用户名: 密码: 验证码:
共表达不同外源基因的重组弱毒Ⅰ型马立克氏病毒的构建和生物学特性比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马立克氏病毒(Marek′s disease virus, MDV)是α疱疹病毒的成员,基因组为180kb左右的双股DNA,可引起鸡的淋巴细胞瘤。GX0101株MDV是国内外从鸡体内分离到的第一株整合有网状内皮组织增生症病毒(Reticuloendotheliosis virus, REV)长末端重复序列(Long terminal repeat, LTR)的重组野毒株。本实验室前期研究中已经构建了GX0101的细菌人工染色体(Bacterial artificial chromosome, BAC)克隆,并构建了敲除肿瘤基因meq的突变株GX0101meq病毒。该基因缺失性MDV不但丧失对SPF鸡的致病性,而且不再引起肿瘤以及胸腺和法氏囊萎缩。本文利用敲除meq基因的GX0101株MDV作为载体表达AIV-H9N2和NDV主要保护抗原基因,构建了2株敲除meq致肿瘤基因且同时表达2种不同外源基因的重组MDV。通过体内和体外连续传代分析这些重组MDV在细胞水平和动物体内的复制能力、探讨插入片段在重组MDV基因组中的稳定性、通过免疫SPF鸡这些重组MDV在体内诱导鸡的免疫应答的能力,从而为研发用于预防MDV和H9N2更好的疫苗提供候选疫苗株及相关的技术支持。研究主要从以下几个方面展开:
     1.荧光定量PCR检测1型MDV在不同感染阶段各组织中病毒含量的变化和分布。
     感染马立克病毒的鸡持续携带病毒一段时间后,可以增加器官肿瘤的发生率和提高横向传播的能力。鸡的马立克病毒含量与恶性肿瘤的发生率和作为感染性病毒的颗粒的唯一来源的羽毛囊上皮细胞中病毒传播水平呈有正相关的关系。本研究建立了一种SYBR Green双重实时荧光定量PCR的方法,通过选择病毒的meq基因和管家基因-鸡卵铁转蛋白ovo来检测和量化发病鸡的马立克病毒的含量和不同组织病毒的分布。研究中分别用马立克基因组的BAC克隆,BAC-GX0101和携带管家基因-鸡卵铁转蛋白特异性基因片段的质粒(pMD18T-ovo)来定量病毒和宿主基因组。该方法具有1-8logs动态变化范围,其变化的平均值的批间和批内系数小于2%,并且MDV最小的检测含量为10拷贝。利用该方法绝对定量检测感染1000PFU的SDWJ1302菌株发病鸡的分别于7、14、21、28、40、60和90天取不同样品组DNA,空白组的鸡也作同样处理,并与常规的PCR检测方法的灵敏度进行比较。结果表明,感染鸡的免疫器官在感染7天后就可以检测到马立克基因的拷贝数,鸡的血液和不同器官在感染28天后是检测到马立克基因拷贝的高峰期,但40天后逐渐下降。在淋巴细胞,肝脏和脾脏的病毒载量水平均高于其它器官,并且在不同阶段羽毛囊上皮细胞的含量最高。研究数据进一步证明涉及病毒感染的多器官和免疫器官的主要分布,从而导致免疫抑制和免疫细胞的转化。这是首次对早期潜伏感染和发病后阶段的不同组织和器官的马立克基因组的拷贝数进行了绝对定量,应用此方法能有利于促进我们对马立克氏病的发病机机理、传播、诊断、遗传特性和疫苗控制的进一步认识。
     2.共表达H9N2-NA和NDV-F的meq缺失性重组马立克病毒的构建及其生物学特性研究
     本实验室以前的研究报道表明,在马立克氏病病毒(MDV)基因组的pp38基因和1.8kb mRNA之间的305bp是一个双向启动子,分别启动MDV的1.8kb mRNA转录子和pp38基因的表达(两个方向作用的启动子分别P1.8kb和Ppp38表示),该双向启动子可被MDV自身表达的pp38/pp24二聚体作为反式转录因子激活。为了构建能同时表达禽流感病毒H9N2株的NA基因和鸡新城疫病毒(NDV)的F基因的meq基因缺失型重组I型MDV,首先以真核表达性质粒pcDNA3.1为骨架,构建了重组表达性载体质粒pPpp38-NA/1.8kb-F。在该质粒中,NDV-F基因位于双向启动子上游,由P1.8kb启动;AIV-NA基因位于该双向启动子下游,由Ppp38启动。为了提供作为反式转录因子pp38/pp24二聚体,将重组质粒pPpp38-NA/1.8kb-F与包含pp38/pp24表达质粒pBud-pp38-pp24共转染CEF。用针对NDV-F和AIV-NA的小鼠血清,对转染细胞做间接免疫荧光反应(IFA),证明了在重组质粒pPpp38-NA/1.8kb-F中该双向启动子确实可同时调控这两个外源基因的表达。为了将NA和F基因共表达盒插入MDV US2的非必要区,分别将MDV插入位点两侧序列并作为同源重组的两同源臂整合到NA和F基因共表达盒的两侧,构建成转基因重组载体质粒pPpp38-NA/1.8kb-F。PCR扩增同源重组大片段,将敲除了meq基因的GX0101(GX0101Δmeq)作为亲本病毒,在EL250大肠杆菌中通过同源重组将NA和F基因共表达盒插入GX0101Δmeq的US2非必要区,构建并筛选到重组MDV (MZC13NA/F)。IFA、ELISA和免疫印迹分析表明,重组病毒MZC13NA/F可在双向启动子的控制及MDV自身pp38/pp24二聚体激活下同时表达NDV-F和AIV-NA基因。MZC13NA/F的体外生长特性也说明,MZC13F/NA与其亲本病毒GX0101的CEF无显著差异。同时也表明,在1.8-kb mRNA转录方向的启动子活性高于pp38基因方向。用MDV的这个自身双向启动子构建并成功同时表达二个外源基因的重组MDV,不仅表明它可以作为一个有潜在利用价值的启动子,而且可在构建的重组MDV中减少外源DNA的插入。
     3.共表达H9N2-HA和-NA的meq缺失性重组马立克病毒的构建及其生物学特性研究
     为了构建能够表达来源于低致病性禽流感H9N2HA和NA,将野毒株GX0101作为亲本毒,通过同源重组的方法将强启动子CMV和SV40分别启动HA和NA共表达的串联大片段插入到GX0101基因组的meq位点取代meq基因,得到的病毒命名为MZC12HA/NA。体外进行rMDV和亲本毒GX0101生物学活性比较发现MZC12HA/NA与GX0101在CEF细胞的生长动态无明显差异。Southern bolt表明共表达盒成功插入到meq基因的双拷贝位点,meq基因完全被敲除。RT-qPCR显示HA和NA的mRNA转录水平显著高于MDV自身pp38mRNA的转录。ELISA检测显示HA和NA蛋白的表达也远远高于pp38蛋白的表达。IFA和western bolt分析表明HA和NA能够同时表达,且检测不到meq基因的表达。结果表明,作为AIV-H9N2与MDV重组得到的MZC12HA/NA致肿瘤meq基因被删除,且能够高水平表达H9N2的抗原基因HA和NA。
     4.同时表达AIV-H9N2的HA和NA基因的MZC12HA/NA重组MDV的免疫原性
     MZC12HA/NA免疫SPF和海兰褐鸡,在鸡体内均能良好地复制,但复制能力弱;重组病毒免疫SPF鸡后能诱导滴度为2.0左右的H9N2抗体;重组病毒和H9N2对海兰褐的免疫应答有明显协同作用;免疫后SPF鸡H9N2的排毒实验,对H9N2的保护率为30%-35%,所以该重组病毒将来可能应用于抵抗MDV和H9N2感染的重组疫苗的筛选。
Marek’s disease virus (MDV) is a member of the Alphaherpesvirinae subfamily, andits genome contains a linear double-stranded DNA of about180kb. MDV causes Marek’sdisease in chickens with lymphomas. GX0101is the first recombinant MDV field straincontaining the reticuloendotheliosis virus (REV) long terminal repeat (LTR) insert isolatedfrom chicken both at home and abroad. In previous research in our laboratory, GX0101bacterial artificial chromosome and its mutant strain GX0101LTR with a deletion of theREV-LTR were constructed and demonstrated that REV-LTR insert increased thehorizontal transmission ability of GX0101. Mutant strain GX0101meq with a deletion ofmeq oncogene was demonstrated to have lost its pathogenicity in SPF chicken, and nolonger induced tumors and atrophy of thymus and bursa of fabricius. With the widespreaduse of molecular biology, it is promising for MD recombinant vaccine. MDV vaccine strainis considered as one of the most potential virus vectors, which could prevent poultry diseasethrough constructing multivalent live vaccine of exogenous gene antigen. The articlediscusses whether the expression of pp38/pp24heterodimers are the required activators forthe expression of the foreign genes. The confirmed function of the bi-directional promoterprovides better feasibilities to insert multiple foreign genes in MDV genome based vectorsk,and try to analyze rMDV replication ability in cells and animal bodies through serialpassage in vivo and in vitro. And discuss the stability of rearrange pieces in MDV genometo provide research direction for rearrange virus special biology activity. And study theimmune response ability of rMDV through inoculating SPF chickens, discuss synergisticeffect between inactivated vaccine rMDV and H9N9through co-inoculating chickens. Andprovide screening vaccine strain for the prevention of MDV and H9N9. And providetheoretical and technical support for constructing rearrange MDV virus vaccine in future.
     1. Absolute quantification of MDV dynamic loads and distributions in different tissuesusing duplex real-time PCR assay
     Chickens infected with Marek’s disease virus (MDV) carry the virus consistently for a long time, which increases the incidence and rate of virus-induced multi-organ tumors in vivoand increases its potential for horizontal transmission. There is a positive correlation betweenMDV loads and the incidence of malignant tumors and the level of viral transmission in thefeather follicle epithelia of chickens serving as the sole sources of infectious virus particles.The present study was aimed at developing a SYBR Green duplex real-time quantitative PCR(q-PCR) assay to detect and quantify MDV loads and distributions in different tissues,targeting the Meq gene of the virus and the house-keeping ovotransferrin (ovo) gene ofchickens. A bacterial artificial chromosome (BAC) clone of the MDV genome, BAC-GX0101,and a plasmid (pMD18T-ovo) bearing a fragment of the chicken ovo gene were used toquantify virus and host genomes, respectively. The assay had a dynamic range of8logs, amean inter-and intra-assay coefficient of variation (CV) of <2%and minimum detection limitof10MDV genome copies. The sensitivity of the assay was compared with that of bothconventional PCR and viremia assay. The q-PCR was validated using different tissue DNApreparations derived from chickens infected with1000plaque forming units (PFUs) of theSDWJ1302strain and sampled on days7,10,15,21,28,40,60and90post-infection (p.i.),along with uninfected chickens. The resulted indicated that the MDV genome was almostquantifiable in mmune organs of infected chickens by day7p.i., and the number of MDVgenome copies in the blood and different organs peaked by day28p.i., but then graduallydecreased by day40p.i.. The levels of viral loads in the lymphocytes, liver and spleen wereall higher than that in other organs, and that in the feather follicles was the highest at differentstages of MDV infection. The data provided further evidence of viral infection involvingmulti-organ distribution and mainly involving immune organ proliferation, resultingin immunosuppression and lymphocyte transformation. This is the first report of absolutequantification of MDV genomes in different tissues and organs during the early latentinfected and later incidence stages, and application of this assay could significantly furtherour understanding of the pathogenesis, spread, diagnosis, genetic resistance and vaccinalcontrol of Marek’s disease.
     2. Biological characteristics of rMDV lacking the meq oncogene and co-expressingAIV-H9N2-NA and NDV-F genes under control of MDV’s own bi-directionalpromoter
     Our previous studies reported a bi-directional promoter of only305bp between pp38geneand1.8kb mRNA family on Marek’s disease virus (MDV) genome, its transcriptionalfunction could be activated by pp38/pp24hetero-dimers as trans-acting transcriptional factors.To qualitatively analyze and evaluate its bi-directional transcriptional function in bothtransient and transgenic systems, several different plasmids were constructed and recombinantMDV type1strain GX0101was developed to co-express a NA gene from Avian InfluenzaVirus H9N2strain and a F gene from the Newcastle disease virus (NDV).
     The two foreign genes, NDV-F gene and AIV-NA gene, were inserted in the plasmiddriven by the bidirectional promoter. NDV-F gene was located in the upstream of thepromoter, while the AIV-NA gene was located in the downstream of the promoter. To testwhether the expression of pp38/pp24heterodimers are the required activators for theexpression of the foreign genes, the recombinant plasmid pPpp38-NA/1.8kb-F containingexpression cassette for the two foreign genes was co-transfected with pp38/pp24expressionplasmid, pBud-pp38-pp24in chicken embryo fibroblast (CEF) cells. Alternatively, plasmidpPpp38-NA/1.8kb-F was transfected with GX0101-infected CEF which pp38/pp24wasexpressed via virus infection. Moreover, a recombinant MDV was constructed containing theexpression cassette of pPpp38-NA/1.8kb-F. To do so, a Meq-deleted MDV GX0101(GX0101Δmeq) was used as parental virus, the AIV-NA gene and NDV-F gene co-expression cassettewas inserted at the nonessential region of MDV US2to form a new recombinant MDV(MZC13NA/F) through homologous recombination. Indirect fluorescence antibody (IFA) test,ELISA and Western blot analyses indicated that F and NA genes were expressedsimultaneously under control of the bi-directional promoter, but in opposite directions. Theexpression of both foreign genes was activated by pp38/pp24dimers either via virus infection,or transient expression. The CEFs transfected with pPpp38-NA/1.8kb-F alone had noexpression. The data also indicated that the activity of the promoter in the1.8-kb mRNAtranscript direction was higher than that in the direction for the pp38gene. In vitro growthproperties of MZC13NA/F were also inspected and concluded that the MZC13F/NA had thesame growth kinetics in CEF cultures as its parental wild type virus GX0101.
     The pp38/pp24dimers expressed by pBud-pp38-pp24in co-transfected cells or byGX0101in infected cells were critical to activate the bi-directional promoter for expression of two foreign genes in two directions. The bi-directional promoter could be used as a potentialpromoter with some advantages in construction of recombinant MDVs to express more thanone foreign gene.
     3. Biological characteristics of rMDV lacking the meq oncogene and co-expressingAIV-H9N2-HA and NA genes under control of exogenous promoters
     To develop a recombinant Marek’s disease virus (rMDV1) co-expressing thehemagglutinin gene (HA) and Neuramidinase gene (NA) from a low pathogenic AvianInfluenza virus (LPAIV) H9N2strain and lacking the Meq oncogene that shares homologywith the Jun/Fos family of transcriptional factors, a wild strain of MDV GX0101was used asparental virus, the HA and NA genes co-expression cassette under control of the CMV andSV40early promoters was inserted at two Meq sites of GX0101to form a new complete lackof oncogenicity of a Meq knock-out mutant MDV (MZC12HA/NA) through homologousrecombination. MZC12HA/NA was reconstituted by transfection of recombinant BAC-MDVDNA into the secondary chicken embryo fibroblast (CEF) cells. Highly purifiedMZC12HA/NA was obtained after four rounds of plaque purification and proliferation. Invitro growth properties of recombinant virus were also inspected and concluded that theMZC12HA/NA had the same growth kinetics in CEF cultures as its parental wild type virusGX0101. Southern bolt indicated that co-expression cassette was successfully inserted at twocopies sites of Meq gene, so two Meq genes were knocked-out completely. RT-qPCR showedtranscription and expression levels of the HA ana NA genes were both significantly higherthan that of GX0101own pp38gene. Indirect fluorescence antibody (IFA) test, and Westernblot analyses indicated that HA and NA genes were co-expressed simultaneously undercontrol of the different promoters but Meq genes were not. These results herald an new andeffective recombinant Meq-deleted MDV-based AIV-H9N2vaccine may be useful inprotecting chickens from very virulent MDV and H9N2challenges.
引文
崔治中, Lee L.F..用非放射性的Digoxigenin标记的DNA探针检出马立克氏病病毒DNA.江苏农学院学报,1991,12(1):1–6.
    李延鹏,康孟佼,苏帅,丁家波,崔治中,朱鸿飞.马立克氏病病毒meq基因敲除株感染性克隆的免疫效果评价.微生物学报,2010,50(7):942–948.
    张志.我国近年来马立克氏病病毒野毒株分子流行病学和生物学特性的研究.山东农业大学博士论文,2004.
    周祥,韦平,滕丽琼.整合进禽反转录病毒长末端重复序列的马立克氏病病毒的分离鉴定.畜牧与兽医,2007,39(8):22–25.
    崔治中.中国鸡群病毒性肿瘤病鸡防控研究.中国农业出版社.2013. p141.
    Abdul–Careem M. F., Hunter B. D., Nagy E., Read L. R., Sanei B., Spencer J. L., Sharif S..Development of a real–time PCR assay using SYBR Green chemistry for monitoringMarek’s disease virus genome load in feather tips. J. Virol. Meth.,2006,133:34–40.
    Amer H. M., Almajhdi F. N.. Development of a SYBR Green I based real–time RT–PCRassay for detection and quantification of bovine coronavirus. Mol. Cell. Probes.2011,25:101–107.Baigent S. J., Ross L. J., Davison T. F.. Differential susceptibility to Marek'sdisease is associated with differences in number, but not phenotype or location, ofpp38+lymphocytes. J. Gen. Virol.,1998,79(Pt11):2795–2802.
    Baigent S. J., Petherbridge L. J., Howes K., Smith L. P., Currie R. J. W., Nair V. K.. Absolutequantitation of Marek’s disease virus genome copy number in chicken feather andlymphocyte samples using real–time PCR. J. Virol. Meth,2005,123(1):53–64.
    Baigent S. J., Petherbridge L. J., Smith L. P., Zhao Y., Chesters P. M., Nair V. K..Herpesvirus of turkey reconstituted from bacterial artificial chromosome clonesinduces protection against Marek's disease. J. Gen. Virol.,2006,87(Pt4):769–776.
    Baigent S. J., Smith L. P., Currie R. J.. Correlation of Marek's disease herpesvirus vaccinevirus genome load in feather tips with protection, using an experimental challengemodel. Avian Patho.,2007,36(6):467–474.
    Baigent S. J., Smith L. P., Nair V. K., Currie R. J.. Vaccinal control of Marek's disease:current challenges, and future strategies to maximize protection. Vet. Immunol.Immunopathol.,2006,112(1–2):78–86.
    Barkallah M., Fendri I., Dhieb A., Gharbi Y., Greub G., Gdoura R.. First detection of Waddliachondrophila in Africa using SYBR Green real–time PCR on veterinary samples.Veterinary Microbiology.2013,164:101–107.
    Barlic–Maganja D., Grom J.. Highly sensitive one–tube RT–PCR and microplatehybridisation assay for the detection and for the discrimination of classical swine fevervirus from other pestiviruses. Journal of virological methods,2001,95:101–110.
    Barrow A., Venugopal K.. Molecular characteristics of very virulent European MDVisolates. Acta. Virol.,1999,43:90–93.
    Barry S. C., Harder B., Brzezinski M., Flint L. Y., Seppen J., Osborne W. R.. Lentivirusvectors encoding both central polypurine tract and posttranscriptional regulatoryelement provide enhanced transduction and transgene expression. Human gene therapy,2001,12(9),1103–1108.
    Baxendale W.. Preliminary observations on Marek's disease in ducks and other avianspecies. Vet. Rec.,1969,85(12):341–342.
    Biggs P. M., Purchase H. G., Bee B. R., Dalton P. J.. Preliminary report on acute Marek’sdisease (fowl paralysis) in Great Britain. Vet. Rec.,1965,77:1339–1340.
    Bradley G., Hayashi M., Lancz G., Tanaka A., Nonoyama M.. Structure of the Marek’sdisease virus BamHI–H gene family: Genes of putative importance for tumor induction.Journal of Virology,1989,63:2534–2542.
    Bradley G., Lancz G., Tanaka A., Nonoyama M.. Loss of Marek’s disease virustumorigenicity is associated with truncation of RNAs transcribed within BamHI–H.Journal of Virology,1989,63:4129–4135.
    Brown A. C., Baigent S. J., Smith L. P., Chattoo J. P., Petherbridge L. J., Hawes P.,Allday M. J., Nair V.. Interaction of MEQ protein and C–terminal–binding protein iscritical for induction of lymphomas by Marek′s disease virus. Proc. Natl. Acad. Sci.,2006,103:1687–1692.
    Buckmaster A. E., Scott S. D., Sanderson M. J., Boursnell M. E., Ross N. L., Binns M. M..Gene sequence and mapping data from Marek's disease virus and herpesvirus ofturkeys: implications for herpesvirus classification. J. Gen. Virol.,1988,6(Pt8):2033–2042.
    Bulow V. V., Biggs P. M.. Difference between strains of Mareks’ disease virus and turkeyherpevirus by immunofluor escence assays. Avian Pathology,1975,4:133–146.
    Buscaglia C., Calnek B. W., Schat K. A.. Effect of immunocompetence on theestablishment and maintenance of latency with Marek’s disease herpesvirus. J. Gen.Virol.,1988,69(Pt5):1067–1077.
    Buscaglia C., Calnek B. W.. Maintenance of Marek’s disease herpesvirus latency in vitroby a factor found in conditioned medium. J. Gen. Viorl.,1988,69(Pt11):2809–2818.
    Burgess S. C., Davison T. F.. A quantitative duplex PCR technique for measuring amounts ofcell–associated Marek’s disease virus: differences in two populations of lymphoma cells. J.Virol. Meth.,2002,82:27–37.
    Calnek B. W.. Effects of passive antibody on early pathogenesis of Marek's disease. Infect.Immun.,1972,6(2):193–198.
    Calnek B. W., Adldinger H. K., Kahn D. E.. Feather follicle epithelium: a source ofenveloped and infectious cell–free herpesvirus from Marek's disease. Avian Dis.,1970,14(2):219–233.
    Calnek B. W., Hitchner S. B.. Localization of viral antigen in chickens infected withMarek's disease herpesvirus. J. Natl. Cancer Inst.,1969,43(4):935–949.
    Calnek B. W., Hitchner S. B.. Survival and disinfection of Marek's disease virus and theeffectiveness of filters in preventing airborne dissemination. Poult. Sci.,1973,52(1):35–43.
    Calnek B. W., Schat K. A., Ross L. J., Shek W. R., Chen C. L.. Further characterization ofMarek's disease virus–infected lymphocytes. I. In vivo infection. Int. J. Cancer,1984,33(3):389–398.
    Calnek B. W., Ubertini T., Adldinger H. K.. Viral antigen, virus particles, and infectivityof tissues from chickens with Marek's disease. J. Natl. Cancer Inst.,1970,45(2):341–51.
    Churchill A.E., Biggs P. M.. Agent of Marek’s disease in tissue culture. Nature,1967,215:528–530.
    Cui H. Y., Gao H. B., Cui X. L., Zhao Y., Wang Y. F., et al.. Avirulent Marek’s DiseaseVirus Type1Strain814Vectored Vaccine Expressing Avian Influenza (AI) Virus H5Haemagglutinin Induced Better Protection Than Turkey Herpesvirus Vectored AIVaccine. PLoS ONE,2013,8(1):5334.
    Cui H. Y., Wang Y. F., Shi X. M., An T. Q., Tong G. Z., et al.. Construction of an infectiousMarek’s disease virus bacterial artificial chromosome and characterizationof protectioninduced in chickens. Journal of Virological Methods,2009,156:66–72.
    Cui H. Y., Wang Y. F., Shi X. M., Tong G. Z., Lan D. S., et al.. Construction of Marek’sdisease virus serotype814strain as an infectioous bacterial artificial chromosome.Chinese journal of biotechnology,2008,24:569–575.
    Cui X., Lee L. F., Hunt H. D., Reed W. M., Lupiani B., Reddy S. M.. A Marek's diseasevirus vIL–8deletion mutant has attenuated virulence and confers protection againstchallenge with a very virulent plus strain. Avian Dis.,2005,49(2):199–206.
    Cui X., Lee L. F., Reed W. M., Kung H. J., Reddy S. M.. Marek's disease virus–encodedvIL–8gene is involved in early cytolytic infection but dispensable for establishment oflatency. J. Virol.,2004,78(9):4753–4760.
    Cui Z., Lee L. F., Liu J. L., Kung H. J.. Structural analysis and transcriptional mapping ofthe Marek's disease virus gene encoding pp38, an antigen associated with transformedcells. J. Virol.,1991,65(12):6509–6515.
    Cui Z. Z., Qin A. J., Lee L. F.. Expression and processing of Marek’ s disease virus pp38gene insert cells and immunological characteriation of the gene product. Proceedings of19th World’ s Poulty Congress,1992,123–126.
    Cui Z., Sun S., Wang J.. Reduced serologic response to Newcastle disease virus in broilerchickens exposed to a Chinese field strain of subgroup J avian leukosis virus. AvianDis.,2006,50:191–195.
    Cui Z., Zhuang G., Xu X., Sun A., Su S.. Molecular and biological characterization of aMarek's disease virus field strain with reticuloendotheliosis virus LTR insert. VirusGenes,2010,40:236–43.
    Churchill A. E. and Biggs P. M.. Agent of Marek’s disease in tissue Culture. Nature,1967,215:528–530.
    Churchill A. E., Chubb R. C., Baxendale W.. The attenuation, with loss of oncogenicity,of the herpes–type virus of Marek's disease (strain HPRS–16) on passage in cellculture. J. Gen. Virol.,1969,4(4):557–564.
    Darteil R., Bublot M., Laplace E., Bouquet J. F., Audonnet J. C., Riviere M.. Herpesvirusof turkey recombinant viruses expressing infectious bursal disease virus (IBDV) VP2immunogen induce protection against an IBDV virulent challenge in chickens.Virology,1995,211(2):481–490.
    Dash P. K., Boutonnier A., Prina E., Sharma S., Reiter P.. Development of a SYBR green Ibased RT–PCR assay for yellow fever virus: application in assessment of YFV infectionin Aedes aegypti. Virol. J.,2012,9:27.
    Datsenko K. A., Wanner B. L.. One–step inactivation of chromosome genes in Escherichiacoli K–12using PCR products. Proc. Natl. Acad. Sci. USA,2000,97:6640–6664.
    Davidson I., Borenshtain R.. Novel applications of feather tip extracts from MDV–infectedchickens; diagnosis of commercial broilers, whole genome separation by PFGE andsynchronic mucosal infection. FEMS Immunol. Med. Microbiol.,2003,38:199–203.
    Davidson I., Borenshtain R.. In vivo events of retroviral long terminal repeat integrationinto Marek’s disease virus in commercial poultry: detection of chimeric molecules as amarker. Avian Dis.,2001,45(1):102–121.
    Davidson I., Borenshtain R., Kung H. J., Witter R. L.. Molecular indications for in vivointegration of the avian leukosis virus, subgroup J–long terminal repeat into theMarek’s disease virus in experimentally dually–infected chickens. Virus Genes,2002,24:173–180.
    Davidson I., Borovskaya A., Perl S., Malkinson M.. Use of the polymerase chain reactionfor the diagnosis of natural infection of chickens and turkeys with Marek’s diseasevirus and reticuloendotheliosis virus. Avian Pathol.,1995,24:69–94.
    Davidson F., Nair V. K.. Marek’s Disease:An Evolving Problem. London: AcademicPress.
    Ding J., Cui Z., Lee L. F.. Marek's disease virus unique genes pp38and pp24are essentialfor transactivating the bi–directional promoters for the1.8kb mRNA transcripts. VirusGenes,2007,35(3):643–650.
    Ding J., Cui Z., Lee L. F., Cui X., Reddy S. M.. The role of pp38in regulation of Marek’sdisease virus bi–directional promoter between pp38and1.8–kb mRNA. Virus Genes,2006,32:193–201.
    Ding J. B., Cui Z. Z., Jiang S. J., Li Y. P.. The structure of unique genes pp38and pp24andthe effect on the activity of its upstream bi–directional promoters in Marek’s disease virus.Science in China: Series C Life Sciences,2008,38:760–765.
    Ding J. B., Cui Z. Z., Jiang S. J., Sun A. J., Sun S. H.. Study on the characterization of thebi–directional promoter between pp38gene and1.8kb mRNA transcripts of Marek’sdisease viruses. Acta. Microbidogica Sinica,2005,45(3):363–367.
    Ding J. B., Cui Z. Z., Jiang S. J., Reddy, S. J.. The enhancement effect of pp38gene producton the activity of its upstream bi–directional promoter in Marek’s disease virus. Sciencein China: Series C Life Sciences,2006,49:1–10.
    Donello J. E., Loeb J. E., Hope T. J.. Woodchuck hepatitis virus contains a tripartiteposttranscriptional regulatory element. J. Virol.,1998,72(6):5085–5092.
    Endoh D., Kon Y., Hayashi M., Morimura T., Cho K. O., Iwasaki T., Sato F.. Detection oftranscripts of Marek's disease virus serotype1iCP4homologue (MDV1ICP4) by insitu hybridization. J. Vet. Med. Sci.,1996,58(10):969–975.
    Gibellini D., Vitone F., Schiavone P., Ponti C., La Placa M., Re M.C.. Quantitative detectionof Human Immunodeficiency Virus type1(HIV–1) proviral DNA in peripheral bloodmononuclear cells by SYBR green real–time PCR technique. J. Clin. Virol.,2004,29:282–289.
    Gimeno I. M., Witter R. L., Fadly A. M., Silva R. F.. Novel criteria for the diagnosis ofMarek's disease virus–induced lymphomas. Avian Pathol.,2005,34(4):332–340.
    Gimeno I. M., Witter R. L., Hunt H. D., Reddy S. M., Lee L. F., et al.. The pp38gene ofMarek's disease virus (MDV) is necessary for cytolytic infection of B cells andmaintenance of the transformed state but not for cytolytic infection of the feather follicleepithelium and horizontal spread of MDV. Journal of Virology,2005,79(7):4545–4549.
    Guzman L. M., Belin D., Carson M. J., Beckwith J.. Tight regulation, modulation, andhigh–level expression by vectors containing the arabinose pBAD promoter. J.Bacteriol,1995,177:4121–4130.
    Heid C. A., Stevens J., Livak K. J., et al.. Real–time quantitative PCR. enome. Res.,1996,6(10):986–994.
    Ikuta K., Nishi Y., Kato S., Hirai K.. Immunoprecipitation of Marek's diseasevirus–specific polypeptides with chicken antibodies purified by affinitychromatography. Virology,1981,114(1):277–281.
    Islam A., Cheetham B. F., Mahony T. J., et al.. Absolute quantitation of Marek's diseasevirus and Herpesvirus of turkeys in chicken lymphocyte, feather tip and dust samplesusing real–time PCR. J. Virology Methods,2006,132(2):127–134.
    Islam A., Harrison B., Cheetham B. F., Mahony T. J., Young P. L., Walkden–Brown S. W..Differential amplification and quantitation of Marek's disease viruses using real–timepolymerase chain reaction. Virol. Meth.,2004,119(2):103–Il3.
    Jarosinski K., Kattenhorn L., Kaufer B., Ploegh H., Osterrieder N.. A herpesvirusubiquitin–specific protease is critical for efficient T cell lymphoma formation. Proc.Natl. Acad. Sci. USA,2007,104(December50):20025–20030.
    Jarosinski K. W., Osterrieder N., Nair V. K., Schat K.A.. Attenuation of Marek’ s diseasevirus by deletion of open reading frame RLORF4but not RLORF5a. J. Virol.,2005,79:11647–11659.
    Jarosinski K. W., Tischer B. K., Trapp S., Osterrieder N.. Marek′s disease virus: lyticreplication, oncogenesis and control. Expert Bev. Vaccines,2006,5:761–772.
    Jeltsch J. M., Hen R., Maroteaux L., Garnier J. M., Chambon P.. Sequence of the chickenovotransferrin gene. Nucl. Acids Res.,1987,15:7643–7645.
    Jiang S. J., Ding J. B., Meng S. S., Cui Z. Z., Yang H. C.. Co–expression and Construction ofEukaryote Plasmid of pp38and pp24of Marekcs Disease Virus.Virologica sinica,2005,20(4):404–407.
    Jiang W., Wang P. Z., Yu H. T., Zhang Y., Zhao K., Du H., Bai X. F.. Development of aSYBR Green I based one–step real–time PCR assay for the detection of Hantaan virus. J.Virol. Meth.,2014,196:145–151.
    Jones D., Isfort R., Witter R., Kost R., Kung H. J.. Retrovirus insertion into a herpesvirusare clustered at the junctions of the short repeat and unique sequences. Proc. Natl.Acad. Sci. USA,1993,90:3855–3859.
    Jones D., Lee L., Liu J. L., Kung H. J., Tillotson J. K.. Marek disease virus encodes abasic–leucine zipper gene resembling the fos/jun oncogenes that is highly expressed inlymphoblastoid tumors. Proc. Natl. Acad. Sci. USA,1992,89(9):4042–4046.
    Kaiser P., Uderwood G., Davison F.. Diferential Cytokine Respones following Marek’sDisease Virus Infection of Chikens Differing in Resistance to Marek’s Disease. J.Virology,2003,77(1):762–768.
    Kato S., Hirai K.. Marek's disease virus. Adv. Virus Res.,1985,30:225–277.
    Kawamura M., Hayashi M., Furuichi T., Nonoyama M., Isogai E., Namioka S.. Theinhibitory effects of oligonucleotides, complementary to Marek's disease virus mRNAtranscribed from the BamHI–H region, on the proliferation of transformedlymphoblastoid cells, MDCC–MSB1. J. Gen. Virol.,1991,72(5):1105–1011.
    Kenzy S. G., Cho B. R.. Transmission of classical Marek's disease by affected and carrierbirds. Avian Dis.,1969,13(1):211–214.
    Kim T., Mays J., Fadly A., Silva R. F.. Artificially inserting a reticuloendotheliosis viruslong terminal repeat into a bacterial artificial chromosome clone of Marek's diseasevirus (MDV) alters expression of nearby MDV genes. Virus Genes,2011,42:369–376.
    Kobayashi S., Kobayashi K., Mikam T.. A study of Marek's disease in Japanese quailsvaccinated with herpesvirus of turkeys. Avian Dis.,1986,30(4):816–819.
    Kruse P.F., Patterson M.K.. Tissue Culture, Methods and Applications. Academic Press,
    New York,1973,583.
    Lampert P., Garrett R., Powell H.. Demyelination in allergic and Marek’s disease virusinduced neuritis. Comparative electron microscopic studies. Acta. Neuropathol,1977,40:103–110.
    Lee L. E., Witter R. L., Reddy S. M., Wu P., Yanagida N., Yoshida S.. Protection andsynergism by recombinant fowl pox vaccines expressing multiple genes from Marek'sdisease virus. Avian Dis.,2003,47(3):549–558.
    Lee L. F., Heidari M., Zhang H. M., Lupiani B., Reddy S. M., et al.. Cell cultureattenuation eliminates rMd5Meq–induced bursal and thymic atrophy and renders themutant virus as an effective and safe vaccine against Marek’s disease. Vaccine,2012,30(34):5151–5158.
    Lee L. F., Kreager K. S., Arango J., Paraguassu A., Beckman B., Zhang H., Fadly A.,Lupiani B., Reddy S. M.. Comparative evaluation of vaccine efficacy of recombinantMarek's disease virus vaccine lacking Meq oncogene in commercial chickens. Vaccine,2010,28(5):1294–1299.
    Lee L. F., Liu J. L., Cui X. P., Kung H. J.. Marek’s disease virus latent protein MEQ:delineation of an epitope in the BR1domain involved in nuclear localization. VirusGenes,2003.27(3):211–218.
    Lee L. F., Liu X., Witter R. L.. Monoclonal antibodieswith specificity for three differentserotypes of Marek's disease viruses in chickens. J. Immunol.,1983,130(2):1003–1006.
    Lee L. F., Lupiani B., Silva R. F., Kung H. J., Reddy S. M.. Recombinant Marek's diseasevirus (MDV) lacking the Meq oncogene confers protection against challenge with avery virulent plus strain of MDV. Vaccine,2008,26(15):1887–1892.
    Lee L. F., Powell P. C., Rennie M., Ross L. J., Payne L. N.. Nature of genetic resistance toMarek's disease in chickens. J. Natl. Cancer Inst.,1981,66(4):789–796.
    Lee L. F., Wu P., Sui D., Ren D., Kamil J., Kung H. J., Witter R. L.. The complete uniquelong sequence and the overall genomic organization of the GA strain of Marek'sdisease virus. Proc. Natl. Acad. Sci. USA,2000,97(11):6091–6096.
    Lee L. F., Zhang H. M., Heidari M., Lupiani B., Reddy S. M.. Evaluation of factorsaffecting vaccine dfficacy of recombinant Marek’s disease virus lacking the Meqoncogene in chickens. Avian Dis.,2011,55(2):172–179.
    Lee S. I., Ohashi K., Morimura T., Sugimoto C., Onuma M.. Re–isolation of Marek'sdisease virus from T cell subsets of vaccinated and non–vaccinated chickens. Arch.Virol.,1999,144(1):45–54.
    Lee S. I., Takagi M., Ohashi K., Sugimoto C., Onuma M.. Difference in the meq genebetween oncogenic and attenuated strains of Marek's disease virus serotype1. J. Vet.Med. Sci.,2000,62(3):287–292.
    Lesnik F., Pauer T., Vrtiak O. J., Danihel M., Gdovinova A., Gergely M.. Transmission ofMarek's disease to wild feathered game. Vet. Med.(Praha),1981,26(10):623–630.
    Li Y., Reddy K., Reid S. M., Cox W. J., Brown I. H., et al.. Recombinant herpesvirus ofturkeys as a vector–based vaccine against highly pathogenic H7N1avian influenza andMarek’s disease. Vaccine,2011,29:8257–8266.
    Li Y., Sun A., Su S., Zhao P., Cui Z., Zhu H.. Deletion of the Meq gene significantlydecreases immunosuppression in chickens caused by pathogenic Marek's disease virus.Virol. J.,2011,8:2
    Liu J. L., Lin S. F., Brunovskis P., Li D., Davidson I., Lee L. F,. Kung H. J.. MEQ andv–IL8: cellular genes in disguise? Acta. Virol.,1999,43(2–3):94–101.
    Liu J. L., Ye Y., Lee L. F., Kung H. J.. Transforming potential of the herpesvirusoncoprotein MEQ. Morphological transformation, serum–independent growth, andinhibition of apoptosis. J. Virol.,1998,72(1):388–395.
    Loeb J. E., Cordier W. S., Harris M. E., Weitzman M. D., Hope T. J.. Enhancedexpression of transgenes from adeno–associated virus vectors with the woodchuckhepatitis virus posttranscriptional regulatory element: implications for gene therapy.Human gene therapy,1999,10(14):2295–2305.
    Lupiani B., Lee L. F., Cui X., Gimeno I., Anderson A., Morgan R. W., Silva R.F., WitterR. L., Kung H. J., Reddy S. M.. Marek′s disease virus–encoded Meq gene is involvedin transformation of lymphocytes but is dispensable for replication.. Proc. Natl. Acad.Sci. USA,2004,101:11815–11820.
    Ma M. X., Jin N. Y., Wang Z. G., Wang R. L., Fei D. L., et al.. Construction andimmunogenicity of recombinant fowlpox vaccines coexpressing HA of AIV H5N1andchicken IL18. Vaccine,2006,24(20):4304–431.
    Marek J.. Multiple nervenentzuendung (Polyneuritis) bei Huehnern. Dtsch TierarztlWochenschr,1907,15:417–421.
    Mays J. K., Silva R. F., Kim T., Fadly A.. Insertion of reticuloendotheliosis virus longterminal repeat into a bacterial artificial chromosome clone of a very virulent Marek’sdisease virus alters its pathogenicity. Avian Pathol.,2012,41:259–265.
    McGeoch D. J, Dolan A., Ralph A. C.. Toward a comprehensive phylogeny for mammalianand avian herpesviruses. Journal of Virology,2000,74:10401–10406.
    Moens B., López G., Adaui V., González E., Kerremans L., Clark D., Verdonck K., GotuzzoE., Vanham G., Cassar O.,Gessain A., Vandamme A. M., Van Dooren S.. Developmentand validation of a multiplex real–time PCR assay for simultaneous genotyping andhuman T–lymphotropic virus type1,2, and3proviral load determination. J. Clin.Microbiol.,2009,47:3682–3691.
    Morgan R. W., Cantello J. L., McDermott C. H.. Transfection of chicken embryo fibroblastswith Marek’s disease virus DNA. Avian Diseases,1990,34:345–351.
    Morgan R. W., Gelb J. J., Pope C. R., Sondermeijer P. J.. Efficacy in chickens of aherpesvirus of turkeys recombinant vaccine containing the fusion gene of Newcastledisease virus: onset of protection and effect of maternal antibodies. Avian Dis.,1993,37(4):1032–1040.
    Morgan R. W., Gelb J., Schreurs C. S., Lütticken D., Rosenberger J. K., et al.. Protection ofchickens from Newcastle and Mark’s disease with a recombinant herpserivus of turkey’svaccine expressing the Newcastle disease virus fusion protein. Avian Dis.,1992,36:858–870.
    Muyrers J. P., Zhang Y., Testa G., Stewart A. F.. Rapid modification of bacterial artificialchromosomes by ET–recombination. Nucleic Acids Res.,1999,27(6):1555–1557.
    Nair V. K.. Evolution of Marek’s disease–A paradigm for incessantrace between thepathogen and the host. Vet. J.,2005,170(2):175–183..
    Nair V., Kung H.. Marek’s disease virus oncogenicity: molecular mechanism. In: Davision, F.,Nair, V.(Eds.), Marek’s Disease: An Evolving Problem. Elsevier Academic Press, UK,2004,32–48.
    Nakajima K., Ikuta K., Naito M., Ueda S., Kato S., Hirai K.. Analysis of Marek's diseasevirus serotype1–specific phosphorylated polypeptides in virus–infected cells andMarek's disease lymphoblastoid cells. J. Gen. Virol.,1987,68(Pt5):1379–1389.
    Narayanan K., Williamson R., Zhang Y., Stewart A. F., Ioannou P. A.. Efficient and preciseengineering of a200kb beta–globin human bacterial artificial chromosome in E. coliDH10B using an inducible homologous recombination system. Gene Ther.,1999,6:442–447.
    Nazerian K., Witter R. L., Lee L. F., Yanagida N.. Protection and synergism byrecombinant fowl pox vaccines expressing genes from Marek's disease virus. AvianDis.,1996,40(2):368–376.
    Osterrieder N. Construction and characterization of an equine herpesvirus1glycoproteinC negative mutant. Virus Res.,1999,59(2):165–177.
    Papin J. F., Vahrson W., Dittmer D. P.. SYBR green–based real–time quantitative PCR assayfor detection of West Nile virus circumvents false–negative results due to strain variability.J. Clin. Microbiol.,2004,42:1511–1518.
    Pérez L. J., Díaz de Arce H., Tarradas J., Rosell R., Perera C. L., Mu oz M., Frías M.T., Nu ez J. I., Ganges L.. Development and validation of a novel SYBR Green real–timeRT–PCR assay for the detection of classical swine fever virus evaluated on differentreal–time PCR platforms. J. Virol. Meth.,2011,174:53–59.
    Petherbridge L., Howes K., Baigent S. J., Sacco M. A., Evans S., Osterrieder N., Nair V..Replication–competent bacterial artificial chromosomes of Marek's disease virus:novel tools for generation of molecularly defined herpesvirus vaccines. J. Virol.,2003,77(16):8712–8718.
    Petherbridge L., Brown A. C., Baigent S. J., Howes K., Sacco M. A., et al.. Oncogenicity ofvirulent Marek’s disease virus cloned as bacterial artificial chromo–somes. J. Virol.,2004,78:13376–13380.
    Petherbridge L., Xu H., Zhao Y., Smith L. P., Simpson J., Baigent S., Nair V.. Cloning ofGallid herpesvirus3(Marek's disease virus serotype–2) genome as infectious bacterialartificial chromosomes for analysis of viral gene functions. J. Virol. Methods,2009,158(1–2):11–17.
    Popa I., Harris M. E., Donello J. E., Hope T. J.. CRM1–Dependent function of acis–acting RNA export element. Molecular and Cellular Biology,2002,22(7):2057–2067.
    Pratt W. D., Cantello J., Morgan R. W., Schat K. A.. Enhanced expression of the Marek'sdisease virus–specific phosphoproteins after stable transfection of MSB–1cells withthe Marek's disease virus homologue of ICP4. Virology,1994,201(1):132–136.
    Qian Z., Brunovskis P., Rauscher F.3rd., Lee L., Kung H. J.. Transactivation activity ofMeq, a Marek's disease herpesvirus bZIP protein persistently expressed in latentlyinfected transformed T cells. J. Virol.,1995,69(7):4037–4044.
    Rangga–Tabbu C., Cho B. R.. Marek's disease virus (MDV) antigens in the feather follicleepithelium: difference between oncogenic and nononcogenic MDV. Avian Dis.,1982,26:907–17.
    Reddy S. K., Sharma J. M., Ahmad J., Reddy D. N., McMillen J. K., Cook S. M., Wild M.A., Schwartz R. D.. Protective efficacy of a recombinant herpesvirus of turkeys as anin ovo vaccine against Newcastle and Marek's diseases in specific–pathogen–freechickens. Vaccine,1996,14(6):469–477.
    Reddy S. M., Lupiani B., Gimeno I. M., Silva R. F., Lee L. F., Witter R. L.. Rescue of apathogenic Marek's disease virus with overlapping cosmid DNAs: use of a pp38mutant to validate the technology for the study of gene function. Proc. Natl. Acad. Sci.USA,2002,99(10):7054–7059.
    Reddy S. M., Witter R. L. Gimeno I.. Development of a quantitative–competitivepolymerase chain reaction assay for serotype1Marek's disease virus. Avian Dis.,2000,44(4):770–775.
    Renz K.G., Islam A., Cheetham B.F., et al.. Absolute quantification using real–timepolymerase chain reaction of Marek's disease virus serotype2in field dust samples,feather tips and spleens. J. Virology Methods,2006,135(2):186–191.
    Rispens B. H., van Vloten H., Mastenbroek N., Maas H. J. and Schat K. A.. Control ofMarek's disease in the Netherlands. I. Isolation of an avirulent Marek's disease virus(strain CVI988) and its use in laboratory vaccination trials. Avian Dis.,1972,16(1):108–125.
    Rispens B. H., van Vloten H., Mastenbroek N., Maas H. J. and Schat K. A.. Control ofMarek's disease in the Netherlands. II. Field trials on vaccination with an avirulentstrain (CVI988) of Marek's disease virus. Avian Dis.,1972,16(1):126–138.
    Rivas A. L., Fabricant J.. Indications of immunodepression in chickens infected with variousstrains of Marek’s disease virus. Avian Dis.,1988,32:1–8.
    Ross L. J., Binns M. M., Tyers P., Pastorek J., Zelnik V., Scott S.. Construction andproperties of a turkey herpesvirus recombinant expressing the Marek's disease virushomologue of glycoprotein B of herpes simplex virus. J. Gen. Virol.,1993,74(Pt3):371–377.
    Ross N. L., DeLorbe W., Varmus H. E., Bishop J. M., Brahic M., Haase A.. Persistenceand expression of Marek's disease virus DNA in tumour cells and peripheral nervesstudied by in situ hybridization. J. Gen. Virol.,1981,57(Pt2):285–296.
    Sakaguchi M., Hirayama Y., Maeda H., Matsuo K., Yamamoto M., Hirai K.. Constructionof recombinant Marek’s disease virus type1(MDV1) expressing the Escherichia colilacZ gene as a possible live vaccine vector: the US10gene of MDV1as a stableinsertion site. Vaccine,1994,12:953–957.
    Sakaguchi M., Nakamura H., Sonoda K., Okamura H., Yokogawa K., Matsuo K., Hira K..Protection of chickens with or without maternal antibodies against both Marek's andNewcastle diseases by one–time vaccination with recombinant vaccine of Marek'sdisease virus type1. Vaccine,1998,16(5):472–479.
    Sakaguchi M., Urakawa T., Hirayama Y., Miki N., Yamamoto M., Zhu G., Hirai K..Marek’s disease virus protein kinase gene identified within the short unique region ofthe viral genome is not essential for viral replication in cell culture andvaccine–induced immunity in chickens. Virology,1993,195:140–148.
    Sambrook J., Russell D.W.. Molecular Cloning: A Laboratory Manual. Cold Spring HarborLaboratory Press.,2001.
    Schat K.A.. Marek’s disease: a model for protection against herpesvirusinduced tumours.Cancer Surv.,1987,6:1–37.
    Schat K. A.. Role of the spleen in the pathogenesis of Marek's disease. Avian Pathol.,1981,10(2):171–182.
    Schat K. A., Calnek B. W., Fabricant J.. Influence of the bursa of Fabricius on thepathogenesis of Marek's disease. Infect. Immun.,1981,31(1):199–207.
    Schat K. A., Calnek B. W., Fabricant J.. Characterisation of two highly oncogenic strainsof Marek's disease virus. Avian Pathol.,1982,11(4):593–605.
    Schat K. A., Chen C. L., Calnek B. W., Char D.. Transformation of T–lymphocyte subsetsby Marek's disease herpesvirus. J. Virol.,1991,65(3):1408–1413.
    Schat K. A., Xing Z.. Specific and nonspecific immune responses to Marek's disease virus.Dev. Comp. Immunol.,2000,24(2–3):201–221.
    Schumacher D., Tischer B. K., Fuchs W., Osterrieder N.. Reconstitution of Marek’sDisease Virus Serotype1(MDV–1) from DNA cloned as a Bacterial ArtificialChromosome and Characterization of a Glycoprotein B–Negative MDV–1Mutant. J.Virol.,2000,74(23):11088–11098.
    Schumacher D., Tischer B. K., Reddy S. M., Osterrieder N.. Glycoproteins E and I ofMarek’s disease virus serotype1are essential for virus growth in cultured cells. J.Virol.,2001,75:11307–11318.
    Shigekane H., Kawaguchi Y., Shirakata M., Sakaguchi M., Hirai K.. The bi–directionaltranscriptional promoters for the latency–relating transcripts of the pp38/pp24mRNAsand the1.8kb–mRNA in the long inverted repeats of Marek’s disease virus serotype1DNA are regulated by common promoter–specific enhancers. Archives of Virology,1999,144:1893–1907.
    Silva R. F., Gimeno I.. Oncogenic Marek's disease viruses lacking the132base pairrepeats can still be attenuated by serial in vitro cell culture passages. Virus Genes,2007,34(1):87–90.
    Solomon J. J., Witter R. L., Nazerian K., Burmester B. R.. Studies on the etiology of Marek’sdisease. II. Finding of a herpesvirus in cell culture. Proc. Soc. Exp. Biol. Med.,1968,127:177–182.
    Sonoda K., Sakaguchi M., Matsuo K., Zhu G., Hirai K.. Asymmetric deletion of thejunction between the short unique region and the inverted repeat does not affect viralgrowth in culture and vaccineinduced immunity against Marek’s disease. Vaccine,1996,14:277–284.
    Sonoda K., Sakaguchi M., Okamura H., Yokogawa K., Tokunaga E., Tokiyoshi S.,Kawaguchi Y., Hirai K.. Development of an effective polyvalent vaccine against bothMarek's and Newcastle diseases based on recombinant Marek's disease virus type1incommercial chickens with maternal antibodies. J. Virol.,2000,74(7):3217–3226.
    Spatz S. J., Smith L. P., Baigent S. J., Petherbridge L., Nair V.. Genotypic characterizationof two bacterial artificial chromosome clones derived from a single DNA source of thevery virulent gallid herpesvirus–2strain C12/130. J. Gen. Virol.,2011,92(Pt7):1500–1507.
    Su S.. Comparisons of Biological Characteristic between Recombinant Marek's diseasevirus and its Mutant Strains. Tai’an: Shandong Agricultural university,2013.
    Su S., Cui N., Cui Z., Zhao P., Li Y., Ding J., Dong X.. Complete genome sequence of arecombinant Marek's disease virus field strain with one reticuloendotheliosis viruslong terminal repeat insert. J. Virol.,2012,86(24):13818–13819.
    Sun A. J., Petherbridge L., Zhao Y. G., Li Y. P., Nair V. K., Cui Z. Z.. A BAC clone ofMDV strain GX0101with REV–LTR integration retained its pathogenicity. ChineseScience Bulletin,2009,54(15):1–7.
    Sun A. J., Xu X. Y., Petherbridge L., Zhao Y. G., Nair V., Cui Z. Z.. Functional evaluationof the role of reticuloendotheliosis virus long terminal repeat (LTR) integrated into thegenome of a field strain of Marek's disease virus. Virology,2010,397(2):270–276.
    Sun S., Cui Z.. Epidemiological and pathological studies of subgroup J avian leukosisvirus infections in Chinese local "yellow" chickens. Avian Pathol.,2007,36:221–226.
    Sun S. H., Cui Z. Z.. Biological Identification of Newcastle Disease Viruses Isolated fromEggs of a Parent Breeder Farm. Acta. Veterinaria et. Zootechnica Sinica,2007,38(7):741–743.
    Su S., Li Y. P., Sun A. J., Zhao P., Cui Z. Z., et al.. Protective immunity of a meqΔdeletedMarek’s disease virus against very virulent virus challenge in chickens. Acta.Microbiologica Sinica,2010,50(3):380–386.
    Su S., Cui N., Cui Z. Z., Zhao P., Li Y. P., et al.. Complete Genome Sequence of aRecombinant Marek’s Disease Virus Field Strain with One Reticuloendotheliosis VirusLong Terminal Repeat Insert. Journal of Virology,2012,86(24):13818.
    Swayne D. E., Garcia M., Beck J. R., Kinney N., Suarez D. L.. Protection against diversehighly pathogenic H5avian influenza viruses in chickens immunized with recombinantfowl pox vaccine containing an H5avian influenza hemagglutinin gene insert. Vaccine,2000,18:1088–1095.
    Tan J., Cooke J., Clarke N., et al.. Optimization of methods for the isolation of Marek'sdisease viruses in primary chicken cell cultures. J. Virology Methods,2008,147(2):312–318.
    Tarpey I., Davis P. J., Sondermeijer P., van Geffen C., Verstegen I., Schijns V. E.,Kolodsick J., Sundick R. Expression of chicken interleukin–2by turkey herpesvirusincreases the immune response against Marek's disease virus but fails to increaseprotection against virulent challenge. Avian Pathol.,2007,36(1):69–74.
    Taylor J., Edbauer C., Rey–Senelonge A., Bouquet J. F., Norton E., et al.. Newcastledisease virus fusion protein expressed in a fowl pox virus recombinant confers protectionin chickens. Journal of Virology,1990,64(4):1441–1450.
    Tischer B. K., Schumacher D., Beer M., Beyer J., Teifke J. P., Osterrieder K., Wink K.,Zelnik V., Fehler F. and Osterrieder N.. A DNA vaccine containing an infectiousMarek's disease virus genome can confer protection against tumorigenic Marek'sdisease in chickens. J. Gen. Virol.,2002,83(Pt10):2367–2376.
    Trapp S., Parcells M. S., Kamil J. P., Schumacher D., Tischer B. K., Kumar P. M., Nair V.K., Osterrieder N.. A virus–encoded telomerase RNA promotes malignant T celllymphomagenesis. J. Exp. Med.,2006,203(May5):1307–1317.
    Tsukamoto K., Kojima C., Komori Y., Tanimura N., Mase M., et al.. Protection of Chickensagainst Very Virulent Infectious Bursal Disease Virus (IBDV) and Marek's Disease Virus(MDV) with a Recombinant MDV Expressing IBDV VP2. Virology,1999,257:352–362.
    Van Zaane D., Brinkhof J. M., Westenbrink F., Gielkens A. L.. Molecular–biologicalcharacterization of Marek's disease virus. I. Identification of virus–specificpolypeptides in infected cells. Virology,1982,121(1):116–132.
    Venugopal K.. Marek's disease: an update on oncogenic mechanisms and control. Res. Vet.Sci.,2000,69(1):17–23.
    Venugopal K., Payne L. N.. Molecular pathogenesis of Marek’s disease recent development.Avian Patholog y.,1995,24:597–609.
    Webster R. G., Kawaoka Y., Taylor J., Weinberg R., Paoletti E.. Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowl pox virus as vaccine forinfluenza in chickens. Vaccine,1991,9:303–308.
    Witter R. L.. Influence of serotype and virus strain on synergism between Marek’s diseasevaccine viruses. Avian Pathol.,1992,21:601–614.
    Witter R. L.. Increased virulence of Marek's disease virus field isolates. Avian Dis.,1997,41(1):149–163.
    Witter R. L.. Induction of strong protection by vaccination with partially attenuatedserotype1Marek's disease viruses. Avian Dis.,2002,46(4):925–937.
    Witter R. L., Burmester B. B.. Differential effect of maternal antibodies on efficacy ofcellular and cell–free Marek's disease vaccines. Avian Pathol.,1979,8(2):145–156.
    Witter R. L. and Kreager K. S.. Serotype1viruses modified by backpassage or insertionalmutagenesis: approaching the threshold of vaccine efficacy in Marek's disease. AvianDis.,2004,48(4):768–782.
    Xing Z., Schat K. A.. Expression of cytokine genes in Marek's disease virus–infectedchickens and chicken embryo fibroblast cultures. Immunology,2000,100(1):70–76.
    Yang B. C., Wang F. X., Zhang S. Q., Song N., Li J. X., Yang Z. Q., Wen Y. J., Wu H..Comparative evaluation of conventional polymerase chain reaction (PCR), withloop–mediated isothermal amplification and SYBR green I–based real–time PCR for thequantitation of porcine circovirus–1DNA in contaminated samples destined for vaccineproduction. J. Virol. Meth.,2013,191:1–8.
    Yin J. L., Shackel N. A., Zekry A., et al.. Real–time reverse ranscriptase polymerase chainreaction(RT–PCR) for measurement of cytokine and growth factor Mrna exoressionwith fluorogenicprobes or SYBR Green I. Immunol Cell Biol.,2001,79(3):213–221.
    Yu D., Ellis H. M., Lee E. C., Jenkins N. A., Copeland N. G., Court D. L.. An efficientrecombination system for chromosome engineering in Escherichia coli. Proc. Natl.Acad. Sci. USA,2000,97(11):5978–5983.
    Zhang J., Cui Z., Ding J., Jiang S.. Construction of infectious clone of subgroup J avianleukosis virus strain NX0101and its pathogenicity. Wei Sheng Wu Xue Bao,2005,45(3):437–440.
    Zheng L. L., Wang Y. B., Li M. F., Chen H. Y., Guo X. P., Geng J. W., Wang Z. Y., Wei Z.Y., Cui B. A.. Simultaneous detection of porcine parvovirus and porcine circovirus type2by duplex real–time PCR and amplicon melting curve analysis using SYBR Green. J.Virol. Meth.,2013,187:15–19.
    Zhang Z., Cui Z. Z.. Isolation of recombinant field strains of Marek's disease virus integrationwith reticuloendotheliosis virus genome fragments. Sci. China C. Life Sci.,2005,48(1):81–88.
    Zhao Y., Petherbridge L., Smith L. P., Baigent S., Nair V.. Self–excision of the BACsequences from the recombinant Marek's disease virus genome increases replicationand pathogenicity. Virol. J.,2008,5:19.
    Zhu G. S., Iwata A., Gong M., Ueda S., Hirai K.. Marek's disease virus type1–specificphosphorylated proteins pp38and pp24with common amino acid termini are encodedfrom the opposite junction regions between the long unique and inverted repeatsequences of viral genome. Virology,1994,200(2):816–820.
    Zufferey R., Donello J. E., Trono D., Hope T. J.. Woodchuck hepatitis virusposttranscriptional regulatory element enhances expression of transgenes delivered byretroviral vectors. J. Virol.,1999,73(4):2886–2892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700