用户名: 密码: 验证码:
菊粉内切酶和蔗糖酶基因的高效重组表达及其在水解菊粉中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菊粉酶(Inulinase)是一种呋喃果糖基水解酶,它靶向作用于菊粉中的β-2,1糖苷键并将其水解为果糖和葡萄糖。菊粉酶可以分为菊粉外切酶和菊粉内切酶。菊粉外切酶可以从菊粉分子的非还原末端催化水解下β-D-呋喃果糖残基,其底物可为菊粉、蔗糖和果聚糖;菊粉内切酶可以水解菊粉内部的β-2,1糖苷键使其变成菊糖三糖、菊糖四糖和菊糖五糖为主的菊粉寡糖。蔗糖酶(Invertase)是一种β-呋喃果糖苷酶,它可以催化蔗糖水解为果糖和葡萄糖,广泛存在于细菌、酵母、丝状真菌、高等植物和许多动物细胞中。其中,酒精酵母的蔗糖酶已被深入研究,并广泛应用于食品和发酵工业。酒精酵母的蔗糖酶主要是由SUC2基因编码的。
     本研究首先将节杆菌属Arthrobacter sp. S37来源的菊粉内切酶基因EnIA在酵母菌解脂亚罗维亚中表达,并研究了重组菊粉内切酶的性质及水解菊粉的产物。将菊粉内切酶基因EnIA连接到表达质粒pINA1317上,在Yarrowia lipolytica Po1h中进行分泌表达。重组转化子1317-EnIA生产的重组菊粉内切酶的酶活力和比活力大小分别为16.7U/mL和93.4U/mg,表观分子量大小为78.9kDa。重组酶的最适pH值为4.0,在pH2.0-8.0范围内,重组酶可以保持较高的活性。在40℃以下,重组酶有很好的稳定性,其最适作用温度为50℃。Li+离子对重组酶活性有激活作用。重组菊粉内切酶水解菊粉的主要产物为菊粉二糖。当把重组菊粉内切酶和菊粉外切酶混合水解菊粉时,混合物的菊粉酶活力大于两者菊粉酶相加之和,表现出协同作用。
     本实验室保藏的一株高产酒精酵母Saccharomyces sp. W0菌株可以缓慢地糖化菊粉产生单糖,利用菊粉发酵生产少量的酒精。将菊粉内切酶基因EnIA在酒精酵母W0菌株中表达,提高W0菌株的菊粉酶活力和酒精产量。把菊粉内切酶基因EnIA连接到酒精酵母表达载体pMIDSC31(δ序列插入型)和pMIRSC31(rDNA序列插入型)上,整合到W0菌株的基因组DNA中。δ序列插入型重组转化子D5的菊粉酶活力高于rDNA序列插入型重组转化子R1。重组转化子D5的菊粉酶活力达8.6U/mL。在5-L发酵罐体系中,转化子D5以菊粉含量为30%(w/v)的培养基进行酒精发酵,酒精产量为13.6%(v/v,20℃)。转化子D5同步糖化生料菊芋粉,在1-L发酵体系中,酒精产量达10.1%(v/v,20℃)。
     W0菌株具有很低的菊粉酶活性,根据氨基酸序列的多重比对分析结果推测可能与蔗糖酶基因SUC2相关。蔗糖酶基因SUC2与酒精酵母具有菊粉酶活力可以发酵菊粉生产酒精之间的关系还鲜有报道。本研究将SUC2基因完全敲除并将原始SUC2基因在敲除菌株中超表达,根据敲除和超表达之后的实验结果解释蔗糖酶基因SUC2与W0菌株具有菊粉酶活性是否相关。蔗糖酶基因SUC2被敲除后,完全敲除菌株W4失去蔗糖酶和菊粉酶活力,不能在以蔗糖或菊粉为唯一碳源的培养基中正常生长,可以在以果糖为唯一碳源的培养基中生长。在敲除菌株W4中超表达蔗糖酶SUC2基因,超表达转化子SUC2-1的SUC2基因表达量为W0菌株的113.6倍,蔗糖酶和菊粉酶活力分别是W0菌株的2.53倍和6.60倍。SUC2基因超表达转化子水解菊粉的产物是单糖,可以利用30%(w/v)的菊粉发酵培养基生产13.4%(v/v,20℃)的酒精。在1-L发酵体系中,超表达转化子SUC2-1同步糖化生料菊芋粉的酒精产量达10.9%(v/v,20℃)。本实验首次证明W0菌株的SUC2基因与其胞外和胞内菊粉酶活性有关,也证明了在W0菌株中超表达蔗糖酶的技术也可应用到酒精发酵工业上。
Inulinases are fructofuranosyl hydrolases that target on the β-2,1linkage ofinulin and hydrolyze it into fructose and glucose. They can be divided intoexo-inulinase and endo-inulinase. The exo-inulinase catalyzes the removal of theterminal fructose residues from the non-reducing end of the inulin molecule while theendo-inulinase hydrolyzes the internal linkages in inulin to yield inulotriose,inulotetraose, and inulopentaose. Invertase is the beta-fructofuranosidase thatcatalyzes the irreversible hydrolysis of sucrose into glucose and frucose. It is widelypresent in bacteria, yeasts, fungi, higher plants and in some animal cells. Especially,invertase from Saccharomyces cerevisiae has been intensively investigated andapplied to food and fermentation industries. The SUC2gene encodes the maininvertase activity.
     In the study, the endo-inulinase gene (EnIA) from Arthrobacter sp. S37wasligated into the expression vector pINA1317and over-expressed in Yarrowialipolytica Po1h. It was found that the endo-inulinase activity and specificendo-inulinase activity produced by the transformant1317-EnIA were16.7U/mL and93.4U/mg, respectively. The recombinant EnIA was purified and characterized. Themolecular weight of the purified rEnIA was78.9kDa. The optimal pH andtemperature of the purified rEnIA were4.0and50℃, respectively. The purifiedrEnIA was stable in the temperature range of4-40℃and in the pH range of2.0-8.0.The activity of rEnIA was greatly stimulated in the presence of Li+. The purifiedrEnIA could actively convert inulin into disaccharides. Moreover, the mixture ofrEnIA and exo-inulinase has a higher inulinase activity than the sum of rEnIA andexo-inulinase activity. It suggested that expressing both the endo-inulinase andexo-inulinase gene in the same host would get the recombinants with higher inulinaseactivity.
     The high ethanol producing yeast Saccharomyces sp. strain W0, which ispreserved in our lab could ferment inulin and produce low concentration of ethanolfrom inulin hydrolysate. After the endo-inulinase gene from Arthrobacter sp. S37wasligated the expression vectors pMIDSC31and pMIRSC31, the endo-inulinase genewas inserted into the chromosomal DNA of Saccharomyces sp. W0. It was found thatthe inulinase activity of the recombinant yeast D5in which the endo-inulinase genewas inserted into the delta sequence was higher than that of the recombinant yeast R1in which the endo-inulinase gene was inserted into18S rDNA sequence. More ethanolfrom inulin was produced by the recombinant yeast D5than by the recombinant yeastR1. But Saccharomyces sp. W0produced the lowest inulinase activity andconcentration of ethanol. During the5-L fermentation, the recombinant yeast D5could produce13.6mL of ethanol per100mL of the fermented medium from30%(w/v) inulin. The recombinant yeast D5could actively convert the unsterilized mealof Jerusalem artichoke tubers, yielding10.1mL of ethanol per100mL of thefermented medium.
     The Saccharomyces sp. W0has the low inulinase activity. However, little isknown about relationship between the invertase gene (SUC2) and inulinase activityand ethanol production from inulin in strain W0. Therefore, in this study, the SUC2gene was disrupted in Saccharomyces sp. W0and the native SUC2gene wasover-expressed in the disruptant. Then, the relationship between the invertase geneand inulinase activity and ethanol production was examined. After the SUC2gene inSaccharomyces sp. W0was removed, the disruptant W4obtained could not produceany extracellular invertase and inulinase activities, could not grow in the mediacontaining sucrose and inulin, but could grow in the medium containing fructose.However, after the SUC2gene was over-expressed in the disruptant W4, therecombinant yeast strain SUC2-1obtained could produce much higher extracellularinvertase and inulinase activities than Saccharomyces sp. W0and the transcriptionallevel of the SUC2gene in the recombinant yeast strain SUC2-1was also much higherthan that in Saccharomyces sp. W0. This is the first time to report that the SUC2genein Saccharomyces sp. W0is closely related to both extracellular invertase and inulinase activities. The invertase over-produced by the recombinant yeast strainSUC2-1could actively convert inulin into monosaccharides. The recombinant yeaststrain SUC2-1over-expressing the SUC2gene could produce over13.4%(v/v)ethanol from30%(w/v) inulin, suggesting that Saccharomyces sp. W0over-producing invertase also can be applied to ethanol fermentation industry.
引文
白雪芳,赵小明,杜昱光.菊芋替代玉米发酵生产乙醇的初步研究[J].西北农业学报,2008,17(4):297-301.
    白玉.发酵菊芋生产酒精菌种的筛选与发酵条件优化[D].大连:大连理工大学,2006.:06-50.
    曹天舒.海洋酵母新型菊粉酶基因的克隆及表达[D].中国海洋大学,2013.:15-16.
    曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].2003.
    常宝磊.利用菊芋生产乙醇的研究[D].大连理工大学,2009.
    陈洁,赵郁,徐埏.果糖的研究进展[J].华西药学杂志,2000,15(2):111-112.
    陈庆森,陈伟.利用产黄青霉制备高活力蔗糖转化酶[J].食品科学,1997,18(12):18-22.
    陈维顺,于皆平.蔗糖酶作为大肠腺瘤恶变倾向标志的研究[J].中国肿瘤临床,1996,23(8):542-544.
    陈晓明,陈静,陈寒青,等. Aspergillus ficuum菊粉内切酶基因在大肠杆菌中表达[J].食品与生物技术学报,2011(3):388-393.
    程志娟,邹海晏.用生淀粉生产酒精的理论研究(综述)[J].酿酒科技,1983,3:3.
    池振明.高浓度酒精发酵技术的研究进展[J].食品与发酵工业,1995,4:80-85.
    池振明.提高酵母菌耐酒糟能力的方法[J].微生物学通报,1993,20(3):3.
    池振明,刘自镕.生淀粉高浓度酒精发酵的研究[J].生物工程学报,1994,10(2):130-134.
    崔巍.利用高蛋白解脂亚罗维亚酵母转化菊粉生产单细胞蛋白的研究[D].中国海洋大学,2011:98-99.
    冯迪.酒曲应用于菊芋乙醇发酵的研究[D].南京农业大学,2010.
    高威.产菊粉酶耐热细菌的筛选及酶学性质研究[D].大连理工大学,2008.
    高向东.染色体位置对酵母SUC2基因表达的影响[J].复旦学报:自然科学版,1998,37(4):555-558.
    郜秋果,张亚雄,余华顺,等.酿酒酵母中的蔗糖转换酶基因(SUC2)研究进展[J].酿酒科技,2007(05):85-88.
    葛向阳.菊芋发酵生产燃料酒精的研究[D].江南大学,2006.
    龚方.海洋季也蒙毕赤酵母菊粉酶的发酵生产,纯化,特性,基因克隆与表达的研究[D].中国海洋大学,2008.
    郭宁.一株高产酵母突变株菊糖酶的生产和酒精发酵的研究[D].中国海洋大学,2009.
    郝林.食品微生物学实验技术[M].中国农业出版社,2001:156-157.
    黄洁.黑曲霉TH-2蔗糖酶的分离纯化及部分性质与功能基团研究[D].西南大学,2011.
    黄玉玲.产菊粉酶菌株的筛选及发酵生产乙醇的性能比较[D].南京农业大学,2012.
    何志敏,吴金川.蔗糖酶促水解制取富果糖浆新工艺[J].食品与发酵工业,1996(3):54-57.
    贾芙民,赵学慧.菊粉酶高活力菌株的筛选及其产研究[J].微生物学通报,1996,23(4):56-58.
    姜培坤,许小婉.雷竹林地土壤酶活性研究[J].浙江林学院学报,2000,17(2):132-136.
    孔涛,吴祥云.菊芋中菊糖提取及果糖制备研究进展[J].食品工业科技,2013,34(18):375-378.
    李楠楠.菊粉酶基因在酿酒酵母中的表达及乙醇发酵[D].大连理工大学,2011:21-22.
    刘光磊.海洋微生物多糖水解酶的基因克隆和高效表达[D].中国海洋大学,2012:75-76.
    刘晓雯.小肠蔗糖酶的分离纯化及部分性质[D].四川大学,2002.
    罗英,李俊刚.菊芋的酶降解及其综合利用[J].四川师范大学学报:自然科学版,1999,22(6):747-751.
    骆东奇,白洁,谢德体.论土壤肥力评价指标和方法[J].土壤与环境,2002,11(2):202-205.
    彭万霖,田小光,曹亚斌,等.固定化蔗糖酶水解蜂蜜蔗糖的研究[J].微生物学报,1992(06):418-424.
    彭莹.土星拟威尔酵母WC91-2菌株嗜杀因子和β-1,3-葡聚糖酶的研究[D].中国海洋大学,2010.
    彭英云,江波,金征宇.曲霉SK004产菊粉酶发酵条件的确定及酶学性质研究[J].食品与发酵工业,2005,31(1):61-65.
    孙强. SUC2信号肽捕获系统的建立,验证与胚胎cDNA文库的筛选[D].第四军医大学,2001.
    田应兵,秦志经.无机肥料用量对棉田土壤蔗糖酶活性的影响[J].湖北农学院学报,1995,15(1):6-10.
    盛军.海洋金黄色隐球酵母菊粉酶发酵生产,酶的分离纯化以及基因克隆的研究[D].中国海洋大学,2008.
    汪伦记,董英.以菊芋粉为原料同步糖化发酵生产燃料乙醇[J].农业工程学报,2009(11):263-268.
    王凤,高华援,刘峰,等.功能性植物菊芋开发利用前景[J].中国蔬菜,2008(9):8-9.
    王建华,刘艳艳,姚斌,等.高产菊粉酶酵母筛选,发酵和酶学性质研究[J].生物工程学报,2000,16(1):60-64.
    王纪明.高产酒精酵母菌的分子改造及一步发酵菊粉或木薯淀粉生产酒精[D].中国海洋大学,2012:85-87.
    王颖.激光对酵母蔗糖酶催化活性的影响[D].天津医科大学,2008.
    武忠亮.烟草叶片蔗糖酶的分离纯化及部分性质研究[D][D].重庆:西南大学,2007.
    谢秋宏,相宏宇.分解菊粉微生物的筛选和初步鉴定[J].吉林大学自然科学学报,1996(3):96-98.
    尹思静.利用菊芋块茎与秸秆生产乙醇的研究[D].大连理工大学,2012.
    杨利博.以菊芋为原料同步糖化发酵生产燃料乙醇研究[D].河北科技大学,2010.
    杨晓瑞,梁金花,徐文龙,等.果葡糖浆的制备工艺研究[J].食品与发酵科技,2013,49(2):40-43.
    张建平,张泽生.海枣曲霉产菊粉内切酶的发酵条件及菊粉酶解条件的研究[J].现代食品科技,2011(8):956-959.
    岳礼溪.解脂耶罗威亚酵母菌表面展示质粒的构建及应用的初步研究[D].中国海洋大学,2008.
    张金云,曾祥燕.果葡糖浆对焦糖色素质量影响的研究[J].现代食品科技,2006,22(3):67-69.
    张乐兴.高果糖浆的性质与应用[J].广州食品工业科技,2003,19(1):44-45.
    张曈.海洋季也蒙毕赤酵母重组菊粉酶及其在产乙醇中的应用[D].中国海洋大学,2010.
    周延州,陈安国.菊粉资源的开发及应用[J].饲料工业,2005,26(1):49-52.
    周艳华.原生质体诱变选育高菊粉酶活酿酒酵母及其乙醇发酵研究[D].河北科技大学,2012.
    周中凯,杨春枝.蔗糖酶生产菌选育及其在果葡糖浆生产中的应用[J].甘蔗糖业,1998(1):33-36.
    Bajpai P, Margaritis A. Ethanol production from Jerusalem artichoke juice using flocculent cellsof Kluyveromyces marxianus[J]. Biotechnology letters,1986,8(5):361.
    Barranco-Florido E, Garc a-Garibay M, Gómez-Ruiz L, et al. Immobilization system ofKluyveromyces marxianus cells in barium alginate for inulin hydrolysis[J]. Processbiochemistry,2001,37(5):513-519.
    Boeke JD, La Croute F, Fink GR. A positive selection for mutants lacking orotidine-5′-phosphatedecarboxylase activity in yeast:5-fluoro-orotic acid resistance[J]. Molecular and generalgenetics,1984,197(2):345-346.
    Boeke JD, Sandmeyer SB.4Yeast Transposable Elements[J]. Cold Spring Harbor MonographArchive,1991,21:193-261.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding[J]. Analytical biochemistry,1976,72(1):248-254.
    Carlson M, Taussig R, Kustu S, et al. The secreted form of invertase in Saccharomyces cerevisiaeis synthesized from mRNA encoding a signal sequence.[J]. Molecular and cellular biology,1983,3(3):439-447.
    Cha HJ, Kim MH, Kim SH, et al. Enhancement, by succinate addition, of the production of clonedglucoamylase from recombinant yeast using a SUC2promoter[J]. Process biochemistry,1998,33(3):257-261.
    Chen H, Chen X, Li Y, et al. Purification and characterisation of exo-and endo-inulinase fromAspergillus ficuum JNSP5-06[J]. Food chemistry,2009,115(4):1206-1212.
    Chen X, Xu X, Jin Z, et al. Expression of an endoinulinase from Aspergillus ficuum JNSP5-06inEscherichia coli and its characterization[J]. Carbohydrate polymers,2012,88(2):748-753.
    Chi ZM, Liu ZR. High-concentration alcoholic production from hydrolysate of raw ground cornby a tetraploid yeast strain[J]. Biotechnology letters,1993,15(8):877-882.
    Chi Z, Liu J, Zhang W. Trehalose accumulation from soluble starch by Saccharomycopsisfibuligera sdu[J]. Enzyme and microbial technology,2001,28(2):240-245.
    Chi Z, Chi Z, Zhang T, et al. Inulinase-expressing microorganisms and applications ofinulinases[J]. Applied microbiology and biotechnology,2009,82(2):211.
    Cho YJ, Sinha J, Park JP, et al. Production of inulooligosaccharides from chicory extract byendoinulinase from Xanthomonas oryzae No.5[J]. Enzyme and microbial technology,2001,28(4):439-445.
    Cho KM, Yoo YJ, Kang HS. δ-Integration of endo/exo-glucanase and β-glucosidase genes into theyeast chromosomes for direct conversion of cellulose to ethanol[J]. Enzyme and microbialtechnology,1999,25(1):23-30.
    Cho YJ, Yun JW. Purification and characterization of an endoinulinase from Xanthomonas oryzaeNo.5[J]. Process biochemistry,2002,37(11):1325-1331.
    Choi ES, Lee H, Jeon JH. Direct ethanol fermentation from Jerusalem artichoke usingSaccharomyces cerevisiae KCCM50549Without inulinase-pretreatment[J]. Journal ofbiotechnology,2010,150-154.
    Czernichow B, Simon Assmann P, Kedinger M, et al. Invertase-isomaltase expression andenterocytic ultrastructure of human colorectal tumors[J]. International journal of cancer,1989,44(2):238-244.
    Dujon B. The yeast genome project: what did we learn?[J]. Trends in Genetics,1996,12(7):263-270.
    Flor PQ, Hayashida S. Saccharomyces uvarum inulyticus var. nov., a new high-concentrationethanol tolerant yeast from rice wine[J]. European journal of applied microbiology andbiotechnology,1983,18(3):148-152.
    Galazzo JL, Bailey JE. Growing Saccharomyces cerevisiae in calcium‐alginate beads inducescell alterations which accelerate glucose conversion to ethanol[J]. Biotechnology andbioengineering,1990,36(4):417-426.
    Gao W, Bao Y, Liu Y, et al. Characterization of thermo-stable endoinulinase from a new strainBacillus smithii T7[J]. Applied biochemistry and biotechnology,2009,157(3):498-506.
    Gennaro S, Birch GG, Parke SA, et al. Studies on the physicochemical properties of inulin andinulin oligomers[J]. Food chemistry,2000,68(2):179-183.
    Gong F, Sheng J, Chi ZM, et al. Inulinase production by a marine yeast Pichia guilliermondii andinulin hydrolysis by the crude inulinase[J]. Journal of industrial microbiology&biotechnology,2007,34(3):179-185.
    Guo N, Gong F, Chi Z, et al. Enhanced inulinase production in solid state fermentation by amutant of the marine yeast Pichia guilliermondii using surface response methodology andinulin hydrolysis[J]. Journal of industrial microbiology&biotechnology,2009,36(4):499-507.
    Hari Krishna S. Developments and trends in enzyme catalysis in nonconventional media[J].Biotechnology advances,2002,20(3):239-267.
    Hirayama C, Konno K, Wasano N, et al. Differential effects of sugar-mimic alkaloids in mulberrylatex on sugar metabolism and disaccharidases of Eri and domesticated silkworms:Enzymatic adaptation of Bombyx mori to mulberry defense[J]. Insect biochemistry andmolecular biology,2007,37(12):1348-1358.
    Jackson KG, Taylor GR, Clohessy A M, et al. The effect of the daily intake of inulin on fastinglipid, insulin and glucose concentrations in middle-aged men and women[J]. British journalof nutrition,1999,82(01):23-30.
    Jensen NS, Stanton TB. Production of an inducible invertase activity by Serpulinahyodysenteriae.[J]. Applied and environmental microbiology,1994,60(9):3429-3432.
    Johnston M, Hillier L, Riles L, et al. The nucleotide sequence of Saccharomyces cerevisiaechromosome XII.[J]. Nature,1997,387(6632):87-90.
    Jolivalt C, Madzak C, Brault A, et al. Expression of laccase IIIb from the white-rot fungusTrametes versicolor in the yeast Yarrowia lipolytica for environmental applications[J].Applied microbiology and biotechnology,2005,66(4):450-456.
    Jones RP, Gadd GM. Ionic nutrition of yeast—physiological mechanisms involved andimplications for biotechnology[J]. Enzyme and microbial technology,1990,12(6):402-418.
    Kang S, Chang Y, Oh S, et al. Purification and properties of an endo-inulinase from anArthrobacter sp.[J]. Biotechnology letters,1998,20(10):983.
    Kim DH, Choi YJ, Song SK, et al. Production of inulo-oligosaccharides using endo-inulinasefrom a pseudomonas sp.[J]. Biotechnology letters,1997,19(4):369-372.
    Kim H, Lee D W, Ryu E J, et al. Expression of the INU2gene for an endoinulinase of Aspergillusficuum in Saccharomyces cerevisiae[J]. Biotechnology letters,1999,21(7):621-623.
    Kobayashi T, Uchimura K, Deguchi S, et al. Cloning and sequencing of inulinase andβ-fructofuranosidase genes of a deep-sea Microbulbifer species and properties ofrecombinant enzymes[J]. Applied and environmental microbiology,2012,78(7):2493-2495.
    Koshland DE, Stein SS. Correlation of bond breaking with enzyme specificity. Cleavage point ofinvertase[J]. Journal of biological chemistry,1954,208(1):139-148.
    Kuzuwa S, Yokoi K, Kondo M, et al. Properties of the inulinase gene levH1of Lactobacilluscasei IAM1045; cloning, mutational and biochemical characterization[J]. Gene,2012,495(2):154-162.
    Kurtzman C, Fell J W, Boekhout T. The yeasts: a taxonomic study[M]. Elsevier,2011.
    Kwon H, Jeon S, You D, et al. Cloning and characterization of an exoinulinase from Bacilluspolymyxa[J]. Biotechnology letters,2003,25(2):155-159.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophageT4[J]. Nature,1970,227(5259):680-685.
    Laloux O, Cassart J P, Delcour J, et al. Cloning and sequencing of the inulinase gene ofKluyveromyces marxianu var. marxianus ATCC12424[J]. FEBS letters,1991,289(1):64-68.
    Lane MM, Morrissey JP. Kluyveromyces marxianus: A yeast emerging from its sister's shadow[J].Fungal biology reviews,2010,24(1):17-26.
    Lee F, Da Silva NA. Improved efficiency and stability of multiple cloned gene insertions at the δsequences of Saccharomyces cerevisiae[J]. Applied microbiology and biotechnology,1997,48(3):339-345.
    Li S, Chan-Halbrendt C. Ethanol production in (the) People’s Republic of China: potential andtechnologies[J]. Applied energy,2009,86:S162-S169.
    Li X, Chi Z, Liu Z, et al. Purification and characterization of extracellular phytase from a marineyeast Kodamaea ohmeri BG3[J]. Marine biotechnology,2008,10(2):190-197.
    Li Y, Liu GL, Chi ZM. Ethanol production from inulin and unsterilized meal of Jerusalemartichoke tubers by Saccharomyces sp. W0expressing the endo-inulinase gene fromArthrobacter sp.[J]. Bioresource technology,2013,147(0):254-259.
    Liu GL, Chi Z, Chi ZM. Molecular characterization and expression of microbial inulinase genes[J].Critical reviews in microbiology,2013,39(2):152-165.
    Liu XY, Chi Z, Liu GL, et al. Inulin hydrolysis and citric acid production from inulin using thesurface-engineered Yarrowia lipolytica displaying inulinase[J]. Metabolic engineering,2010,12(5):469-476.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using Real-Time quantitativePCR and the2ΔΔCTmethod[J]. Methods,2001,25(4):402-408.
    Lopes TS, De Wijs IJ, Steenhauer SI, et al. Factors affecting the mitotic stability of high copynumber integration into the ribosomal DNA of Saccharomyces cerevisiae[J]. Yeast,1996,12(5):467-477.
    Madzak C, Gaillardin C, Beckerich J. Heterologous protein expression and secretion in thenon-conventional yeast Yarrowia lipolytica: a review[J]. Journal of biotechnology,2004,109(1):63-81.
    Manivasakam P, Schiestl RH. High efficiency transformation of Saccharomyces cerevisiae byelectroporation[J]. Nucleic acids research,1993,21(18):4414-4415.
    Mikuni K, Monma M, Kainuma K. Alcohol fermentation of corn starch digested by Chalaraparadoxa amylase without cooking[J]. Biotechnology and bioengineering,1987,29(6):729-732.
    Nacken V, Achstetter T, Degryse E. Probing the limits of expression levels by varying promoterstrength and plasmid copy number in Saccharomyces cerevisiae[J]. Gene,1996,175(1):253-260.
    Nakamura T, Ogata Y, Hamada S, et al. Ethanol production from Jerusalem artichoke tubers byAspergillus niger and Saccharomyces cerevisiae[J]. Journal of fermentation andbioengineering,1996,81(6):564-566.
    Nakamura T, Ogata Y, Shitara A, et al. Continuous production of fructose syrups from inulin byimmobilized inulinase from Aspergillus niger mutant817[J]. Journal of fermentation andbioengineering,1995,80(2):164-169.
    Nakamura T, Shitara A, Matsuda S, et al. Production, purification and properties of anendoinulinase of Penicillium sp. TN-88that liberates inulotriose[J]. Journal of fermentationand bioengineering,1997,84(4):313-318.
    Ohta K, Akimoto H, Matsuda S, et al. Molecular cloning and sequence analysis of twoendoinulinase genes from Aspergillus niger.[J]. Bioscience, biotechnology, and biochemistry,1998,62(9):1731-1738.
    Ohta K, Hamada S, Nakamura T. Production of high concentrations of ethanol from inulin bysimultaneous saccharification and fermentation using Aspergillus niger and Saccharomycescerevisiae.[J]. Applied and environmental microbiology,1993,59(3):729-733.
    Onilude AA, Fadaunsi IF, Garuba E O. Inulinase production by Saccharomyces sp. in solid statefermentation using wheat bran as substrate[J]. Annals of microbiology,2012,62(2):843-848.
    Pandey A, Soccol CR, Selvakumar P, et al. Recent developments in microbial inulinases[J].Applied biochemistry and biotechnology,1999,81(1):35-52.
    Park JP, Bae JT, You DJ, et al. Production of inulooligosaccharides from inulin by a novelendoinulinase from Xanthomonas sp.[J]. Biotechnology letters,1999,21(12):1043-1046.
    Park S, Jeong H, Kim H, et al. Enhanced production of Aspergillus ficuum endoinulinase inSaccharomyces cerevisiae by using the SUC2-deletion mutation[J]. Enzyme and microbialtechnology,2001,29(2):107-110.
    Petes TD, Botstein D. Simple Mendelian inheritance of the reiterated ribosomal DNA of yeast[J].Proceedings of the national academy of sciences,1977,74(11):5091-5095.
    Pyun YR, Jo JS, Park JW, et al. Effects of oxygen on invertase expression in continuous culture ofrecombinant Saccharomyces cerevisiae containing the SUC2gene[J]. Applied microbiologyand biotechnology,1999,51(3):334-339.
    Roberfroid MB. Inulin-type fructans: functional food ingredients[J]. The Journal of nutrition,2007,137(11):2493S-2502S.
    Rouwenhorst RJ, Visser LE, Van Der Baan AA, et al. Production, distribution, and kineticproperties of inulinase in continuous cultures of Kluyveromyces marxianus CBS6556[J].Applied and environmental microbiology,1988,54(5):1131-1137.
    Sambrook J, Fritsch EF, Maniatis T. Molecular cloning[M]. Cold spring harbor laboratory pressNew York,1989.
    Schreuder MP, Mooren AT, Toschka HY, et al. Immobilizing proteins on the surface of yeastcells[J]. Trends in biotechnology,1996,14(4):115-120.
    Sheng J, Chi Z, Yan K, et al. Use of response surface methodology for optimizing processparameters for high inulinase production by the marine yeast Cryptococcus aureus G7a insolid-state fermentation and hydrolysis of inulin[J]. Bioprocess and biosystems engineering,2009,32(3):333-339.
    Sirisansaneeyakul S, Worawuthiyanan N, Vanichsriratana W, et al. Production of fructose frominulin using mixed inulinases from Aspergillus niger and Candida guilliermondii[J]. Worldjournal of microbiology and biotechnology,2007,23(4):543-552.
    Slightom JL, Metzger BP, Luu HT, et al. Cloning and molecular characterization of the geneencoding the Aureobasidin A biosynthesis complex in Aureobasidium pullulans BP-1938[J].Gene,2009,431(1):67-79.
    Souza-Motta C, Cavalcanti M, Porto A et al. Aspergillus niveus Blochwitz4128URM: Newsource for inulinase production[J]. Brazilian archives of biology and technology,2005,48(3):343-350.
    Spiro RG. Analysis of sugars found in glycoproteins[J]. Methods in enzymology,1966,8:3-26.
    Sturm A. Invertases. Primary structures, functions, and roles in plant development and sucrosepartitioning[J]. Plant physiology,1999,121(1):1-8.
    Tanaka K, Uchiyama T, Ito A. Formation of di-d-fructofuranose1,2′:2,3′dianhydride frominulin by an extracellular inulase of Arthrobacter ureafaciens[J]. Biochimica et BiophysicaActa (BBA)-Enzymology,1972,284(1):248-256.
    Treichel H, Mazutti M A, Maugeri F, et al. Use of a sequential strategy of experimental design tooptimize the inulinase production in a batch bioreactor[J]. Journal of industrial microbiology&biotechnology,2009,36(7):895-900.
    Tsujimoto Y, Watanabe A, Nakano K, et al. Gene cloning, expression, and crystallization of athermostable exo-inulinase from Geobacillus stearothermophilus KP1289[J]. Appliedmicrobiology and biotechnology,2003,62(2-3):180-185.
    Tymowska-Lalanne Z, Kreis M, Callow J A. The plant invertases: physiology, biochemistry andmolecular biology[J]. Advances in Botanical Research,1998,28(1):71-117.
    Vargas W, Cumino A, Salerno G L. Cyanobacterial alkaline/neutral invertases. Origin of sucrosehydrolysis in the plant cytosol.[J]. Planta,2003,216(6):951-960.
    Varghese G, Diwan AM. Simultaneous staining of proteins during polyacrylamide gelelectrophoresis in acidic gels by countermigration of Coomassie brilliant blue R-250[J].Analytical biochemistry,1983,132(2):481-483.
    Vitolo M, Vairo M L R, Borzani W. Invertase activity of intact cells of Saccharomyces cerevisiaegrowing on sugarcane molasses. II. Unsteady state continuous culture tests[J]. Biotechnologyand bioengineering,1987,30(1):9-14.
    Wang JM, Zhang T, Chi ZM, et al.18S rDNA integration of the exo-inulinase gene intochromosomes of the high ethanol producing yeast Saccharomyces sp. W0for directconversion of inulin to bioethanol[J]. Biomass and bioenergy,2011,35(7):3032-3039.
    Wang SA, Li FL. Invertase SUC2is the key hydrolase for inulin degradation in Saccharomycescerevisiae[J]. Applied and environmental microbiology,2013,79(1):403-406.
    Winter H, Huber S C. Regulation of sucrose metabolism in higher plants: localization andregulation of activity of key enzymes[J]. Critical reviews in plant sciences,2000,19(1):31-67.
    Wilson C, Bellen HJ, Gehring WJ. Position effects on eukaryotic gene expression[J]. Annualreview of cell biology,1990,6(1):679-714.
    Wu CJ, Hamada MS. Experiments: planning, analysis, and optimization[M]. John iley&Sons,2011.
    Xiong C, Jinhua W, Dongsheng L. Optimization of solid-state medium for the production ofinulinase by Kluyveromyces S120using response surface methodology[J]. Biochemicalengineering journal,2007,34(2):179-184.
    Xu J, Avigne WT, McCarty DR, et al. A similar dichotomy of sugar modulation anddevelopmental expression affects both paths of sucrose metabolism: evidence from a maizeinvertase gene family.[J]. The plant cell online,1996,8(7):1209-1220.
    Xuan J, Fournier P, Gaillardin C. Cloning of the LYS5gene encoding saccharopinedehydrogenase from the yeast Yarrowia lipolytica by target integration[J]. Current genetics,1988,14(1):15-21.
    Yuan B, Wang S, Li F. Improved ethanol fermentation by heterologous endoinulinase andinherent invertase from inulin by Saccharomyces cerevisiae[J]. Bioresource technology,2013,139:402-405.
    Yu J, Jiang J, Fang Z, et al. Enhanced expression of heterologous inulinase in Kluyveromyceslactis by disruption of hap1gene[J]. Biotechnology letters,2010,32(4):507-512.
    Yun JW, Choi YJ, Song CH, et al. Microbial production of inulo-oligosaccharides by anendoinulinase from Pseudomonas sp. Expressed in Escherichia coli[J]. Journal of bioscienceand bioengineering,1999,87(3):291-295.
    Yun JW, Kim DH, Uhm TB, et al. Production of high-content inulo-oligosaccharides from inulinby a purified endoinulinase[J]. Biotechnology letters,1997,19(9):935-938.
    Zhang T, Chi Z, Chi ZM, et al. Expression of the inulinase gene from the marine-derived Pichiaguilliermondii in Saccharomyces sp. W0and ethanol production from inulin[J]. Microbialbiotechnoloy,2010,3(5):576-582.
    Zhang T, Gong F, Peng Y, et al. Optimization for high-level expression of the Pichiaguilliermondii recombinant inulinase in Pichia pastoris and characterization of therecombinant inulinase[J]. Process biochemstry.,2009,44(12):1335-1339.
    Zhang T, Chi Z, Zhao CH, et al. Bioethanol production from hydrolysates of inulin and the tubermeal of Jerusalem artichoke by Saccharomyces sp. W0[J]. Bioresource technology,2010,101(21):8166-8170.
    Zhengyu J, Jing W, Bo J, et al. Production of inulooligosaccharides by endoinulinases from
    Aspergillus ficuum[J].Food research international,2005,38(3):301-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700