用户名: 密码: 验证码:
高空弱小飞行器的光电测量及数据处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高空弱小飞行器是一类典型的空间目标,其高空、远距离、高速等特性给测量带来了巨大的挑战。飞行器外测数据处理的核心问题是处理精度,本文针对高空弱小飞行器的光电测量方法及数据处理问题,研究通过测站布站优化及数据处理手段提高高空远距离条件下的光测精度。
     研究了高空弱小飞行器光学测量的布站优化设计,全面考虑光学测量的各种约束条件提出了一种基于遗传算法的布站优化算法。给出了布站优化的目标函数模型,分析了对空间弱小飞行器进行光学测量的各种约束条件,并建立了基于小生境遗传算法的布站优化算法。针对高空光测系统误差修正问题,分析了80km以上目标光测数据的系统误差来源,建立了高空目标光测数据的系统误差模型,提出了基于恒星的修正方法,对大气折射误差和设备轴系误差进行联合修正,实验结果证明了基于恒星修正方法的有效性。
     为了提高轨道参数的事后处理精度,提出了一种基于多台光电经纬仪测量数据融合的处理方法,将节省参数模型应用于角度测量数据的融合处理,建立了飞行器位置参数和设备系统误差的联合求解模型,通过充分利用多台设备测量数据来增加模型的冗余度。根据含特征点的飞行器轨道特点,提出了一种基于最优节点样条逼近的样条节点优化算法,建立了含特征点轨道位置参数样条节点优化问题的数学模型,给出了特征点识别方法,实现了基于混沌粒子群算法的样条节点优化算法。为了提高高空弱小飞行器脱靶量的光学测量精度,提出了一种基于多测站同帧画幅数据的脱靶量处理算法。给出了光学测量脱靶量的基本原理,分析了各种角度误差对大气层外飞行器脱靶量测量的影响,建立了基于多测站同帧画幅数据的节省参数算法,并进行了脱靶量精度分析。
     为实现高空弱小飞行器的剩余轨道及落点预测,采用光测数据作为数据源进行椭圆轨道根数计算,建立了基于光测数据的落点预测算法模型,给出了典型情况下的落点预测仿真结果。为了对测量设备进行精度鉴定,利用高空飞行器被动段的轨道特性和多测站冗余观测数据,进行轨道约束自校准。分析了光测数据系统误差模型和坐标转换关系,建立了基于轨道约束的光测数据系统误差自校准算法,为验证方法的有效性,进行了典型条件下的仿真试验。仿真结果表明,当采用多台光电经纬仪的冗余观测数据进行事后处理时,利用轨道约束自校准技术,可以实现光测数据系统误差的精确自校准。
High altitude dim spacecraft is a typical space target, and the characteristics ofhigh altitude, far distance and high velocity brings great challenge to themeasurement system. Precision is the core and key in the estimation of exteriorballistic trajectory. Aiming at the photoelectric measuring and data processing of thehigh altitude dim spacecraft, the methods of station distribution and data processingwere studied in order to improve the precision of optical measurement under theconditions of high altitude and far distance.
     The optimization design of optical measurement station distribution for the highaltitude dim spacecraft was analyzed. An algorithm for station distributionoptimization based on genetic algorithm was presented by taking into account of allthe optical measurement constraints. The target function model of station distributionoptimization was put forward, and the constraints of optical measurement wereanalyzed, then the algorithm for station distribution optimization based on nichegenetic algorithm was set up.
     Aiming at the problem of error correction in the high trajectory opticalmeasurement, the systematic error sources were analyzed when the target was above80km, the corresponding error model was set up, and the correction method was putforward according to the fixed star observation, based on which, the air refractionerror and the axis errors of device were corrected together. The experimentationresults prove the efficiency of the correction method.
     To improve the post positional accuracy of high altitude dim spacecraft, aprocessing method based on the tracking data fusion of multi photoelectrictheodolites was presented. The sparse parameter model was applied to the fusionprocessing of angle measurement data, then the joint model of positional parametersof spacecraft and systematic errors of devices was established, and the redundancywas improved by using multi-devices measurement data. According to thecharacteristics of spacecraft orbit with characteristic points, an optimizationalgorithm based on optimal knots spline was presented. Firstly, the math model ofspline knots optimization for position parameters of spacecraft orbit withcharacteristic points was put forward. Secondly, the recognition method forcharacteristic points was introduced. Then, the spline knots optimization algorithm based on chaos particle swarm optimization was set up. To improve the opticalmeasurement accuracy of high altitude dim spacecraft’s miss distance, a processingalgorithm based on the same frame film data of multi-devices was presented. Firstly,the basic principle of miss distance measurement by optical method was put forward.Secondly, the influence on miss distance by the angle measurement data errors wasanalyzed. Finally, the sparse parameter algorithm based on the same frame film dataof multi-devices was set up, and the precision of miss distance influenced bymeasurement errors was analyzed.
     In order to realize the function of remnant orbit and impact point predictionwith the observing data of optical measurement as the data source, a method waspresented to compute the elliptical orbit elements, and the simulation results ofimpact point prediction in typical cases were supplied. In order to validate theprecision of measurement device, the unpowered orbit characteristics of high altitudespacecraft can be used to realize the orbit restrain self-calibration. The systematicerror model of optical measurement data and the coordinate transition were analyzed,and the orbit restrain self-calibration algorithm of optical measurement data was setup. The simulation test in typical cases was implemented in order to verify theeffectiveness of the method. The simulation results show that the systematic error ofoptical measurement data can be accurately corrected by the technology of orbitrestrain self-calibration when the redundant observing data of multiple photoelectrictheodolites are used in post data processing.
引文
[1] Craig Phillips, Steve Malyevac. Midcourse Motor and KKV Divert Propellant Allocationsfor an Exo-Atmospheric Interceptor [J]. American Institute of Aeronautics andastronautics, Inc. AIAA-98-4307.
    [2] Dean Zes. Exo-Atmospheric Intercept with J2Correction[J]. American Institute ofAeronautics and astronautics, Inc. AIAA-98-4305.
    [3] Dean Zes. Exo-Atmospheric Intercept Using Modified Proportional Guidance withGravity correction of Coast Phase [J]. American Institute of Aeronautics and astronautics,Inc. AIAA-94-0209.
    [4]刘利生.外弹道测量数据处理[M].北京:国防工业出版社,2002,230~243.
    [5]龚德铸,王立,.卢欣.微光探测EMCCD在高灵敏度星敏感器中的应用初探[J].红外与激光工程,.2007,36(Supplement):534~539.
    [6]高策,乔彦峰.人造卫星光学可见期实时预测方法[J].激光与光电子学进展,2010,(10):76~80.
    [7]项树林,徐宁.一种改进的光电经纬仪两站交会测量方法[J].应用光学,2009,30(1):80~83.
    [8]杜俊峰.光电经纬仪测量精度指标的确定[J].应用光学,2006,27(6):506~509.
    [9] Watson J, Zondervan K. The missile defense agency’s space tracking and surveillancesystem[J]. Proceedings of the SPIE,2008,7106:1~17.
    [10] Korn J, Holtz H, Farber M S. Trajectory Estimation of Closely Spaced Objects (CSO)using Infrared Focal Plane Data of an STSS Platform[J]. Proceedings of the SPIE,2004,5428:387~399.
    [11] Prohorkin A G. Way of an estimation trajectory instability of flight of the air targets.Ultrawideband and Ultrashort Impulse Signals [C].USA:20105th InternationalConference on,2004.
    [12] Nelson E, Pachter M,Musick S. Ballistic trajectory tracking using constrained estimation.2005IEEE International Symposium on Intelligent Control&13th MediterraneanConference on Control and Automation [C].USA: IEEE,2005.
    [13] Ravindra V,Bar-Shalom Y. Gottesman S.Aim Identification of Missiles with a MinimalParameter Set[J]. Aerospace and Electronic Systems, IEEE Transactions on,2009,45(1):405~415.
    [14] Mosher D E. The grand plans-ballistic missile defense [J]. IEEE Spectrum,1997,34(9):28~39.
    [15]刘涛,姜卫东,刘永祥,等.天基跟踪与监视系统探测性能与识别技术分析[J].系统工程与电子技术,2009,31(2):399~402.
    [16]佛显超,范宏深.空间跟踪与监视系统探测能力分析[J].探测与控制学报,2009,31(Supplement):49~53.
    [17]崔书华,胡绍林,李果.光电经纬仪布站分析及优化[J].光学与光电技术,2007,5(5):12~15.
    [18]张密太,侯宏录,权贵秦.光电经纬仪多站交会测量布站方法及仿真[J].西安工业学院学报,2005,25(1):20~22.
    [19]石彦召,朱新华,郑百源,等.基于光电经纬仪的布站研究[J].探测与控制学报,2009,31(Supplement):86~89.
    [20]侯宏录,周德云.光电经纬仪异面交会测量及组网布站优化设计[J].光子学报,2008,37(5):1023~1027.
    [21]贾庆莲,乔彦峰,邓文渊.多基地周视红外搜索系统的目标定位与精度分析[J].光学精密工程,2009,17(4):720~726.
    [22]姜涛,刘勇,王海峰.基于遗传算法的多台光电经纬仪优化布站研究[J].计算机仿真,2009(5):28~31.
    [23]郭丽华,朱元昌,邸彦强.基于遗传算法的光电经纬仪布站优化设计[J].仪器仪表学报,2010,31(4):741~745.
    [24]马顺南,王伟.靶场外弹道测量系统最优布站方法研究[J].宇航学报,2008,29(6):1951~1954.
    [25]陈伟,王志有,蒋玉萍.多测速测量系统布站几何优化设计[J].导弹与航天运载技术,2010,(3):43~47.
    [26]杜俊峰,张孟伟,张晓明.光电经纬仪测角精度分析[J].应用光学,2012,33(3):466~473.
    [27]赵金宇.光电望远镜误差分析及补偿技术[D].长春:中国科学院长春光学精密机械与物理研究所,2005.
    [28]赵金宇,王德兴,李文军.望远镜系统误差动态修正的一种新方法[J].红外与激光工程,2005,34(2):244~247.
    [29]徐智勇,袁家虎,黄祖华,等.精确修正光电经纬仪中的系统误差方法研究[J].光电工程,1998,25(Sup):55~58.
    [30]冯晓勇,朱伟康.光测设备天文标校单项误差分离算法[J].光电工程,2008,35(12):28~33.
    [31]张炜,柳玉晗,李世诚.光电经纬仪外场星校方法研究[J].光机电信息,2011,28(7):54~58.
    [32]刘利生.外测数据事后处理[M].北京:国防工业出版社,2002,326~360.
    [33]王正明.弹道跟踪系统的数据融合[J].宇航学报,1999,20(4):1~7.
    [34]张艳,石晟玮,郭军海.基于样条约束的弹道融合抗差估计方法[J].弹道学报,2011,23(1):40~44.
    [35]刘利生,吴斌,曹坤梅,等.卫星导航测量差分自校准融合技术[M].北京:国防工业出版社,2007,235~239.
    [36]刘利生,吴斌,杨萍.航天器精确定轨与自校准技术[M].北京:国防工业出版社,2005,95~111.
    [37]王正明.弹道跟踪数据的校准与评估[M].长沙:国防科技大学出版社,1999,283~325.
    [38] Huh Jib. Nonparametric estimation of the regression function having a change point ingeneralized linear models [J]. Statistics&Probability Letters,2012,82(4):843~851.
    [39] Martins C, Yao F. Kernel-based estimation of semiparametric regression in triangularsystems[J]. Economics Letters,2012,115(1):24~27.
    [40] Kohler M, Krzyzak A. Nonparametric regression estimation using penalized leastsquares[J]. Information Theory,IEEE Transactions on,2001,7(7):3054~3058.
    [41] Lu X W, Singh R S,Desmond A F. A kernel smoothed semiparametric survivalmodel[J].Journal of Statistical Planning and Inference,2001,98(1):119~135.
    [42] Rodriguez-Poo J M. Semiparametric smoothing splines [J]. Applied Stochastic Modelsand Data Analysis,1998,14(1):1~10.
    [43] Zaorski R W. The White Sands Range and Range-Rate System [J]. Aerospace andElectronic Systems,IEEE Transactions on,1971, AES-7(6):1068~1077.
    [44]吴能伟,陈涛.基于最小二乘估计的多站交会方法[J].光电工程,2008,35(12):1~4.
    [45]刘旨春,郭立红,关文翠,等.经纬仪交会精度的定量预测[J].光学精密工程,2008,16(10):1822~1830.
    [46]项树林,徐宁.基于多台光学经纬仪实时交会的弹道初段解算方案探讨[J].弹箭与制导学报,2009,29(1):205~208.
    [47]张玲霞,马彩文,刘轶,等.靶场光电经纬仪多台交会测量的融合处理及其仿真分析[J].光子学报,2002,31(2):528~1532.
    [48]项树林,徐宁.一种改进的光电经纬仪两站交会测量方法[J].应用光学,2009,30(1):80~83.
    [49]日丹纽克, B Φ.无线电外弹道测量数据的统计处理[M].北京:宇航出版社,1986,34~41.
    [50] Mertens L E, Tabeling R H. Tracking Instrumentation and Accuracy on the Eastern TestRange[J]. Space Electronics and Telemetry, IEEE Transactions on,1965,11(1):14~23.
    [51]王正明.弹道跟踪数据的校准与评估[M].长沙:国防科技大学出版社,1999,283~300.
    [52]陈伟玉,陈伟利,叶正茂.样条约束的EMBET中最优化问题与算法改进[J].装备指挥技术学院学报,2002,13(4):86~89.
    [53] Wang Z M, Zhu J B. Reduced parameter model on trajectory tracking data withapplications[J]. Science in China (Series E),1999,42(2):190~199.
    [54]王正明.弹道跟踪系统的数据融合[J].宇航学报,1999,20(4):1~7.
    [55]吴翊,朱炬波.弹道跟踪数据的融合算法[J].中国科学E辑,1998,28(6):505~512.
    [56]赵文策,周海银,段晓君,等.基于测角元和高程信息融合的弹道定位求速[J].弹道学报,2004,16(2):27~31.
    [57]陈国敏,周海银,王炯琦,等.外弹道节省参数的抗差估计[J].飞行器测控学报,2009,28(4):31~34.
    [58]赵德勇,潘晓刚,王炯琦,等.样条模型在近地卫星精密定轨仿真中的应用[J].计算机仿真,2006,23(6):62~65.
    [59]刘夫体.GPS与雷达测量数据融合处理方法在外弹道测量中的应用[J].全球定位系统,2007,4:26~29.
    [60]朱武宣,高耀文.基于样条约束"EMBET"的再入轨道测量数据融合方法[J].飞行器测控学报,2005,24(6):49~53.
    [61]李润恒,周海银.双星预警系统弹道参数估计及一些问题分析[J].飞行器测控学报,2006,25(1):37~42.
    [62]王炯琦,周海银,赵德勇,等.非标准多传感器信息融合下的状态融合估计[J].系统工程与电子技术,2008,30(8):1415~1420.
    [63] Fang B Y, Wu S L. Multiple targets vector miss distance measurement accuracy based on2-D assignment algorithms [J]. Journal of Systems Engineering andElectronics,2008,19(1):76~80.
    [64] Deng B, Liu X Z, Wang H X. Novel Way of Scalar Miss Distance Measurement.2010International Conference on Measuring Technology and MechatronicsAutomation[C].Changsha, China:ICMTMA,2010,789~791.
    [65] Wang J, Wu S L. New Method for Extraction of Doppler frequency in Scalar MissDistance Measurement System [J]. Proceedings of the SPIE,2005,5637:249~256.
    [66] Chan Y T, Towers J J. Sequential Locolization of a Radiating Source by Doppler-ShiftedFrequency Measurements [J]. Aerospace and Electronic Systems, IEEE Transaction on,1992,28(4):1084~1089.
    [67] Data Reduction and Computing Group Range Commanders council. Data Reduction andAnalysis Techniques for Miss-Distance Determination (MDD) and ScoringSystems[R].USA:AD-A089487,1980:1~229.
    [68] MOTOROLA INC.Minimum miss distance vector measuring system-has electronicrange sensors mounted on target to detect missile range as it approaches target [P].UnitedStates Patent:4057708-A,1977.
    [69]魏国华,吴嗣亮,王菊.脱靶量测量技术综述[J].系统工程与电子技术,2004,26(6):768~772.
    [70] Colson S, Hoff H.Ultra-wideband Technology for Defence Applications.2005IEEEInternational Conference on Ultra-Wideband[C]. Switzerland:2005,615~620.
    [71]周宇翔,魏国华,吴嗣亮.冲激雷达体制的数据采集和脱靶量测量方法.电子与信息学报,2007,29(10):2350~2353.
    [72]周宇翔,魏国华,吴嗣亮.冲激雷达标量脱靶量测量算法研究[J].弹道学报,2007,19(4):19~22.
    [73]李秋顺.光学测量处理脱靶量研究[J].光子学报,1999,28(3):255~259.
    [74]李春昌.导弹脱靶量测量方法研究[J].电子元器件应用,2010,12(6):82~85.
    [75]米阳,刘华军,张鹏.光电经纬仪靶场精度检测数据误差分析[J].光机电信息,2010,27(10):50~54.
    [76]马顺南,娄汉泉,刘秋辉.大型测控系统校飞航路设计方法[J].导弹与航天运载技术,2007,(5):55~57.
    [77]黄顺东,张胜田,李国顺.利用激光测距卫星实现对测控设备的精度鉴定[J].现代雷达,2004,26(11):1~4.
    [78] Lejba P, Schillak S. Determination of station positions and velocities from laser rangingobservations to Ajisai, Starlette and Stella satellites [J]. Advances in Space Research,2011,47(4):654~662.
    [79] TAPLE B D, SCHUTZ B E, EANES R J. Satellite Laser Ranging and Its Applications [J].Celestial Mechanics,1985,37(3):247~261.
    [80]高波,黄席樾,于旺清.卫星发射外测精度分析的EMBET方法[J].重庆大学学报(自然科学版),2002,25(1):88~91.
    [81]刘利生,杨永亮,曹坤梅.基于轨道约束“EMBET”技术的自鉴定方法及应用[J].飞行器测控学报,2002,21(4):70~73.
    [82]刘利生,曹坤梅.直接解算轨道根数的轨道约束自校准定轨方法[J].飞行器测控学报,2004,23(2):30~34.
    [83]高策,乔彦峰.人造卫星光学可见期实时预测方法[J].激光与光电子学进展,2010,(10):76~80.
    [84]谈斌,姚东升,向春生,等.类柱体空间目标的星等计算模型研究[J].光电工程,2008,35(7):33~37.
    [85]项树林,刘书田.基于测量方案的光电经纬仪布站优化模型[J].飞行器测控学报,2009,28(5):30~34.
    [86]丁剑,翟锋,卫志斌,等.基于笛卡尔坐标的卫星地影模型解析[J].测绘学报,2010,35(1):39~43.
    [87]谈斌,姚东升,向春生,等.类柱体空间目标的星等计算模型研究[J].光电工程,2008,35(7):33~37.
    [88]刘利生.外测数据事后处理[M].北京:国防工业出版社,2000,215~221.
    [89]熊兴隆,蒋立辉,冯帅,等.改进的牛顿法确定大气消光系数边界值[J].红外与激光工程,2012,41(7):1744~1749.
    [90]郭丽华,朱元昌,邸彦强.基于遗传算法的光电经纬仪布站优化设计[J].仪器仪表学报,2010,31(4):741~745.
    [91]侯宏录,周德云.光电经纬仪异面交会测量及组网布站优化设计[J].光子学报,2008,37(5):1023~1028.
    [92]姜涛,刘勇,王海峰.基于遗传算法的多台光电经纬仪优化布站研究[J].计算机仿真,2009(5):28~31.
    [93]崔书华,胡绍林,李果.光电经纬仪布站分析及优化[J].光学与光电技术,2007,5(5):12~15.
    [94]马顺南,王伟.靶场外弹道测量系统最优布站方法研究[J].宇航学报,2008,29(6):1951~1954.
    [95] Chootinan P, Anthony C. Constraint handling in genetic algorithms using a gradient-basedrepair method [J]. Computers&Operations Research,2006,(33):2263~2281.
    [96]陈伟,王志有,蒋玉萍.多测速测量系统布站几何优化设计[J].导弹与航天运载技术,2010,(3):43~47.
    [97] FU Xiao-Wei, GUANG Xiao-guang, KUANG Ai-xi. Flight Path Planning Based onNiche Genetic Algorithm [J]. Journal of System Simulation,2008,20(21):5940~5952.
    [98]王晓东.地基光测设备误差修正[D].天津:天津大学,2006.
    [99] WANG Zu-liang, ZHENG Mao, WANG Juan, et al. Improved Algorithm of AtmosphericRefraction Error in Longley-Rice Channel Model [J]. Systems Engineering andElectronics, Journal of,2008,19(4):683~687.
    [100]中国科学院紫金山天文台.2013年中国天文年历[M].北京:科学出版社,2012,548~549.
    [101]高策,乔彦峰.光电经纬仪测量误差的实时修正[J].光学精密工程,2007,15(6):846~851.
    [102]张卫国,王礼有,王玉坤,等.基于GPS授时的电影经纬仪野外拍星精度鉴定方法的研究[J].长春理工大学学报(自然科学版),2006,29(4):27~29.
    [103]陈涛,陈娟,王旭超,等.光电经纬仪跟踪架结构模式浅析[J],吉林工学院学报,2002,23(3):19~22.
    [104]严豪健,符养,洪振森.现代大气折射引论[M].上海:上海科技教育出版社,2006:43~49.
    [105]杜俊峰,张孟伟,张晓明.光电经纬仪测角精度分析[J].应用光学,2012,33(3):466~473.
    [106]叶剑锋,周欣明.目标视场位置对经纬仪测角精度的影响[J].弹箭与制导学报.2012,32(5):190~192.
    [107]王宗友,付承毓,王芳.基于数据配准提高光电经纬仪的测量精度[J].中国光学与应用光学.2010,3(6):586~589.
    [108]吴连大.人造卫星与空间碎片的轨道和探测[M].北京:中国科学技术出版社,2011,276~280.
    [109]郭福生,高云飞,贾赞杰.2000中国大地坐标系在试验场中应用分析[J].电子对抗试验.2008,18(2):55~58.
    [110]刘利生.外测数据事后处理[M].北京:国防工业出版社,2000,43~54.
    [111]郭军海.基于最优节点样条逼近观测数据平滑[J].中国空间科学技术,2000,(3):43~48.
    [112]赵文策,潘建平,陈伟利.基于弹道动力特性考虑的不完全测量数据处理方法[J].飞行器测控学报,2006,25(6):64~68.
    [113]王菖,段晓君,王正明,等.B样条分频理论及在外测数据处理中的应用[J].弹道学报,2010,22(3):99~102.
    [114]王召刚,袁林,玄志武.PSO节点寻优的样条逼近微分[J].飞行器测控学报,2012,31(2):45~48.
    [115]李邓化,李金鳌,庞美枫,等.基于惯性因子的混沌粒子群优化算法[J].北京信息科技大学学报,2012,27(5):7~10.
    [116]胥小波,郑康峰,李丹,等.新的混沌粒子群算法[J].通信学报,2012,33(1):24~30.
    [117]李国友,付承毓,何培龙.基于单台雷达光电经纬仪的脱靶量测量方法[J].弹箭与制导学报.2012,32(6):177~179.
    [118]张兵.大气层外动能拦截器末制导段性能研究[D].长沙:国防科学技术大学,2005,1~6.
    [119]董燕琴,戴金海,安维廉.弹道导弹落点预报技术综述[J].航天控制,2008,26(1):91~95.
    [120]刘彦君,乔士东,黄金才,等.一种高精度弹道导弹落点预测方法[J].弹道学报,2012,24(1):22~26.
    [121]沈慧娜,徐振来.提高弹道导弹落点预报精度的动弧平滑平均法[J].现代雷达,2009,31(7):55~58.
    [122]刘利生,吴斌,杨萍.航天器精确定轨与自校准技术[M].北京:国防工业出版社,2005,95~111.
    [123]李国友,付承毓,何培龙,等.高空光测系统误差的恒星法修正[J].光电工程,2012,39(9):24~28.
    [124]杨嘉樨.航天器轨道动力学与控制[M].北京:中国宇航出版社,1995:78~178.
    [125]刘利生,吴斌,曹坤梅,等.卫星导航测量差分自校准融合技术[M].北京:国防工业出版社,2007,118~149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700