [J]. Appl. Comput. Harmon.Anal.,2009,26(2):283–290.
    [276]方红,杨海蓉.贪婪算法与压缩感知理论[J].自动化学报,2011,37(12):1413–1421.
    [277] Mohimani H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparsedecomposition based on smoothed l0norm [J]. IEEE Trans. Signal Process.,2009,57(1):289–301
    [278] Tropp J, Gilbert A. Signal recovery from random measurements via orthogonalmatching pursuit [J]. IEEE Trans. Inform. Theory,2007,53(12):4655–4666.
    [279] Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete andinaccurate samples [J]. Appl. Comput. Harmon. Anal.,2009,26(3):301–321.
    [280]刘记红.基于多幅一维像的目标三维重构方法研究[D].长沙:国防科学技术大学,2007.
    [281] Jouny I. Compressed Sensing for UWB Radar Target Signature Reconstruction[C]. IEEE Workshop on DSP/SPE,2009:714–719.
    [282] Li L L, Xiang Y, Li F. Theoretical analysis of compressive sensing via randomfilter [EB/OL]. http://arxiv.org/ftp/arxiv/papers/0811/0811.0152.pdf
    [283] Richards M A. Fundamentals of Radar Signal Processing [M]. The McGraw-HillCompanies, Inc.,2005.
    [284]文树梁,袁起,秦忠宇.宽带线性调频信号Stretch处理误差获取与补偿[J].系统工程与电子技术,2005,27(1):36–39.
    [285]朱永峰.频率步进雷达运动目标成像的理论与方法研究[D].长沙:国防科学技术大学,2009.
    [286] Gao L. Dictionary for sparse representation of chirp echo in broadband radar[EB/OL]. http://arxiv.org/ftp/arxiv/papers/1008/1008.0178.pdf.
    [287] Majumdar A, Krishnan N, Pillai S R B, et al. Extensions to orthogonal matchingpursuit for compressed sensing [C].2011national conference on communications(NCC), Bangalore,2011:1–5.
    [288] Huang S S, Zhu J B. Recovery of sparse signals using OMP and its variants:convergence analysis based on RIP [J]. Inverse Problems,2011,27(3):1–14.
    [289] Jin J, Gu Y T, Mei S L. An improved greedy algorithm for signal recovery fromrandom measurements [C]. IEEE10th Int. Conf. Signal Process.(ICSP), Beijing,2010:82–85.
    [290] Fu N, Cao L R, Peng X Y. A modified orthogonal matching algorithm usingcorrelation coefficient for compressed sensing [C]. IEEE Instrumentation andMeasurement Technology Conference (I2MTC), Binjiang,2011:1–5.
    [291] Rivenson Y, Stern A. Compressed imaging with a separable sensing operator [J].IEEE Signal Process. Lett.,2009,16(6):449–452.
    [292] Ghaffari A, Babaie-Zadeh M, Jutten C. Sparse decomposition of two dimensionalsignals [C]. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process.,2009:3157–3160.
    [293] Ghaffari A, Babaie-Zadeh M, Moghaddam H A. Two-dimensional randomprojection [J]. Signal Process.,2011,91(7):1589–1603.
    [294] Mohimani H, Babaie-Zadeh M, Gorodnitsky I, et al. Sparse Recovery usingSmoothed L0(SL0): Convergence Analysis [EB/OL]. http://arxiv.org/pdf/1001.5073.pdf, Jan2010.
    [295] Ozaktas H M, Kutay M A. Digital computation of the fractional Fourier transform[J]. IEEE Trans. Signal Process.,1996,44(9):2141–2150.
    [296] Saxena R, Singh K. Fractional Fourier transform: A novel tool for signalprocessing [J]. J. Indian Inst. Sci.,2005,85:11–26.
    [297]陶然,张峰,王越.分数阶Fourier变换离散化的研究进展[J].中国科学E辑:信息科学,2008,38(4):481–503.
    [298] Yu Z Z, Chen X, Hoyos S, et al. Mixed-signal parallel compressive spectrumsensing for cognitive radios [J]. International Journal of Digital MultimediaBroadcasting, Article ID730509,2010:1–10.
    [299]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2004.
    [300]张月辉,朱玉鹏,游鹏,等.高速动态空间目标宽带回波仿真方法研究[J].系统仿真学报,2009,21(9):2721–2724,2729.
    [301]黄雅静,曹敏,付耀文,等.基于匹配傅里叶变换的匀加速旋转目标成像[J].信号处理.2009,25(6):864–867.
    [302]王盛利.雷达信号处理的新方法—匹配傅里叶变换研究[D].西安:西安电子科技大学,2003.
    [303] Chen V C, Fayin L, Shen-shyang H, et al. Micro-doppler effect in radar:phenomenon, model, and simulation study [J]. IEEE Trans. Aerosp. Electron.Syst.,2006,42(1):2–21.
    [304] Ma L, Liu J, Wang T, et al. Micro-Doppler characteristics of sliding-typescattering center on rotationally symmetric target [J]. Sci. China Inf. Sci.,2011,54(9):1957–1967.
    [305]李康乐.雷达微动目标特征提取和估计技术研究[D].长沙:国防科学技术大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700