用户名: 密码: 验证码:
人冠状病毒NL63中国株全基因组的测序与感染性克隆构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人冠状病毒NL63(Human coronavirus NL63, HCoV-NL63)2004年首次从荷兰被分离鉴定。分子流行病学研究表明,该病毒在多个国家和地区流行,呈全球性分布。该病毒主要感染婴幼儿及免疫功能低下或缺陷的成人,既能感染上呼吸道,引起发热、咳嗽、喉炎等普通感冒症状,又能感染下呼吸道,引起支气管炎、肺炎等急性呼吸道症状。也有研究报道,该病毒感染与川崎病的发生相关。HCoV-NL63是目前已知重要的六种人冠状病毒之一。
     HCoV-NL63全基因组序列信息截止到2012年5月仅有五株,即3株荷兰株,2株美国株。而该病毒国内株全基因组序列信息、分子结构特征目前还没有相关报道。本研究的首要目的是获得NL63国内株全长基因组序列信息,阐明其分子结构特征,为国内分子流行病学研究提供参考。对NL63国内株遗传变异和系统发生作系统分析,进一步明确HCoV-NL63的基因型以及国内株所在的亚型。另一方面,研究证明HCoV-NL63能够利用与SARS-CoV相同的受体-血管紧张素转换酶2(Angiotensin converting enzyme2, ACE2)入侵宿主细胞。尽管受体相同,但是两者引起的病理反应却有很大差异。本研究拟以NL63病毒作为模式病毒,以HCoV-NL63国内株全基因组序列为基础,构建其全长cDNA的感染性克隆,为深入研究病毒基因组的结构和功能、复制表达调控机理、病毒与宿主的相互作用、致病性等奠定基础。
     本课题主要研究结果如下:
     第一,对来自北京儿童医院的32份NL63阳性样本分别进行了总RNA的提取和定量,筛选出病毒拷贝数较高两份样本(编号分别为CBJ037和CBJ123),然后以荷兰株(NL63_Amsterdam)为参考,设计了包含重叠区域、覆盖全长基因组序列的18对引物,通过对病毒RNA提取、RT-PCR、克隆测序并结合3'/5'-RACE技术获得了两株NL63国内株的全基因组序列,阐明了国内株基因组分子结构特征。结合NL63国内株和其他毒株的系统发生分析表明,NL63病毒目前可分为A、B、C、D四个基因型,而国内株处在一个新的基因型,即D型。Bootscan分析表明,国内株与荷兰株和美国株在进化过程中存在着基因重组。
     第二,在体外通过融合PCR、体外连接的方式获得了NL63国内株全长的cDNA分子。经过体外转录、电转染宿主细胞的方法获得了NL63国内株全长cDNA的感染性克隆。病毒拯救株感染后第7天能够观察到明显的CPE效应,该病毒拯救株命名为ic-NL63。Western blot和IFA实验表明,ic-NL63在宿主细胞内进行了复制和表达。将病毒拯救株连续传代至20代(P20),分别提取P5、P10、P15和P20代的病毒基因组,对引入的分子Marker进行鉴定。结果表明,该分子标记在病毒拯救株传代过程中具有遗传稳定性。
     第三,为研究ORF3对病毒功能的影响,对其进行了置换,替换为绿色荧光蛋白基因(GFP)。按照同样的方法将带有GFP标签的全长cDNA体外转录本转染宿主细胞,转染后48h即能观察到绿色荧光蛋白的表达。对该重组病毒拯救株连续传代培养,能够观察到CPE效应。Western blot和IFA实验同样表明该重组病毒拯救株在宿主细胞内获得复制和表达,将该重组病毒拯救株命名为ic-NL63-gfp。一步生长曲线实验表明,病毒拯救株ic-NL63和重组病毒拯救株ic-NL63-gfb病毒滴度在感染细胞后第8d达到峰值,分别为105.5TCID50/mL和105TCID50/mL,两者在生长动力学上无显著差异。而荷兰株(NL63_Amsterdam I)病毒滴度在感染后第7d即达到峰值,为106.5TCID50/mL。ic-NL63和ic-NL63-gfp与荷兰株相比在病毒滴度达到峰值的时间上明显滞后且低一个数量级,在生长动力学上存在显著性差异。
     本研究首次获得了两株HCoV-NL63中国株全基因组序列信息,阐明了其分子结构特征,对其遗传进化作了系统分析,明确了国内株处在一个新的基因型(D型),为NL63国内分子流行病学研究提供参考。构建了人冠状病毒NL63国内株全长cDNA的感染性克隆。通过对ORF3的置换,获得了带GFP标签的重组病毒拯救株,并证明ORF3在细胞培养中为病毒复制所非必需。这为进一步研究NL63病毒基因组的结构和功能、病毒与宿主的相互作用、病毒的致病性以及抗病毒药物筛选等奠定了基础。
Human coronavirus NL63(HCoV-NL63) was first identified in Netherlands in2004. Epidemiological studies have shown that this virus is globally distributed. HCoV-NL63mainly infects infants and immunocompromised adults, causing both upper and lower respiratory tract diseases. Clinical symptoms usually manifest as the common cold such as fever, cough and croup. However, it might also cause bronchiolitis, pneumonia even resulting in acute respiratory distress symptoms in some cases. HCoV-NL63is known as one of the six important human coronaviruses.
     Update to December of2012, there are only five complete genome sequences available in GenBank:three from the Netherlands and two from America. No information is available on the complete genome sequences and phylogenetic analysis of HCoV-NL63derived from China. In this study, our first aim is to sequence and characterize the complete genome sequence of HCoV-NL63derived from China. This may pay a way for molecular epidemiological studies of HCoV-NL63in China.
     On the other hand, studies have demonstrated that HCoV-NL63share the same receptor (angiotensin converting enzyme2, ACE2) with SARS-CoV for cell entry. However, the clinical manifestations of both viruses are different. We plan to construct the full-length infectious cDNA clone based on the complete genome sequence of HCoV-NL63strains in this study, which might lay a foundation for further study of virus gene functions, replication and virus-host interactions of HCoV-NL63derived from Chinese patients. Furthermore, this reverse genetics platform might be tool or model to characterize the pathogen biology of SARS-CoV infection.
     The main results of this study are summarized as follows:
     Firstly, RNAs from32HCoV-NL63positive specimens collected from Beijing Children's hospital were extracted and quantified respectively, and two positive specimens with high copies were selected for clone and sequencing of full-length genome. Total18pairs of primers were designed according to NL63_Amsterdam reference strains, which covered the complete genome of NL63. By RT-PCR together with3'end and5'end of rapid amplification of cDNA ends (3'/5'RACE), two complete full-length genome sequences were obtained directly from clinical NL63specimens. The genomic structure and phylogenetic analysis of these domestic NL63strains was also characterized. Systematic phylogenetic analysis demonstrated that all known sequences of HCoV-NL63can be genotyping as A, B, C and D, while two domestic HCoV-NL63strains cloned in this study were genotyped as novel group, genotype D. Bootscan analysis indicated that recombination with other strains of HCoV-NL63might be occured during virus circulation and evolution of Chinese HCoV-NL63strains.
     Secondly, the complete full-length cDNA of NL63domestic strains was assembled by strategy of overlapping PCR and in vitro ligation. The recombined virus, which named as ic-NL63, was successfully rescued after in vitro transcription and electronic transfection of viral mRNAs based on the full-length infectious cDNA clone. The CPE of rescued virus was significantly evident at8d.p.i. Western blot and IFA assays also demostrated that N protein was expressed in infected cells. The introduced molecular marker was identified and genetic stability of rescued ic-NL63during rescued virus propogation was also confirmed.
     Thirdly, the open reading frame3(ORF3) of HCoV-NL63was replaced with heterologous green fluorescent protein (GFP) for ic-NL63by molecular cloning, which was named as ic-NL63-gfp. And we demonstrated that the ORF3was not essential for the replication of NL63virus in vitro. The growth kinetics of both ic-NL63and ic-NL63-gfp were similar and reached peak at titirs of105/TCID50/mL8d.p.i., which was lower and delayed compared to reference HCoV-NL63strains (NL63_Amsterdam I).
     In Summary, two full-length genome were cloned and sequenced directly from clinical specimens of Chinese patients. The genomic structure and phylogenetic analysis of these HCoV-NL63strains was also characterized. Systematic phylogenetic analysis demonstrated that NL63virus can be genotyping as A, B, C and D. While domestic strains were formed as a novel group as genotype D. The full-length infectious cDNA clone was successfully assembled and ic-NL63virus was rescued by in vitro transcription and electronic transfection. Furthermore, a novel reporter virus, ic-NL63-gfp in which ORF3was substituted with GFP was also successfully assembled and developed. Our data demonstrated that the ORF3was not essential for the replication of NL63virus in vitro, which might provide a novel good platform for further study of gene functions, replication and pathogenesis of HCoVs.
引文
1. Beaudette F, and Hudson C. Cultivation of the virus of infectious bronchitis. J Am Vet Med Assoc,1937,90:51-60.
    2. Cheever FS, Daniels JB, Pappenheimer AM, et al. A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin:Ⅰ. Isolation and biological properties of the virus. J Exp Med,1949,90:181.
    3. Doyle LP, Hutchings LM. A transmissible gastroenteritis in pigs. J Am Vet Med Assoc,1946, 108:257-9.
    4. McIntosh K. Coronaviruses:a comparative review. Curr Top Microbiol Immunol,1974, 63:85-129.
    5. Spaan WJM, Brian D, Casvanagh D, et al. Coronaviridae. In:Fauquet C, Mayo MA, Maniloff J, Desselberger U, Ball LA, eds. Virus Taxonomy:Ⅶth Report of the International Committee on Taxonomy of Viruses. London:Elsevier Academic Press,2004,945-962.
    6. van der Hoek L, Pyrc K, Jebbink MF, et al. Identification of a new human coronavirus. Nat Med, 2004,10:368-373.
    7. Poon LL, Chu DK, Chan KH, et al. Identification of a novel coronavirus in bats. J Virol,2005, 79:2001-2009.
    8. Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science,2005, 310:676-679.
    9. Lau SK, Woo PC, Li KS, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A,2005,102:14040-14045.
    10. Fouchier RA, Hartwig NG, Bestebroer TM, et al. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci U S A,2004, 101:6212-6216.
    11. Lau SK, Lee P, Tsang AK, et al. Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol,2011,85(21):11325-37.
    12. Drosten C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. New England Journal of Medicine,2003,348:1967-1976.
    13 Fouchier RA, Hartwig NG, Bestebroer TM, et al. A previously undescribed coronavirus associated with respiratory disease in humans. PNAS,2004,101:6212-6216.
    14. Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med,2003,348:1953-1966.
    15. Peiris J, Lai S, Poon L, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet,2003,361:1319-1325.
    16. Ali Moh Zaki, Sander van Boheemen, Theo M. Bestebroer, et all. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med,2012,367(19): 1814-1820.
    17. Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med,1966,121(1):190-193.
    18. Tyrrell D. A. J. and Bynoe M. L. Cultivation of a novel type of common cold virus in organ cultures. Brit Med J,1965,1:1467-1470.
    19. Patrick C. Y. Woo, Susanna K. P. Lau, Chung-ming Chun, et all. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol.2005,79(2):884-895.
    20. Virus taxonomy, classification and nomenclature of viruses:ninth report of the International Committee on Taxonomy of Viruses. San Diego, CA:Academic Press,2012.
    21. Lau, SK, Lee P, Tsang AK, et al. Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol.2011,85:11325-11337.
    22. Lai MMC, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res 1997;48:1-100.
    23. Risco C, Anton IM, Enjuanes L, Carrascosa JL. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol,1996,70:4773-4777.
    24. Sturman L, Holmes K, Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol,1980,33:449-462.
    25. Locker JK, Rose JK, Horzinek MC, Rottier PJ. Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation. J Biol Chem,1992,267:21911-21918.
    26. Escors D, Ortego J, Laude H, Enjuanes L. The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J Virol,2001, 75:1312-1324.
    27. Saikatendu KS, Joseph JS, Subramanian V, et al. Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1'-phosphate dephosphorylation by a conserved domain of nsP3. Structure. Camb,2005,13:1665-1675.
    28. Yount B, Roberts R, Sims A, et al. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol,2005,79:14909-14922.
    29. Oostra M, de Haan CA, de Groot R, Rottier PJ. Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3 a and M. J Virol,2006, 80:2326-2336.
    30. Ito N, Mossel EC, Narayanan K, Popov VL, Huang C, Inoue T, Peters CJ, Makino S. Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. J Virol,2005, 79:3182-3186.
    31. de Haan CA, Masters PS, Shen X, Weiss S, Rottier PJ. The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host. Virology,2002,296:177-189.
    32. Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology,2001,279:371-374.
    33. Chen C, Sugiyama K, Kubo H, Huang C, Makino S. Murine coronavirus nonstructural protein p28 arrests cell cycle in GO/G1 phase. J Virol,2004,78:10410-10419.
    34. Ballesteros ML, Sanchez CM, Enjuanes L. Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology,1997,227:378-388.
    35. Leparc-Goffart I, Hingley ST, Chua MM, Jiang X, Lavi E, Weiss SR. Altered pathogenesis of a mutant of the murine coronavirus MHV-A59 is associated with a Q159L amino acid substitution in the spike protein. Virology,1997,239:1-10.
    36. de Groot RJ, Luytjes W, Horzinek MC, van der Zeijst BA, Spaan WJ, Lenstra JA. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J Mol Biol,1987,196:963-966.
    37. Delmas B, Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol,1990,64:5367-5375.
    38. Lewicki DN, Gallagher TM. Quaternary structure of coronavirus spikes in complex with carcinoembryonic antigen-related cell adhesion molecule cellular receptors. J Biol Chem,2002, 277:19727-19734.
    39. Risco C, Anton IM, Sune C, et al. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion. J Virol,1995,69:5269-5277.
    40. Narayanan K, Chen CJ, Maeda J, Makino S. Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal. J Virol,2003,11:2922-2921.
    41. Godet M, L'Haridon R, Vautherot JF, Laude H. TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology,1992,188:666-675.
    42. Yu X, Bi W, Weiss SR, Leibowitz JL. Mouse hepatitis virus gene 5b protein is a new virion envelope protein. Virology,1994,202:1018-1023.
    43. Maeda J, Maeda A, Makino S. Release of coronavirus E protein in membrane vesicles from virus-infected cells and E protein-expressing cells. Virology,1999,263:265-272.
    44. Wilson L, McKinlay C, Gage P, Ewart G. SARS coronavirus E protein forms cation-selective ion channels. Virology,2004,330:322-331.
    45. Lai MMC, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res,1997, 48:1-100.
    46. Kuo L, Masters S. Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. J Virol,2002,76:4987-4999.
    47. Compton SR, Rogers DB, Holmes KV, Fertsch D, Remenick J, McGowan JJ. In vitro replication of mouse hepatitis virus strain A59. J Virol,1987,61:1814-1820.
    48. Smith A, Cardellichio C, Winograd D, de M Souza, Barthold S, Holmes KV. Monoclonal antibody to the receptor for murine coronavirus MHV-A59 inhibits viral replication in vivo. J Infect Dis,1991,163:879-882.
    49. Tan K, Zelus BD, Meijers R, et al. Crystal structure of murine sCEACAMla[1,4]:a coronavirus receptor in the CEA family. EMBO J,2002,21:2076-2086.
    50. Hemmila E, Turbide C, Olson M, Jothy S, Holmes KV, Beauchemin N. Ceacamla-/-mice are completely resistant to infection by murine coronavirus mouse hepatitis virus A59. J Virol, 2004,78:10156-10165.
    51. Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature,2003,426:450-454.
    52. Li, W. et al. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology,2007,367:367-374.
    53. Stanley Perlman and Jason Netland. Coronaviruses post-SARS:update on replication and pathogenesis. Nat Rev Microbiol,2009,7(6):439-50.
    54. Hussain S, Pan J, Chen Y, et al. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol,2005, 79:5288-5295.
    55. Enjuanes L., Almazan F., Sola I., Zuniga S. Biochemical aspects of coronavirus replication and virus-host interaction. Annual review of microbiology,2006,60:211-230.
    56. Schneider R.J., Shenk T. Impact of virus infection on host cell protein synthesis. Annual review of biochemistry 1987,56:317-332.
    57. Banerjee S., An S., Zhou A., Silverman R.H., Makino S. RNase L-independent specific 28S rRNA cleavage in murine coronavirus-infected cells. Journal of virology,2000,74:8793-8802.
    58. Mizutani T., Fukushi S., Murakami M., Hirano T., Saijo M., Kurane I., Morikawa S. Tyrosine dephosphorylation of STAT3 in SARS coronavirus-infected Vero E6 cells. FEBS letters,2004, 577:187-192.
    59. Mizutani T., Fukushi S., Saijo M., Kurane I., Morikawa S. Importance of Akt signaling pathway for apoptosis in SARS-CoV-infected Vero E6 cells. Virology,2004,327:169-174.
    60. Mizutani T, Fukushi S, Saijo M, et al. Morikawa S. Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells. Biochemical and biophysical research communications,2004,319:1228-1234.
    61. Kyuwa S, Cohen M, Nelson G, et al. Stohlman S.A. Modulation of cellular macromolecular synthesis by coronavirus:implication for pathogenesis. J Virol,1994,68:6815-6819.
    62. Tahara SM, Dietlin TA, Bergmann CC, et al. Coronavirus translational regulation:leader affects mRNA efficiency. Virology,1994,202:621-630.
    63. Banerjee S, Narayanan K, Mizutani T, et al. Murine coronavirus replication-induced p38 mitogen-activated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells. Journal of virology,2002,76:5937-5948.
    64. Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors:effectors of mRNA recruitment to ribosomes and regulators of translation. Annual review of biochemistry,1999,68:913-963.
    65. Mizutani T., Fukushi S., Saijo M., Kurane I., Morikawa S. Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells. Biochemical and biophysical research communications,2004,319:1228-1234.
    66. Tang BS, Chan KH, Cheng VC, et al. Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E. Journal of virology,2005,79:6180-6193.
    67. Leong W.F., Tan H.C., Ooi E.E., Koh D.R., Chow V.T. Microarray and real-time RT-PCR analyses of differential human gene expression patterns induced by severe acute respiratory syndrome (SARS) coronavirus infection of Vero cells. Microbes and infection/Institut Pasteur, 2005,7:248-259.
    68. Ng LF, Hibberd ML, Ooi EE, et al. A human in vitro model system for investigating genome-wide host responses to SARS coronavirus infection. BMC infectious diseases,2004, 4:34.
    69. Tang BS, Chan KH, Cheng VC, et al. Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E. Journal of virology,2005,79:6180-6193.
    70. Benedict CA, Norris PS, Ware CF. To kill or be killed:viral evasion of apoptosis. Nat Immunol, 2002,3:1013-1018.
    71. Roulston A, Marcellus RC, Branton PE. Viruses and apoptosis. Annu Rev Microbiol,1999, 53:577-628.
    72. Li FQ, Xiao H, Tam JP, et al. Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus. FEBS letters,2005,579:2387-2396.
    73. Surjit M, Liu B, Chow VT, et al. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. The Journal of biological chemistry,2006, 281:10669-10681.
    74. Chen CJ, Makino S. Murine coronavirus replication induces cell cycle arrest in G0/G1 phase. Journal of virology,2004,78:5658-5669.
    75. Chen CJ, Sugiyama K, Kubo H, Huang C et al. Makino S. Murine coronavirus nonstructural protein p28 arrests cell cycle in G0/G1 phase. Journal of virology,2004,78:10410-10419.
    76. Chau TN, Lee KC, Yao H, et al. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology,2004,39:302-310.
    77. Eleouet JF, Chilmonczyk S, Besnardeau L, et al. Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway. J Virol, 1998,72:4918-4924.
    78. Liu Y, Cai Y, Zhang X. Induction of caspase-dependent apoptosis in cultured rat oligodendrocytes by murine coronavirus is mediated during cell entry and does not require virus replication. J Virol,2003,77:11952-11963.
    79. Li FQ, Tam JP, Liu DX. Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53. Virology,2007,365:435-445.
    80. Leong WF, Chow VT. Transcriptomic and proteomic analyses of rhabdomyosarcoma cells reveal differential cellular gene expression in response to enterovirus 71 infection. Cell Microbiol, 2006,8:565-580.
    81. Wong CK, Lam CW, Wu AK, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clinical and experimental immunology,2004,136:95-103.
    82. Cinatl J, Preiser W, Vogel JU, et al. Hofmann W.K., Bauer G., Michaelis M., Rabenau H.F., Doerr H.W. Infection of cultured intestinal epithelial cells with severe acute respiratory syndrome coronavirus. Cellular and molecular life sciences:CMLS,2004,61:2100-2112.
    83. Cinatl J, Morgenstern B, Bauer G, et al. Treatment of SARS with human interferons. Lancet, 2003,362:293-294.
    84. Haagmans BL, Kuiken T, Martina BE, et al. Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nature medicine,2004, 10:290-293.
    85. Loutfy M.R., Blatt L.M., Siminovitch K.A., Ward S., Wolff B., Lho H., Pham D.H., Deif H., LaMere E.A., Chang M., et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome:a preliminary study. JAMA:the journal of the American Medical Association,2003,290:3222-3228.
    86. Shi S.T., Huang P., Li H.P., Lai M.M. Heterogeneous nuclear ribonucleoprotein A1 regulates RNA synthesis of a cytoplasmic virus. The EMBO journal,2000,19:4701-4711.
    87. Wang Y., Zhang X. The nucleocapsid protein of coronavirus mouse hepatitis virus interacts with the cellular heterogeneous nuclear ribonucleoprotein A1 in vitro and in vivo. Virology,1999, 265:96-109.
    88. Galan C., Sola I., Nogales A., Thomas B., Akoulitchev A., Enjuanes L., Almazan F. Host cell proteins interacting with the 3'end of TGEV coronavirus genome influence virus replication. Virology,2009,391:304-314.
    89. Yount B., Curtis K.M., Baric R.S. Strategy for systematic assembly of large RNA and DNA genomes:transmissible gastroenteritis virus model. J Virol,2000,74:10600-10611.
    90. St-Jean JR, Desforges M, Almazan F, et al. Recovery of a neurovirulent human coronavirus OC43 from cDNA clone. J Virol,2006,80(7):3670-4.
    91. Yount B, Curtis KM, Baric RS. Strategy for systematic assembly of large RNA and DNA genomes:transmissible gastroenteritis virus model. J Virol,2000,74:10600-10611.
    92. Donaldson EF, Yount B, Sims AC, et al. Systematic assembly of a full-length infectious clone of human coronavirus NL63. J Virol,2008,82:11948-57.
    93. Scobey T, Yount BL, Sims AC, et al. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. PNAS,2013,110(40):16157-62.
    94. Almazan F, DeDiego ML, Sola I, et al. Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. Mbio,2013,4(5):e00650-13.
    95. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses:patterns and determinants. Nat Rev Genet,2008,9:267-276.
    96. Pastemak AO, Spaan WJ, Snijder EJ. Nidovirus transcription:how to make sense...?. J Gen Virol,2006,87:1403-1421.
    97. Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science,2005, 310:676-679.
    98. Wang LF, Shi Z, Zhang S, et al. Review of bats and SARS. Emerg Infect Dis,2006, 12:1834-1840.
    99. Calisher CH, Childs JE, Field HE, et al. Bats:important reservoir hosts of emerging viruses. Clin Microbiol Rev,2006,19(3):531-545.
    100. Crossley BM, Mock RE, Callison SA, et al. Identification and characterization of a novel alpaca respiratory coronavirus most closely related to the human coronavirus 229E. Viruses,2012, 4(12):3689-700.
    101. Huynh J, Li S, Yount B, et al. Evidence Supporting a Zoonotic Origin of Human Coronavirus Strain NL63. J Virol,2012,86(23):12816-25.
    102. Pyrc K, Dijkman R, Deng L, et al. Mosaic structure of human coronavirus NL63, one thousand years of evolution. J Mol Biol.2006,364(5):964-73.
    103. Balboni A, Battilani M, Prosperi S. The SARS-like coronaviruses:the role of bats and evolutionary relationship with SARS coronavirus. New Microbiol,2012,35(1):1-16.
    104. Herrewegh AA, Smeenk L, Horzinek MCR, et al. Feline coronavirus type Ⅱ strains 79-1683 and 79-1146 originated from a double recombination between feline coronavirus type Ⅰ and canine coronavirus. J Virol,1998,72:4508-4514.
    105. Fouchier RA, Hartwig NG, Bestebroer TM, Niemeyer B, et al. A previously undescribed coronavirus associated with respiratory disease in humans. PANS,2004,101(16):6212-6.
    106. van der Hoek L, Sure K, Ihorst G, et al. Croup is associated with the novel coronavirus NL63. PloS Med,2005,2(8):e240.
    107. Pyrc K, Jebbink MF, Berkhout B, et al. Genome structure and transcriptional regulation of human coronavirus NL63. Virol J,2004,1:7.
    108. Cui LJ, Zhang C, Zhang T, Lu RJ, et al. Human coronaviruses HCoV-NL63 and HCoV-HKU1 in hospitalized children with acute respiratory infections in Beijing, China. Adv Virol,2011, 2011:129134-40.
    109. Leung TF, Li CY, Lam WY, et al. Epidemiology and clinical presentations of human coronavirus NL63 infections in Hong Kong children. J Clin Microbiol.2009,47:3486-92.
    110. Leung TF, Chan PK, Wong WY, et al. Human coronavirus NL63 in children:epidemiology, disease spectrum, and genetic diversity. Hong Kong Med J,2012,2:27-30.
    111. Moes E, Vijgen L, Keyaerts E, et al. A novel pancoronavirus RT-PCR assay:frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium. BMC Infect Dis,2005,5:6.
    112. Dominguez SR, Sims GE, Wentworth DE, et al. Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination. J Gen Virol,2012,93:2387-2398.
    113.刘玢,王琼,林广裕等.新型人冠状病毒NL63在急性呼吸道感染婴幼儿中的检出及鉴定.国际检验医学杂志,2010,31(8):824-26.
    114.朱汝南,钱渊,赵林清等.从北京地区急性呼吸道感染患儿标本中检测到新型冠状病毒NL63基因.中华儿科杂志.2006,3:013-18.
    115.陆柔剑,张陵林,谭文杰等.人冠状病毒HCoV-NL63和HCoV-HKUl常规RT-PCR和荧光定量RT-PCR检测方法的建立及应用比较.病毒学报.2008,4:011-17.
    116.陈云欢.福州地区急性呼吸道感染儿童HCoV-NL63和HCoV-HKU1的检测与分析.福建医科大学学位论文,2010.
    119. Hofmann H, Pyrc K, van der Hoek L, et al. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. PNAS,2005,102:7988-7993.
    120. Almazan F, Gonzalez JM, Enjuanes L et al. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. PNAS,2000,97(10):5516-21.
    121. Merchlinsky M, Moss B. Introduction of forign DNA into the vaccinia virus genome by in vitro ligation:recombination-independent selectable cloning vectors. Virology,1992,190(1):522-6.
    122. Construction of chimeric vaccinia viruses by molecular cloning and packaging. PNAS,1992, 89(21):9977-81.
    123. Thiel V, Herold J, Schelle B, Siddell, SG. Infectious RNA transcribed in vitro frome a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol.82:1273-81.
    124. Casais R, Thiel V, Siddell SG, et al. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol,2001,75(24):12359-69.
    125. Moes E, Vijgen L, Keyaerts E, et al. A novel pancoronavirus RT-PCR assay:frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium. BMC Infect Dis.2005,5:6.
    126. Bastien N, Anderson K, Hart L, et al. Human coronavirus NL63 infection in Canada. J Infect Dis,2005,191(4):503-6.
    127. Arden KE, Nissen MD, Sloots TP, et al. New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia. J Med Virol,2005,75(3):455-62.
    128. Koetz A, Nilsson P, Linden M, et al. Detection of human coronavirus NL63, human metapneumovirus and respiratory syncytial virus in children with respiratory tract infections in south-west Sweden. Clin Microbiol Infect,2006,12(11):1089-96.
    129. Wu PS, Chang LY, Berkhout B, et al. Clinical manifestations of human coronavirus NL63 infection in children in Taiwan. Eur J Pediatr,2008,167(1):75-80.
    130. Minosse C, Selleri M, Zaniratti MS, et al. Phylogenetic analysis of human coronavirus NL63 circulating in Italy. J Clin Virol,2008,43(1):114-9.
    131. Leung TF, Li CY, Lam WY, et al. Epidemiology and clinical presentations of human coronavirus NL63 infections in Hong Kong children. J Clin Microbiol,2009,47(11):3486-92.
    [1]Virus taxonomy, classification and nomenclature of viruses:ninth report of the International Committee on Taxonomy of Viruses. San Diego, CA:Academic Press,2012.
    [2]Lai M C, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res,1997, 48:1-100.
    [3]World Health Organization (WHO). WHO final summary SARS,15 August 2003:Summary table of SARS cases by country,1 November 2002-7 August 2003. Geneva, WHO,2003.
    [4]Lau S K, Woo P C, Li K S, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci, USA,2005,102:14040-14045.
    [5]Woo P C, Wang M, Lau S K, et al. Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. J Virol,2007, 81(4):1574-1585.
    [6]Shi Z, Hu Z. A review of studies on animal reservoirs of the SARS coronavirus. Virus Res, 2008,133(1):74-87.
    [7]Li K S, Huang Y, Shek C T, et al. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute self-limiting infection that allows recombination events. J Virol,2010,84(6):2808-2819.
    [8]Ali Moh Zaki, Sander van Boheemen, Theo M Bestebroer, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med,2012,10:1056-1063.
    [9]Corman V M, Eckerle I, Bleicker T, et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill,2012,17(39):20285-20291.
    [10]Patrick C Y Woo, Susanna K P Lau, Yi Huang, et al. Coronavirus diversity, phylogeny and interspecies jumping. Exper Biol Medi,2009,234:1117-1127.
    [11]Xiaoyan Yu, Roujian Lu, Zhong Wang, et al. Etiology and clinical characterization of respiratory virus infections in adult patients attending an emergency department in Beijing. PloS ONE,2012,7(2):e32174.
    [12]Duffy S, Shackelton L A, Holmes E C. Rates of evolutionary change in viruses:patterns and determinants. Nat Rev Genet,2008,9:267-276.
    [13]Pastemak A O, Spaan W J, Snijder E J. Nidovirus transcription:how to make sense...?. J Gen Virol,2006,87:1403-1421.
    [14]Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science, 2005,310:676-679.
    [15]Wang L F, Shi Z, Zhang S, et al. Review of bats and SARS. Emerg Infect Dis,2006, 12:1834-1840.
    [16]Calisher C H, Childs J E, Field H E, et al. Bats:important reservoir hosts of emerging viruses. Clin Microbiol Rev,2006,19(3):531-545.
    [17]Beate M Crossley, Richard E Mock, Scott A Callison, et al.Identification and characterization of a novel alpaca respiratory coronavirus most closely related to the human coronavirus 229E. Viruses,2012,4:3390-3404.
    [18]Huynh J, Li S, Yount B, et al. Evidence Supporting a Zoonotic Origin of Human Coronavirus Strain NL63. J Virol,2012,10:1128-1142.
    [19]Andrea Balboni, Mara Battilani, SantinoProsperi. The SARS-like coronaviruses:the role of bats and evolutionary relationship with SARS coronavirus. New Microbiologica,2012,35:1-16.
    [20]Julien R St-Jean, Marc Desforges, Fernando Almazan, et al. Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone. J Virol,2006,80:3670-3674.
    [21]Yount B, Curtis K M, Fritz E A, et al. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci, USA,2003, 100:12995-13000.
    [22]Eric F Donaldson, Boyd Yount, Amy C Sims, et al. Systematic assembly of a full-length infectious clone of human coronavirus NL63. J Virol,2008,82:11948-11957.
    [23]Rosa Casais, Volker Thiel, Stuart G Siddell, et al. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol,2001,75:12359-12369.
    [24]Coley S E, Lavi E, Sawicki S G, et al. Recombinant mouse hepatitis virus strain A59 from cloned, full-length cDNA replicates to high titers in vitro and is fully pathogenic in vivo. J Virol, 2005,79:3097-3106.
    [25]Yount B, Curtis K M, Baric R S. Strategy for systematic assembly of large RNA and DNA genomes:transmissible gastroenteritis virus model. J Virol,2001,74:10600-10611.
    [26]Geng H Y, Cui L J, Xie Z D, et al. Characterization and complete genome sequence of human coronavirus NL63 isolated in China. J Virol,2012,86:9546-9547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700