用户名: 密码: 验证码:
基于活动标架的喷涂机器人喷枪轨迹规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷枪轨迹自动规划是喷涂机器人智能化的重要研究内容。目前在喷涂机器人喷枪轨迹规划研究中,喷涂曲面CAD几何模型大都基于网格模型,网格模型缺少边、曲线等几何信息,存在大量冗余信息,网格化方法对于规则曲面过于繁琐,对大曲率复杂曲面则容易出现网格丢失或重叠等情况,增加了网格修补和小曲面上短喷涂路径连接的轨迹规划难度,造成喷涂轨迹规划效率和喷涂质量的下降。本研究针对喷涂产品的CAD参数化模型,运用微分几何理论并结合喷涂工艺,从喷枪模型、路径模式、喷涂累积模型、喷涂轨迹规划、喷涂轨迹到喷枪轨迹的转化、组合曲面路径等方面进行了研究。主要研究内容如下:
     1.针对喷涂曲面CAD参数化模型,以产品模型数据交换标准STEP格式作为数据交换中性格式,利用从STEP标准中提取的产品几何模型数据,转换为喷涂轨迹规划所需的曲面表达参数。
     2.运用微分几何曲线论和曲面论,以空气喷枪椭圆双α分布模型为喷涂沉积厚度模型,对平面上直线路径模式和曲线路径模式的连续累积喷涂厚度进行了对比研究;通过对曲面上一点喷涂厚度和曲面度量关系分析,得出了曲面上喷枪沉积模型和曲面度量的关系。
     3.基于微分几何活动标架法,以规则曲面上给定喷涂路径下的累积喷涂厚度模型为对象,定义了速比系数和喷涂方向系数,建立了喷涂区域内一点与喷涂区域中心点累积厚度模型沿曲面喷涂轨迹方向法曲率的关系。对规则曲面给出可行喷涂路径,在喷枪等高度、匀速喷涂条件下,以曲面上实际涂层厚度与理想喷涂厚度偏差最小为优化目标,基于活动标架法对喷枪速度和轨迹间距进行了优化计算,根据喷涂速度和涂层累积厚度关系将喷涂速度转化为路径间距的函数,使优化问题转变为一维变量优化,简化了优化问题,并给出了参数曲面上喷涂轨迹优化的详细计算过程和公式,比较了柱面上不同路径和间距对喷涂厚度和均匀度的影响。
     4.基于微分几何Gauss-Bonnet理论,确立了偏移起始测地曲线和偏移起始截面且测地曲率最小的喷涂轨迹规划方法。通过理论分析和公式推导得出了偏移起始曲线轨迹规划方法中起始测地曲线的特性和计算公式,结合喷涂曲面上喷涂厚度均匀性和喷涂时间最小的优化目标确定了偏移起始截面法中最优化的起始截面。基于活动标架和外微分法推导了喷涂轨迹到喷枪轨迹的转化关系,并给出了喷枪位置和姿态的运动公式。
     5.对组合曲面,根据单曲面片喷涂轨迹和曲面片交线的关系,给出交线区域的喷枪沉积模型和喷涂路径规划公式。利用图论,将组合曲面喷涂路径顺序看作开环哈密顿图,基于遗传算法对组合曲面喷涂路径序列和方向进行优化,给出了组合曲面上最短喷涂路径。
The auto-trajectory planning of spray gun is an important research in intelligent spray robot field. Currently the format of CAD model of the part to be painted is mostly based on tessellated models, which has the disadvantages such as lack of geometrical information about edges and curve and existing of much redundant information. Mesh model is too complicated for ruled surface and causes missing and overlapping facets for large curvature surface which increases the trajectory planning difficulty for mesh repairing and spray path connections of mall facets. It causes the lower trajectory planning efficiency and spray quality. For CAD parameterized model of spray surface, differential geometry theory combining with spray process is applied to the spray gun model, path pattern, spray accumulation model, spray trajectory planning, conversion of spray trajectory and spray gun trajectory optimization, and trajectory planning of compound surfaces. The major research content of this dissertation is as follows:
     1. For CAD parametric model of part to be painted, using the standard for exchange of product STEP as the format of model in spray path planning, data drawn from STEP format of the part to be painted is converted into the parameters of surface expression required in spray trajectory planning.
     2. Based on curve and surface theory of differential geometry, elliptic double-(3distribution model of air gun is used to generate the spray paths, a comparison between the raster pattern and spiral patterns path regarding continuous material deposion is made and draw a conclusion on the relationship between continuous material deposion and surfaces measurement.
     3. Given the path of the regular surface, the relations of continuous material deposion model between a point and the center in the spary region along the normal curvature direction is specified based on the moving frames of differential geometry. The coefficients of velocity of one point to the center and sparying direction are defined. Spraying in equal height and constant velocity, regarding the mean square error of the material thickness deviation form required material thicknes as optimized objective, and spraying velocity is expressed as a function of overlapping distance, the optimization problem become a one-dimensional variable optimization, optimal spary gun velocity and overlapping distance are calculated. Material thickness and uniformity of two kinds of path and different overlapping distance on cylindrical surface are compared.
     4. Based on Gauss-Bonnet theory of differential geometry, the method offseting start geodesic and offseting start section with minimum geodesic curvature on freeform surface are adopted to generate spraying trajectory. Considering uniformity of material thickness and a minimum spray time the start geodesic curve and the start section are specified by theoretical analysis and formula reduction. Based on the moving frame and exterior differentiation conclude relationship between the frames of spray trajectory on surface and tool ones, and gives motion formula of the position and oriention of spray gun.
     5. According to the relationship between the spray path of single patch and the intersection line of the composite surface, material deposition model on intersection region is given. Using graph theory, the spray paths sequence on the composite surface is regarded as open-loop Hamiltonian graph, based on genetic algorithm the sequence and direction of spraying path of the composite surface are optimized, and the optimal results is obtained.
引文
[1]王锡春.环境保护与汽车涂装.中国涂料,2005,20(2):36-39.
    [2]赵东波,熊有伦.机器人离线编程系统的研究.机器人,1997,7:314-320.
    [3]王振滨,赵德安,王炎炎,钱琳.喷漆机器人离线编程系统探讨.江苏理工大学学报(自然科学版),2005,21(9):78-81.
    [4]刁训娣,赵德安,李医民等.喷漆机器人喷枪轨迹设计及影响因素研究.机械科学与技术,2004,23(4):396-398.
    [5]陈雁,邵君奕,张传清等.喷涂机器人自动轨迹规划研究进展与展望.机械设计与制造.2010,(2):149-152.
    [6]Chen Y.H, Dong F.H. Robot machining:recent development and futureresearch issues. International Journal of Advanced Manufacturing Technology.2013,66:1489-1497.
    [7]International Federation of Robotics. www.ifr.org. Accessed 18 Feb,2012.
    [8]The Robotic Industries Association. www.robotics.org. Accessed 18 Feb 2012.
    [9]Klein A. CAD-based off-line programming of painting robots. Robotica,1987,5(4): 267-271.
    [10]Suh S.H, Woo I.K, S.K. Noh. Development of an automated trajectory planning system (ATPS) for spray painting robots. In:Proceeding IEEE Institution Conference Robotics and Automation. Sacramento,1991,1948-1955
    [11]Sub S H, Lee J J,Choi YJ,et al. A prototype integrated robotic painting system: software and hardware development.In:Proceedings of the IEEE JRSJ International Conference on Intelligent Robots and System.Piscataway,NJ,USA:IEEE,1993, 475-482.
    [12]Narayanan V, Bidanda B. On the development of computer based path planning strategies for robot spray glazing. Computer and Industrial Engineering,1992, 23(4):15-18.
    [13]Ramabhadran R, J. K. Antonio. Planning spatial paths for automated spray coating applications. In:Proceedings of 1996 IEEE international conference on robotics and automation.1996,2,1255-1260.
    [14]Ramabhadran R, Antonio J. K. Fast solution techniques for a class of optimal trajectory planning problems with applications to automated spray coating. IEEE Transactions on Robotics and Automation,1997,13(4):519-530.
    [15]Asakawa N, Takeuchi Y.Teachless spray painting of sculptured surface by an industrial robot. In:Proceeding of IEEE Institution Conference Robotics and Automation, Albuquerque,1997,1875-1879.
    [16]Antonio J. K, Ramabhadran R, Ling T. L. A framework for trajectory planning for automated spray coating. International Journal of Robotics and Automation,1997, 12(4):124-134.
    [17]Bidnada B, Narayanan V, Rubinovitz J. Computer-aided-designed-based interactive off-line programming of spray-glazing robots. Computer Integrated Manuacfturing, 1993,6(6):357-365.
    [18]Duelen G, Stahlmann H, Liu X. An off-line planning and simulation system for the programming of coating robots. Annals of the CIPP,1989,38(1):369-372.
    [19]Balkan T, Arikan M. A. S. Modeling of paint flow rate flux for circular paint sprays by using experimental paint thickness distribution. Mechanics Research Communications, 1999,26(5):609-617
    [20]Hansbo A, Nylen P. Models for the simulation of spray deposition and robot motion optimization in thermal spraying of rotating objects. Surface and Coatings Technology, 1999,122:191-210
    [21]Zaki A, Eskander M. Spray painting of a general three-dimensional surface. In:Proc of IEEE/RSJ International Conference on Robotics and Automation. San Francisco,2000, 2172-2176.
    [22]Freund E, Rokossa D, Mann J. R. Process-oriented approach to an efficient off-line programming of industrial robots. In Proc. IEEE Industrial Electronics Society Conf. 1998,1:208-213.
    [23]Sahir M. A, Balkan T. Process modeling, simulation, and paint thickness measurement for robotic spray painting. Journal of Robotic system,2000,17(9):479-494.
    [24]Arikan M. A. S, Balkan T. Process simulation and paint thickness measurement for robotic spray painting. CIRP Annals-Manufacturing Technology,2001,50(1):291-294.
    [25]Chen H. P, Sheng W. H, Xi N, Song M. Automated robot trajectory planning for spray painting of free-form surfaces in automotive manufacturing. In:Proc of IEEE International Conference on Robotics and Automation. Washington DC,2002, 450-455.
    [26]Chen H. P, Xi N, Sheng W. H. Cad-based automated robot trajectory planning for spray painting of free-form surfaces. Industrial Robot,2002,29(5):426-433.
    [27]Chen H. P, Xi N, Sheng W. H. A general framework for automatic cad-guided tool planning for surface manufacturing. In:Proc of IEEE International Conference on Robotics and Automation. Taiwan,2003,3504-3509.
    [28]Chen H. P, Xi N, Chen Y. F. Multi-objective optimal robot path planning in manufacturing. In:Proc of IEEE International Conference on Intelligent Robots and Systems. Las Vegas,2003,1167-1172.
    [29]Chen H. P, Xi N, Wei Z. H. Robot trajectory integration for painting automotive parts with multiple patches. In:Proc of IEEE International Conference on Robotics and Automation. Taiwan,2003,3984-3989.
    [30]Chen H. P, Xi N, Sheng W. H, Chen Y. F. Optimal spray gun trajectory planning with variational distribution for forming process. In:Proc of IEEE International Conference on Robotics and Automation. New Orleans,2004,51-56.
    [31]Chen H. P, Xi N, Masood S. K. Development of automated chopper gun trajectory planning for spray forming. Industrial Robot,2004,31(3):297-307.
    [32]Chen H. P, Xi N, Sheng W. H. General framework of optimal tool trajectory planning for free-form surfaces in surface manufacturing. Journal of Manufacturing Science and Engineering,2005,127(1):49-59.
    [33]Chen H. P, Xi N, Sheng W. H. Optimizing material distribution for tool trajectory generation in surface manufacturing. In:Proc of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Monterey,2005,1389-1394.
    [34]Chen H. P, Xi N. Automated Tool trajectory planning of industrial robots for painting composite surfaces. Adv Manuf Technol,2008(35):680-696.
    [35]Chen H. P, Fuhlbrigge T, Li X. Z. A review of cad-based robot path planning for spray painting. Industrial Robot,2009,36(1):45-50.
    [36]Chen H. P, Fuhlbrigge T, Li X. Z. Automated industrial robot path planning for spray painting process:a review. In:Proc of 4th IEEE Conference on Automation Science and Engineering. Washington DC,2008,522-527.
    [37]Sheng W. H, Xi N, Song M, Chen Y. Automated cad-guided robot path planning for spray painting of compound surfaces. In:Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. Tankamutsa,2000,1918-1923.
    [38]Sheng W. H, Chen H. P, Xi N. Tool path planning for compound surfaces in spray forming processes. Automation Science and Engineering,2005,2(6):240-249.
    [39]Sheng W. H, Xi N, Chen H. P. Suface partitioning in automated cad guided tool planning for additive manufacturing. In:Proc of IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas,2003,2072-2077.
    [40]Sheng W. H, Chen H. P, Xi N, Tan J. D. Optimal tool path planning for compound surfaces in spray forming processes. In:Proc of IEEE International Conference on Robotics and Automation. New Orleans,2004,45-50.
    [41]Duncan S, Jones P, Wellstead P. Robot path planning for spray coating:a frequency domain approach. In:Proc of Proceedings of the American Control Conference. Boston,2004(5),4643-4648.
    [42]Duncan S, Jones P, Wellstead P. A frequency-domain approach to determining the path separation for spray coating. IEEE Transactions on Automation Science and Engineering,2005,2(3):233-239.
    [43]Conner C. D, Greenfield A, Atkar N. P, Rizzi A. A, Choset H. Paint deposition modeling for trajectory planning on automotive surfaces. IEEE Transactions on Antomation Science and Engineering,2005,2(4):381-392.
    [44]Atkar N. P, Greenfield A, Conner C. D, Choset H, Rizzi A. Hierarchical segmentation of suifaces embedded in RJ for auto-body painting. In:Proc of the 2005 IEEE International Conference on Robotics and Automation. Barcelona,2005,574-579.
    [45]Prasad N. A, Aaron G, Conner D. C, Choset H, Alfred A. R. Uniform coverage of automotive surface patches. The International Journal of Robotics Research,2005, 24(11):883-898.
    [46]Prasad N. A. Uniform coverage of simple automotive surfaces:[dissertation]. Pittsburgh:Carnegie Mellon University,2005,17-23.
    [47]Prasad N. Atkar, David C. Conner, Aaron Greenfield,etc.Hierarchical Segmentation of Piecewise Pseudo extruded Surfaces for Uniform Coverage.IEEE Transcations on Automation Science and Engineering,2009,6(1):107-120.
    [48]Tewolde G. S, Sheng W. H.Ant colony optimization for tool path integration in spray forming processes. In:Proc of IEEE International Conference on Intelligent Robots and Systems. Beijing,2006,2394-2399.
    [49]Bi Z.M, Sherman Y. T. Lang, A Framework for CAD and Sensor-Based Robotic Coating Automation. IEEE Transactions on Industrial Informatics,2007,3(1):84-91.
    [50]Gyorfi J. S, Gamota D. R, Mok S. M. Evolutionary path planning with subpath constraints. IEEE Transactions on Electronics Packaging Manufacturing,2010, 33(2):143-151.
    [51]From P. J, Gravdahl J. T.A Real-Time Algorithm for Determining the Optimal Paint Gun Orientation in Spray Paint Applications. IEEE Transactions on Automation Science and Engineering.2009,7:1-7.
    [52]Gasparetto A, Vidoni R, Saccavini E. Optimal Path Planning For Painting Robots. Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. Istanbul,Turkey,2010,1-8.
    [53]Wei X, Wei C.H, and Liao X.P.Surface Segmentation based Intelligent Trajectory Planning and Control Modeling for Spray Painting. In Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation August, Changchun, China. 4958-4963.
    [54]Wei X, Yu S.R, Liao X.P. Paint deposition pattern modeling and estimation for robotic air spray painting on free-form surface using the curvature circle method. Industrial Robot,2010,37(2):202-213.
    [55]Woodwark J.R. Some speculations on feature recognition.Computer Aided Design,1988,20(4):189-196.
    [56]Li C.L, K. C. H. Feature recognition by template matching. Computers & Graphics, 2000,24:569-582.
    [57]Rameshbabu V, M. S. S. Hybrid feature recognition method for setup planning from STEP AP-203. Robotics and Computer-Integrated Manufacturing.2009,25:393-408.
    [58]Markus V, A. P, Georg B. Detection of Classes of Features for Automated Robot Programming. In:Proceedings of the 2003 IEEE International Conference on Robotics & Aufomslion, Taipei, Taiwan,2003,14-19.
    [59]ISO CD 10303-203 Application Protocol for the Exchange of Configuration Controlled 3D Product Design Data. ISO TC184/SC4,2011.
    [60]任蕾.基于STEP标准的几何信息的提取和模型重建[吉林大学硕士学位论文].长春吉林大学,2008,2-4.
    [61]付鹏,苑伟政.基于STEP的特征识别技术及其实现.中国机械工程,2010,21(11):1334-1337.
    [62]陈飞舟.网格模型特征识别与曲面重构[浙江大学硕士学位论文].杭州:浙江大学,2006,34-50.
    [63]罗晨,朱利民,丁汉.基于距离函数运动生成曲面的识别和重构方法.机械工程学报2009,45(10):151-158.
    [64]吕震.反求工程CAD建模中的特征技术研究[浙江大学博士论文].杭州:浙江大学机械工程学院,2002,32-41.
    [65]王振滨.喷漆机器人最优轨迹设计与仿真[江苏大学硕士论文].镇江:江苏大学电气信息工程学院,2001.
    [66]阙骋.喷漆机器人喷枪轨迹离线编程及仿真技术研究[江苏大学硕士论文].镇江:江苏大学电气信息工程学院,2005.
    [67]陈伟.喷涂机器人喷枪轨迹优化研究:[江苏大学硕士论文].镇江:江苏大学电气信息工程学院,2007.
    [68]汤养,陈伟.喷涂机器人喷枪轨迹规划的优化算法研究.机械设计与制造,2007,(10):144-146.
    [69]王燚,赵德安,王振滨.两类喷枪最优轨迹规划的比较.机械工程师,2004,(11):35-38.
    [70]刁训娣,赵德安,李医民等.喷漆机器人喷枪轨迹离线优化方法.农机化研究,2004,(1):93-97.
    [71]赵德安,陈伟,汤养.面向复杂曲面的喷涂机器人喷枪轨迹优化.江苏大学学报:自然科学版,2007,28(5):425-429.
    [72]赵德安,陈伟,汤养.基于遗传算法的喷涂机器入喷枪路径规划.中国机械工程,2008,19(7):777-779.
    [73]王其红,陈伟,赵德安等.自由曲面上喷涂机器人喷枪轨迹规划方法研究.江苏科技大学学报(自然科学版),2007,(12):57-60.
    [74]陈伟,赵德安,汤养.自由曲面喷漆机器入喷枪轨迹优化.农业机械学报,2008,35(1):147-150.
    [75]李发忠,赵德安,姬伟等.面向凹凸结构曲面的喷漆机器人轨迹优化研究.江苏科技大学学报:自然科学版,2008,22(4):64-67.
    [76]李发忠,赵德安,张超等.基于CAD的喷涂机器人轨迹优化.农业机械学报,2010,41(5):213-217.
    [77]李发忠,赵德安,姬伟等.喷涂机器人空间轨迹到关节轨迹的转换方法.农业机械学报,2010,41(11):198-201.
    [78]陈伟,赵德安,李发忠.复杂曲面的喷涂机器人喷枪轨迹优化与试验.农业机械学报,2011,42(1):204-208.
    [79]李发忠.静电喷涂机器人变量喷涂轨迹优化关键技术研究[江苏大学博士学位论文]. 镇江:江苏大学,2012.
    [80]谢明宏.喷涂机器人轨迹设计与优化:[江苏大学硕士学位论文].镇江:江苏大学电气信息工程学院,2008.
    [81]缪苏毅.基于点云切片技术的喷枪轨迹获取方法研究:[江苏大学硕士学位论文].镇江:江苏大学电气信息工程学院,2009.
    [82]胡裕渊.静电喷涂机器人轨迹优化与仿真技术研究:[江苏大学硕士学位论文].镇江:江苏大学电气信息工程学院,2010.
    [83]孙国朋,戴立玲,卢章平等.基于点云处理技术的喷涂机器人喷枪轨迹生成研究.机械设计与制造,2011,(1):158-160.
    [84]刘能广,任天然,柴苍修等.基于遗传算法的喷漆机器人轨迹的二层规划.机械设计与制造,2008,(6):173-175.
    [85]冯川,孙增沂.机器人喷涂过程中的喷炬建模及仿真研究.机器人,2003,25(4):353-358.
    [86]冯川.机器人喷釉系统的研究与应用[清华大学硕士论文].北京:清华大学计算机系,2004,96-104.
    [87]陈雁,颜华,王力强等.机器人匀速喷涂涂层均匀性分析.清华大学学报(自然科学版),2010,50(8):1210-1213.
    [88]张永贵,黄玉美,高峰等.喷漆机器人空气喷枪的新模型.机械工程学报,2006,42(11):226-233.
    [89]张永贵,黄玉美,彭中波等.考虑动力学因素的喷漆机器人喷枪路径优化.机械科学与技术,2006,25(8):993-996.
    [90]龚俊,崔朝玉,翟延华等.喷涂过程中的涂层生长速率模型的建模及仿真研究.机械制造,2008,(46):21-23.
    [91]龚俊,崔朝玉.喷枪最优运动轨迹求解条件的优化及仿真实验.现代制造工程,2008,(6):46-49.
    [92]曾勇,大型复杂自由曲面上的喷涂机器人喷枪轨迹优化模型:[兰州理工大学博士学位论文].兰州:兰州理工大学机电学院,2011.
    [93]Zeng Y, Gong J, Ning H.F. The Tool Trajectory Optimization of Spray Painting Robot for Spherical Surface.2011 International Conference on Electric Information and Control Engineering.2011,5570-5573.
    [94]Chen H. P, Xi N.Automated Robot Tool Trajectory Connection for Spray Forming Process. Journal of Manufacturing Science and Engineering.2012,134(4):2-9.
    [95]边霞,米良.遗传算法理论及其应用研究进展.计算机应用研究,2010,27(7):2425-2430.
    [96]徐伯庆,宣国荣,柴佩琪.中国旅行商问题的二叉树描述及其求解.模式识别与人工智能,2000,13(6):223-227.
    [97]周波,钱来,孟正大,戴先中.基于改进遗传算法工业机器人多路径组合规划.华中科技大学学报,2011,39(11):9-12.
    [98]Reza R, Ali M. Robot trajectory planning using rational frenet-serret curves. In: Proceedings of ESDA 2004 7th Biennial Conference on Engineering Systems Design and Analysis. Manchester, United Kingdom,2004,19-22.
    [99]Reza R, Ali M. Velocity Distribution Profile for Robot Arm Motion Using Rational Frenet-Serret Curves. Informatica,2006,17(1):69-84.
    [100]Patrikalakis N.M.Offsets of Curves on Rational B-Spline Surfaces.Engineering with Computers,1989,5,39-46.
    [101]Takashi M, An overview of offset curves and surfaces.Computer-Aided Design,1999, 31,165-173.
    [102]Thomas R, Franz-Erich W, Oliver S. Computation of Medial Curves on Surfaces. The Mathematics of Surfaces VIL Information Geometers,1997.
    [103]Yang Y.J, Ca S, Yong J. H. Approximate computation of curves on B-spline surfaces. Computer-Aided Design,2008,40:223-234.
    [104]张连东,王德伦.基于活动标架法的2自由度机器人轨迹规划.机械工程学报2002,38(12):160-170.
    [105]张延恒,孙汉旭,贾庆轩.两自由度空间机器人运动规划方法.高技术通讯,2010,11:1162-1166.
    [106]汪国平,冯艺东,董士海.SWEEP曲面中三种定位标架的分析比较.计算机辅助设计与图形学学报,2001,13(5):455-460.
    [107]刘利刚,王国瑾.基于控制顶点偏移的等距曲线最优逼近.软件学报,2002,13(3),398-403.
    [108]陈省身,陈维桓.微分几何讲义.北京:北京大学出版社,2001:51-101.
    [109]徐玖平,胡知能,李军.运筹学.北京:科学出版社,2004:187-215.
    [110]Tait S. Smith, Rida T. Farouki, Mohammad alKandari, Helmut Pottmann. Optimal slicing of free-form surfaces.Computer Aided Geometric Design,2002,19:43-64.
    [111]Feng H.Y, Li H.W. Constant scallop-height tool path generation for three-axis sculptured surface machining. Computed-Aided Design.2002,34:647-654.
    [112]Wang W, Li Y.G. Towards a Feature-based Agent-driven NC Tool Path Generation to Support Design and Process Changes. Computer-Aided Design and Applications, 2013,10(4):603-618.
    [113]田军锋,林浒,姚壮等.基于容差限制的五轴侧铣直纹面刀具轨迹规划.小型微型计算机系统.2013,34(9):2011-2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700