用户名: 密码: 验证码:
塔中顺南地区缝洞型储层地震响应特征及识别模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对塔中顺南地区奥陶系目标储层埋藏深度大(>6500m),地质情况复杂,缝洞型储层地震波场特征识别困难,储层有效预测难度大等问题,本文从顺南地区三维地震资料出发,以钻井、测井及典型岩芯测试等资料作为约束条件,采用随机介质理论实现了对地下复杂碳酸盐岩不同尺度、不同角度缝洞体的精确刻画,利用非均匀介质波动方程正演模拟技术,从缝洞型储层自身因素(发育尺度、发育角度、发育密度及含不同流体等情况)变化以及采集、处理、成像和地表沙层吸收衰减等角度开展缝洞型储层波场特征影响因素研究,为缝洞型储层(地质)与地震响应(地球物理)之间关系建立打下基础。在此基础上建立塔中顺南地区奥陶系碳酸盐岩缝洞型储层地震响应识别模式,优选对缝洞型储层敏感的地震属性,降低缝洞型储层预测中的多解性问题,为该区不同层系内缝洞型储层反射特征的认识及有效预测提供一定依据。
     针对塔中顺南地区奥陶系缝洞型储层地震响应识别模式建立及有效储层预测,本文开展的主要内容及成果为:
     1)基于测井资料及典型岩芯测试结果完善塔中顺南地区奥陶系各层系缝洞型储层岩石物理参数变化规律,为缝洞型储层模型建立、弹性反演、流体识别及储层预测打下岩石物理基础。
     2)通过引入方向因子θ,给出一种新的矢量自相关函数表达式,使产生的随机介质具有一定的方向优势,采用阈值截取法,提出缝洞体分布的长半轴l、短半轴s,及局部发育密度P来构造不同形式的缝洞型随机介质模型,实现了对地下复杂碳酸盐岩不同尺度、不同角度缝洞体的精确刻画。
     3)完善了小尺度缝洞体地震可检测分辨率研究理论,给出不同情况下小尺度缝洞体宽度振幅因子变化曲线,从理论上探讨小尺度缝洞体地震可检测性问题。常规地震勘探偏移剖面上,厚度远小于1/4波长的缝洞体不仅能够被检测,而且当缝洞体界面反射系数r较大时,在地震剖面上能够形成较强的“串珠状”反射特征,小尺度缝洞体反射能量主要受界面反射系数r及激发子波主频f及缝洞体横向尺度影响,缝洞体厚度h对其反射能量的影响不大;偏移剖面能识别缝洞体的横向尺度极限为缝洞体所发育背景围岩中波长的四分之一,纵向尺度上能识别缝洞体的极限为缝洞体复合反射系数Rl≥Rs(Rs为背景反射系数)时所对应的厚度hdmin。;同时给出小尺度缝洞体纵、横向尺度计算方法,为实际地震资料中缝洞型储层发育规模计算提供了依据。
     4)从缝洞型储层自身因素(发育尺度、发育角度、发育密度及含不同流体等情况)变化以及采集、处理、成像和地表沙层吸收衰减等角度开展影响缝洞型储层波场特征因素研究,建立了缝洞型储层(地质)与地震响应(地球物理)之间的对应关系。
     5)分层系建立塔中顺南地区奥陶系缝洞型储层模型,开展实际资料缝洞型储层地震响应特征研究,建立塔中顺南地区奥陶系各层系缝洞型储层地震响应特征识别模式。
     6)基于地震识别模式优选出对缝洞型储层敏感地震属性具有更明确的地质含义,后期钻井揭示储层的地震波场特征与建立的地震识别模式吻合较好,完善了基于缝洞型储层建模、非均匀介质正演模拟、地震波场特征分析及敏感地震属性优选等研究缝洞型储层地震响应特征及储层预测的一整套技术序列,实现了对缝洞型储层的有效预测,优选出3个有利勘探目标区域。
     本论文的主要创新点体现在:
     1)通过引入方向因子θ,给出一种新的矢量自相关函数表达式,使产生的随机介质具有一定的方向优势,在此基础上提出缝洞体分布的长半轴l、短半轴s,及局部发育密度P来构造不同形式的缝洞型随机介质模型,实现对地下复杂碳酸盐岩不同尺度、不同角度缝洞体的精确刻画。
     2)较详细地从缝洞型储层自身因素(发育尺度、发育规模、发育密度及含不同流体等情况)变化以及采集、处理、成像和地表沙层吸收衰减等角度开展影响缝洞型储层波场特征的因素研究,建立缝洞型储层(地质)与地震响应(地球物理)之间的对应关系,从而指导实际无井约束情况下缝洞型储层地震波场特征认识及识别。
     3)针对塔中顺南地区奥陶系缝洞型储层,完善了基于缝洞型储层建模、非均匀介质正演模拟、地震波场特征分析及敏感地震属性优选等研究缝洞型储层地震响应特征及储层预测一整套技术序列,建立塔中顺南地区奥陶系各层系缝洞型储层地震波场特征及地震识别模式,后期钻井钻遇储层的地震波场特征与建立的地震识别模式吻合率高,取得较好效果。
Deeply buried (more than6500m) and complicatedly structured, the Ordovician Carbonate reservoirs in Tazhong Shunnan area are difficult to recognize and characterize. In this paper, I first used stochastic medium to precisely describe fractured and porous reservoirs with muti-scale under the constraint of3-D seismic data, drilling data and logging data of this area. Then we studied the factors affecting seismic response patterns of porous reservoirs by forward modeling techniques based on non-homogeneous medium wave equation. In this process, we mainly considered features of porous reservoirs (e.g. the scale and density of fractures, the fluids contained, etc.), as well as the attenuation of sand layers on the surface. In the end, we optimized the attributes most sensitive to porous reservoirs, which can help to provide a foundation for effective recognition of reflection characteristics in different strata and to reduce multiple solutions for reservoir prediction.
     The main contents and results of this paper are carried out as follows:
     1) Rock physics research was conducted in target area to obtain related parameters for model construction, elastic inversion, fluid identification and reservoir prediction.
     2) A direction factor,θ was introduced to a new expression of vector autocorrelation function, which could provide the random medium certain advantages on direction. Then we finely described the fractured and porous reservoirs with their long axis,l, short axis, s, and density, P. These parameters were calculated by intercept method.
     3) The theory of detectable resolution of small-scale fractures was improved by studying the relationship between the fractures'width and the amplitude factors in different case. Results show that on migration profiles, the lateral recognizable limit is one fourth wavelength of the surrounding rocks, and when Rl≥Rs (R, is reflection coefficient of fractures and Rs is background reflection coefficient), the longitudinal recognizable limit is hmind. In addition, the method of calculating vertical and horizontal scale was given, which provided the basis for evaluating the size of vuggy reservoir in actual data.
     4) A correspondence between fractured reservoirs (geological) and seismic response (geophysics) was established based on the research of affecting factors including reservoirs' characters (scale, angle, density and fluid), data acquisition, data process, image and attenuation of sand layers on the surface.
     5) The Ordovician fractured reservoir models in Tazhong Shunnan area were built in different strata. Meanwhile, seismic response patterns in this area were concluded based on the research to field data and theoretical data.
     6) Some attributes with a clear geological meaning and sensitive to vuggy reservoir were optimized. A complete set of technical sequence for reservoir prediction in Tazhong, Shunnan area was constructed including the process of vuggy reservoir modeling, forward modeling in inhomogeneous media, seismic wave field analysis, seismic attributes optimization, etc. Based on this technical work flow, the characteristics of seismic wave field and seismic response pattern were summarized several fixed patterns. These patterns were highly consistent with actual data collected in a later time. Further, three favorable exploration target area were selected thought this analysis, which represent that an effective prediction of fractured reservoir was achieved.
     The main innovations of this paper are detailed as follows:
     1) A new expression of vector autocorrelation function was derived by introducing direction factor,θ. This expression can help to more finely descript geological models of Ordovician fractured reservoir.
     2) A correspondence between fractured reservoirs (geological) and seismic response (geophysics) was established based on the research of affecting factors including reservoirs' characters (scale, angle, density and fluid), data acquisition, data process, image and attenuation of sand layers on the surface, which could guide the understanding of actual vuggy reservoir characteristics when under no constraints from well data.
     3) A complete set of technical sequence for reservoir prediction in Tazhong, Shunnan area was constructed. Based on this technical work flow, the characteristics of seismic wave field and seismic response pattern were summarized several fixed patterns. These patterns were highly consistent with actual data collected in a later time.
引文
[1]周总瑛,张抗,唐跃刚.中国石油探明储量变化特点与发展趋势.新疆石油地质,2003,24(4):356-359.
    [2]张抗.近20年中国石油储量变化分析.石油与天然气地质,2005,26(5):584-589.
    [3]谢锦龙,黄冲,王晓星.中国碳酸盐岩油气藏探明储量分布特征.海相油气地质,2009,14(2):24-30.
    [4]王从镔,龚洪林.塔中地区奥陶系碳酸盐岩储层岩石地球物理特征研究.石油物探,2009,48(3):290-293
    [5]杨海军,韩剑发,孙崇浩等.塔中北斜坡奥陶系鹰山组岩溶型储层发育模式与油气勘探.石油学报,2011,32(2):199-205.
    [6]吉云刚,韩剑发,张正红等.塔里木盆地塔中北斜坡奥陶系鹰山组深部优质岩溶储层的形成与分布.地质学报,2012,86(7):1163-1173.
    [7]Ginsburg R N. Environmental relation ships of grain size and constituent particles in some south Florida carbonate sediments. AAPG Bulletin,1956,40:2384-2427.
    [8]Ginsburg R N, Low enstam H A. The influence of marine bottom communities on the depositional environments of sed-iments. Journal of Geology,1958,66:310-318.
    [9]Bathurst R G C. Diagenetic fabrics in some British Dinantian limestones, Liver pool and Mancheser. Geological Journal,1958,2:11-36.
    [10]Folk R L. Practical petrographic classification of limestone. AAPG Bulletin,1959,43: 1-38.
    [11]Moore C H. Carbonate Reservoirs:Porosity Evolution and Diagensis in a Sequence Stratigraphic Framework. New York:Elsevier,2001.
    [12]Moore C H. Carbonate Diagenesis and Porosity. New York:Elsevier,1989.
    [13]Tucker M E. Carbonate diagenesis and sequences tratigraphy. Wright V P. Sedimen tology Review. Oxford:Black-well,1993.
    [14]Tucker M E, Wright V P. Carbonate Sedimentology. Oxford:Black well Scientific Publication,1990.
    [15]Lucia F J. Carbonate Reservoir Characterization:An Integrated Approach. New York: pringer,2007.
    [16]强子同.碳酸盐岩储层地质学.北京:石油大学出版社,1998.
    [17]马永生.碳酸盐岩储层沉积学.北京:地质出版社,1999.
    [18]彭苏萍,邵龙义.塔里木盆地巴楚-阿瓦提地区碳酸盐岩储层研究.北京:地质出版社,2001.
    [19]侯方浩.鄂尔多斯盆地奥陶系碳酸盐岩储层图集.成都:四川人民出版社,2002.
    [20]撒利明,姚逢昌,狄帮让等.缝洞型储层地震识别理论与方法.北京:石油工业出版社,2010.
    [21]漆立新,云露.塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素.石油与天然气地质,2010,31(1):1-12.
    [22]赵迎月,顾汉明,李宗杰等.塔中地区奥陶系典型地震体地震识别模式.吉林大学学报 (地球科学版),2010,40(6):1262-1270.
    [23]Frankel A, Clayton R W. A finite-difference simulation of wave propagation in two-dimensional random media.Bulletin of the Seismological Society of America,1984,74 (6):2167-2186.
    [24]Frankel A, Clayton R W. Finite-difference simulation of seismic scattering:implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity. J Geophys Res,1986,91 (B6):6465-6489.
    [25]Haldorsen, Helge H, Damsleth, et al. Stochastic modeling. SPE 20321, Journal of Petroleum Technology, Volume 42, Number 4, April,1990.
    [26]Korn M. Seismic wave in random media. Journal of Applied Geophysics,1993,29:247-269.
    [27]Ergintav S, Canitez N. Modeling of multi-scale media in discrete form. Journal of Seismic Exploration,1997,6:77-96.
    [28]Muller G, Roth M, Korn M. Seismic-wave traveltimes in random media. Geophys J Int, 1992,110 (1):29-41.
    [29]Ikelle L, Yung S,Daube F.2-D random media with ellipsoidal autocorrelation function. Geophysics,1993,58 (9):1359-1372.
    [30]奚先,姚姚.二维随机介质及波动方程正演模拟.石油地球物理勘探,2001,36(5):546-552.
    [31]姚姚,奚先.随机介质模型正演模拟及其地震波场分析.石油物探,2002,41(1):31-36.
    [32]奚先,姚姚.随机介质模型的模拟与混合型随机介质.地球科学——中国地质大学学报,2002,27(1):67-71.
    [33]姚姚,奚先.区域多尺度随机介质模型及其波场分析.石油物探,2004,43(1):1-7.
    [34]殷学鑫,刘洋.二维随机介质模型正演模拟及其波场分析石油地球物理勘探,2011,46(6):862-872
    [35]郭乃川,王尚旭,董春晖等.地震勘探中小尺度非均匀性的描述及长波长理论.地球物理学报,2012,55(7):2385-2401.
    [36]赵迎月.南海西北部深水区典型沉积体地震精细刻画研究.中国地质大学(武汉)博士学位论文,2011.
    [37]赵迎月,顾汉明,汪勇等.无井条件下建立碎屑岩储层地震地质模型研究.地球物理学报,2013,56(6):2055-2064.
    [38]雍运动.三维粘弹随机介质地震波场并行模拟研究.吉林大学硕士论文,2007.
    [39]陈可洋.三维随机建模方法及其波场模拟分析.勘探地球物理进展,2009,32(5):315-320.
    [40]郭乃川,王尚旭,郭锐等.地震勘探中三维小尺度非均匀性随机介质模型的建立及其特点分析.石油天然气学报,2012,34(7):62-67
    [41]顾元.三维非平稳随机介质建模与参数估计.中国地质大学(武汉)博士学位论文,2013.
    [42]奚先,姚姚,顾汉明.随机溶洞介质模型的构造.华中科技大学学报(自然科学版),2005,33(9):105-108.
    [43]奚先,姚姚,顾汉明.随机溶洞介质模型及其波场模拟.地球物理学进展,2005,20(2):365-369.
    [44]朱生旺,魏修成,曲寿利等.用随机介质模型方法描述孔洞型油气储层.地质学报,2008,82(3):420-427.
    [45]Taner M T, Schuelke J S. Seismic attribute revisited 57th Annual International Meeting, SEG 1994:1104-1106.
    [46]Chen Quincy, Steve S. Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge,1997.16 (5):445-448.
    [47]Rust. J E. Case study of a search for bright spots from a Pennsylvanian sand. AAPG-SEG "Stratigraphic Interpretation of Seismic Data" School,1975, p.40-53.
    [48]Sheriff, R E. Factors affecting seismic amplitudes. Geophys Prosp,1975,23:125-138.
    [49]Sheriff, R E. Inferring stratigraphy from seismic data. AAPG Bull,1976,60:528-542.
    [50]Backus M M, Chen R L. Flat spot exploration. Geophys Prosp,1975,23:533-577.
    [51]Taner M T, Sheriff R E. Application of amplitude, frequency, and other attributes to stratigraphic and hydrocarbon determination, in Payton C E, ed., Applications to hydrocarbon exploration. American Association of Petroleum Geologists,1977, Memoir 26,301-327.
    [52]Taner M T, Koehler F, Sheriff R E. Complex seismic trace analysis. Geophysics,1979, 44,1041-1063.
    [53]Ostrander W J. Plane wave reflection coefficients for gas sands at non-normal angles of incidence, Presented at 52th Annual International SEG Meeting, Dallas, Texas,1982: 216-213.
    [54]Ostrander W J. Plane wave reflection coefficients for gas sands at non-normal angles of incidence. Geophysies,1984,49,1637-1648.
    [55]郭华军,刘庆成.地震属性技术的历史、现状及发展趋势.物探与化探,2008,32(1):19-22.
    [56]王开燕,徐清彦,张桂芳等.地震属性分析技术综述.地球物理学进展,2013,28(2):815-823.
    [57]Hirsche K, Porter-Hirsche J, Mewhort L. The use and abuse of geostatistics. The Leading Edge,1997,16 (3):253-258.
    [58]Kailomey C T. Potential risks when using seismic attributes as predictors of reservoir properties. The Leading Edge,1997,16 (3):247-251.
    [59]侯伯刚,杨池银,武站国等.地震属性及其在储层预测中的影响因素.石油地球物理勘探,2004,39(5):553-558.
    [60]张建宁,于建国.地震属性应用中的不确定性分析.石油物探,2006,45(4):373-379.
    [61]陈遵德.储层地震属性优化方法.石油工业出版社,1998
    [62]于建国,姜秀清.地震属性优化在储层预测中的应用.石油与天然气地质,2003,24(3): 291-294
    [63]陈遵德,陈富贵.地震数据油气预测中地震属性优化问题.石油物探,1998,37(4):32-40.
    [64]倪逸,杨慧珠郭玲萱等.储层油气预测中地震属性优选问题探讨.石油地球物理勘探,1999,34(6):614-626.
    [65]宋维琪,刘江华,王小马等.预测油气的地震属性优化组合、灰关联分析技术.石油勘探与开发,2002,29(5):34-36.
    [66]王永刚,刘伟,黄国平.地震属性的GA-BP优化方法.石油地球物理勘探,2002,37(6):606-611.
    [67]郭刚明.地震属性技术的研究与应用.西南石油大学博士学位论文,2005.
    [68]陈冬.地震多属性分析及其在储层预测中的应用研究.中国地质大学(北京)博士学位论文,2008.
    [69]魏艳,尹成,丁峰等.地震多属性综合分析的应用研究.石油物探2007,46(1):42-47.
    [70]李庆忠.含油气砂层的频率特征及振幅特征.石油地球物理勘探,1987,22(1):1-23.
    [71]曹辉.应用GM(1,1)模型分析反射波振幅与频率特征.石油地球物理勘探,1995,30(1):387-402.
    [72]马中高,管路平,贺振华等.利用正演模拟优选地震属性进行储层预测.石油学报,2003,24(6):35-39.
    [73]蔡成国,赵迎月,顾汉明.塔河三叠系储层地震正演模拟及应用研究.石油天然气学报,2008,30(3):92-95.
    [74]赵迎月,顾汉明,蔡成国.塔河油田三叠系砂岩储层地震正演响应特征.天然气工业,2008,28(6):52-55.
    [75]张雄,石玉,顾汉明.模型正演技术在塔河油田于奇地区的应用.石油天然气学报,2011,33(4):82-87.
    [76]文晓涛,贺振华,黄德济.缝洞岩层地震波反射特征分析.勘探地球物理进展,2003,26(2):99-108.
    [77]黄绪宝,顾汉明.塔河油田南部缝洞储层正演模拟界地震波场特征.石油与天然气地质,2007,28(6):836-840.
    [78]吴俊峰,姚姚,撒利明.碳酸盐岩特殊孔洞型构造地震响应特征分析.石油地球物理勘探,2007,42(2):180-185.
    [79]王立华,魏建新,狄帮让.溶洞物理模型地震响应及其属性分析.石油地球物理勘探,2008,43(3):291-296.
    [80]李宗杰,王勤聪.塔北超深层碳酸盐岩储层预测方法和技术.石油与天然气地质,2002,23(1):35-40.
    [81]龙建东,徐安娜,李明.缝洞型碳酸盐岩内部局域振幅横向差异性储层预测法.石油地球物理勘探,2003,38(1):58-61.
    [82]王者顺,王尚旭,唐文榜.塔河碳酸盐岩溶洞油藏的地震响应及频率差异分析.石油与天然气地质,2004,25(1):93-96.
    [83]韩革华,漆立新,李宗杰.塔河油田奥陶系碳酸盐岩缝洞型储层预测技术.石油与天然气地质,2006,27(6):860-870.
    [84]闫相宾,管路平,王世星.塔里木盆地碳酸盐岩缝洞系统的地震响应特征及预测.石油与天然气地质,2007,28(6):829-835.
    [85]宋桂桥,马灵伟,李宗杰.基于随机介质正演模拟的塔中顺南地区风化壳储层地震响应特征分析.石油物探,2013,52(3):308-312.
    [86]Mavko G, Mukerji T. Rock physics handbook. Standford Rock Physics Laboratory,1996.
    [87]李琼,何建军,曹均.沁水盆地和顺地区煤层气储层物性特征.石油地球物理勘探,2013,48(5):734-739.
    [88]Timur A. Temperature dependence of compressional and shear wave velocities in rocks. Geophysics,1977 (42):950-976.
    [89]李爱兵,马丽云.频率、温度对砂岩的横波速度和Qs值的影响.地球物理学报,1994(37):653-658.
    [90]郝守玲,赵群.地震物理模型技术的应用与发展.勘探地球物理进展,2002,25(2):34-43.
    [91]魏建新,牟永光,狄帮让.三维地震物理模型的研究.石油地球物理勘探,2002,37(6):556-561.
    [92]狄帮让,魏建新,夏永革.三维地震物理模型技术的效果与精度研究.石油地球物理勘探,2002,37(6):562-568.
    [93]魏建新,狄帮让,王立华.孔洞储层地震物理模拟研究.石油物探,2008,47(2):156-160.
    [94]季敏,魏建新,王尚旭.孔洞物理模型数据的地震响应特征分析.石油地球物理勘探,2009,44(2):196-200.
    [95]杜正聪,贺振华,黄德济.缝洞储层地震波场数值模拟.勘探地球物理进展,2003,26 (2):103-108.
    [96]姚姚,唐文榜.深层碳酸盐岩岩溶风化壳洞缝型油气藏可检测性的理论研究.石油地球物理勘探,2003,38(6):623-629.
    [97]董良国,黄超,刘玉柱等.溶洞地震反射波特征数值模拟研究.石油物探,2010,49(2):121-124.
    [98]张永刚.地震波数值模拟方法.石油物探,2003,42(2):143-148.
    [99]裴正林,牟永光.地震波传播数值模拟.地球物理学进展,2004,19(4):933-940.
    [100]马灵伟,顾汉明,赵迎月等.应用随机介质正演模拟刻画深水区台缘礁碳酸盐岩储层.石油地球物理勘探,2013,48(4):583-590.
    [101]李国平,程利敏,孟令媛等.非均匀介质交错网格高阶差分地震波数值模拟.石油天然气学报(江汉石油学院学报),2010,32(4):220-225.
    [102]Carcione J M. Seismic modeling in viscoelastic media. Geophysics,1993,58(1):110-120
    [103]Robertsson J O A, Blanch J O, Symes W W. Viscoelastic finite-diffence modeling. Geophysics,1994,59 (9):1444-1456.
    [104]Arntsen B, Nebel A G, Amundsen L. Visco-acoustic finite-difference modeling in the frequency domain. Journal of seismic exploration,1998,7 (1):45-64.
    [105]Saenger E H, Bohen T. Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics,2004,69 (2):583-591.
    [106]杜启振.各向异性黏弹性介质伪谱法波场模拟.物理学报,2004,53(12):4428-4434.
    [107]张智,刘财,邵志刚等.伪谱法在常Q粘弹介质地震波场模拟中的应用效果.地球物理学进展,2005,20(4):945-949.
    [108]宋常瑜,裴正林.井间地震粘弹性波场特征的数值模拟研究.石油物探,2006,45(5):508-513.
    [109]牛滨华,孙春岩.黏弹介质与地震波传播.北京:地质出版社,2007.
    [110]牟永光,裴正林.三维复杂介质地震数值模拟.北京:石油工业出版社,2005,4-6.
    [111]成景旺,顾汉明,刘琳等.海上粘弹弹性介质FCT有限差分正演模拟.石油天然气学报,2011,33(12):83-87.
    [112]Birch F. The velocity of compressional waves in rocks to 10 kilobars-Part 2. Journal of Geophysical Research,1961,66 (7):2199-2224.
    [113]Birch F. Composition of the Earth's mantle. Geophysical Journal of the Royal Astronomical socity,1961,4(S0).295-311.
    [114]李庆忠.走向精确勘探的道理——高分辨率地震勘探系统工程剖析.石油工业出版社,1994.
    [115]李庆忠.岩性油气藏地震勘探若干问题的讨论(Ⅱ)——关于垂向分辨率的认识.岩性油气藏,2008,20(3):1-5.
    [116]俞寿朋.高分辨率地震勘探.石油工业出版社,1993.
    [117]. Knapp R W. Vertical resolution of thick beds, thin beds, and bed cyclothems. Geophysics, 1990,55 (9):1183-1190.
    [118]Kallweit R S, L, Wood C. The limits of resolution of zero-phase wavelets. Geophysics, 1982,47 (7):1035-1046.
    [119]Ricker N. Wavelet contraction, wavelet expansion, and the control of seismic resolution. Geophysics,1953,18:769-792.
    [120]Widess M A. How thin is a thin bed?. Geophysics,1973,38:1176-1184.
    [121]Farr J B. High-resolution seismic methods improve stratigraphic exploration. Oil & Gas Journal,1977,75 (48):182-188
    [122]唐文榜.地震反射法中薄煤层分辨能力的研究.地球物理学报,1987,30(6):641-652.
    [123]唐文榜,刘来祥,樊佳方等.地震可检测性分辨率研究.石油物探,2012,51(2):107-117.
    [124]Yao Yao,Sa Liming, Wang Shangxu. Research on the seismic wave field of Karst Cavern reservoirs near deep carbonate weathered crusts. Applied Geophysics,2005,2(2):94-102.
    [125]姚姚.菲涅耳带与洞缝型油气藏地震波场.石油物探,2005,44(5):491-494.
    [126]漆立新,顾汉明,李宗杰等.基于地震波振幅分辨塔河油田溶洞最小高度的理论探讨.地球物理学进展,2008,23(5):1499-1506.
    [127]马灵伟,顾汉明,王帮助等.伊宁凹陷煤系地层对深层地震反射波能量衰减机理分析.地球物理学进展,2012,27(3):1227-1233.
    [128]夏洪瑞.道间距对偏移结果影响的讨论.勘探地球物理进展,2007,30(1):33-38.
    [129]侯嵩,尹军杰,王赞.道间距对地震偏移的影响.石油地质与工程,2009,23(4):32-34.
    [130]Yilmaz O. Seismic data analysis Society of Exploration Geophysics,2001.
    [131]Sun J. On the limited aperture migration in two dimensions. Geophysics,1998,63 (3): 984-994.
    [132]吴清岭,赵海波,李来林等.基于波动方程正演模拟的偏移孔径分析.大庆石油地质与开发,2008,27(6):116-122.
    [133]杨俊,贺振华,黄德济.速度模型对地震波场偏移成像的影响.物探化探计算技术,2006,28(2):113-116.
    [134]黄凯,徐群洲,杨晓海等.地震波能量的衰减及其影响因素.新疆石油地质,1997,18(3):212-216.
    [135]Johnston D H, Toksoz M N. Attenuation of seismic wave in dry and saturated:Ⅱ mechanisms. Geophysics,1979,44:691.
    [136]凌云.大地吸收衰减分析.石油地球物理勘探,2001,36(1):1-8.
    [137]凌云,高军,吴琳.时频空间域球面发散与吸收补偿.石油地球物理勘探,2005,40(2):176-182.
    [138]刘建华,胥颐,郝天珧.地震波衰减的物理机制研究.地球物理学进展,2004,19(1):1-6.
    [139]周发祥,宁鹏鹏,刘斌等.吸收衰减对地震分辨率的影响.石油地球物理勘探,2008,43(增刊2):84-87.
    [140]钱绍瑚,高建华,谷永兴等.地层吸收衰减模型的制作及补偿方法的研究.石油地球物理勘探,1998,33(增刊1):18-24.
    [141]焦存礼,何碧竹等.塔中地区奥陶系加里东中期Ⅰ幕古岩溶特征及控制因素研究.石油地质,2010,1:21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700