用户名: 密码: 验证码:
55SiMnMo中空钢孔型轧制及冷却过程数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着凿岩机功率的提高和中空钢市场竞争的加剧,以人为本的机械化凿岩方式将逐渐取代手工操作的气动式凿岩机,市场对中空钢产品的质量要求会更高,尤其是需求量巨大的小型钎杆产品。凿岩用小型钎杆工作时,不仅受到岩矿石的剧烈磨损、高压水流或水气混合体流动、以及矿坑水的冲刷腐蚀,还要承受拉压、弯曲、扭转应力以及凿岩机的高频冲击。由于工作条件和受力状况非常复杂,凿岩钎具产品常以疲劳断裂方式失效,国产小钎杆平均使用寿命仅有100米,与国外同类产品质量具有较大差距。
     改善中空钢的内在质量是提高钎杆使用寿命的重要手段,而小钎杆内在质量存在问题主要集中在五个方面:材质问题、坯料内壁疏松问题、成品几何尺寸精度问题、轧制和冷却过程微观组织演变控制问题。因此,本文以中空钢轧制和冷却过程为研究对象,将非线性有限元技术与材料微观组织演变理论相结合,对中空钢轧制和冷却过程轧件几何尺寸精度、致密度情况、微观组织演变规律进行数值模拟研究,并结合实验数据验证数值模拟结果的正确性。
     利用Gleeble3500热模拟试验机,通过单向热压缩实验获得的55SiMnMo中碳合金钢高温流变应力曲线,分析了55SiMnMo钢高温流变应力行为,并分别利用Arrhenius方程、人工神经网络理论建立了55SiMnMo钢流变应力预测模型。通过对人工神经网络模型和回归模型预测结果的对比,分析了两种流变应力模型的优缺点,为后续的中空钢轧制过程有限元计算奠定了基础。
     根据国内某厂“机械钻孔法”中空钢轧制工艺,利用刚塑性有限元软件建立了中空钢轧制过程热、力、微观组织演变及致密度变化的有限元模型,通过数值模拟得到了轧制过程轧件内部宏观场量(温度场、等效应变、等效应变速率)、微观场量(奥氏体晶粒尺寸)和轧件致密度的分布与演变情况。通过对奥氏体晶粒尺寸有限元模拟结果与实验结果的对比,验证了中空钢轧制过程有限元模型的准确性。
     利用正交试验法,以有限元软件为计算平台,进行数值模拟,分析了正交试验中各轧制参数对轧件芯孔偏心度和椭圆度的影响规律,利用非线性回归得到了各影响因素与芯孔尺寸精度的关系模型。利用该模型建立了芯孔几何尺寸精度目标函数,结合修正后的宽展公式,以轧件尺寸精度为优化目标,利用遗传算法优化了该厂中空钢轧制孔型系统。并利用铅轧制实验对数值模拟结果进行了验证。
     为了研究中空钢轧后冷却过程中的微观组织相变,分析中空钢冷却工艺,利用Formaster-F型膨胀仪进行等温热膨胀试验,测定了55SiMnMo钢等温转变曲线。基于JMAK相变动力学模型和有限元法,对55SiMnMo钢连续冷却过程进行数值模拟,分析了不同冷却速度下微观组织相变情况,并将实验结果与模拟结果进行对比验证了数值模拟的正确性。在此基础上,对中空钢轧后冷却过程进行了数值模拟,得到了中空钢冷却过程温度场、微观组织场,并分析了不同冷却条件对最终轧件微观组织的影响,为冷却工艺制度的优化提供了理论基础。
In recent years, with the improvement of rock drilling machine power and theincreasing market competition of hollow drilling steel, the mechanized drillingmanipulated by people becomes dominant and gradually replaces the pneumatic rock drillmachine operated by manual; the requirements on the quality of hollow drilling steelproduct becomes more higher, especially for the light drilling rod product withtremendous demand. Drilling work with a light drill rod is under the severe wear of the orerock, the erosion corrosion of the high pressure water, water&air mixture and mine water,and also under the tension pressure, bending, torsion and the high-frequency impact of therock drilling machine. Due to the complex working and stress conditions, rock drill tooloften occur fatigue crack. The average drilling depth of domestic light drilling rod is only100metres, which has a big gap with the same products abroad.
     One important way to increase the drilling depth of the drilling rod is to improve thequality of the hollow drilling steel. The quality issues of the light drilling rod mainly focuson5aspects: materials, billet internal porosity, finish goods physical dimension accuracy,and microstructure evolution control in both rolling and cooling process. Therefore, takingthe hollow drilling steel rolling and cooling process as study objects, combining thenonlinear finite element technology with the material microstructure evolution theory, thispaper studies the workpiece physical dimension accuracy, density, and microstructureevolution rules by numerical simulation analysis and uses the experimental data to verifythe numerical simulation results.
     Using Gleeble3500thermal simulated test machine, the high temperature flow stresscurve of55SiMnMo medium carbon alloy steel was obtained through one-way thermalcompression test, the high temperature flow stress behavior of55SiMnMo steel wasanalyzed, and also the flow stress prediction model of55SiMnMo steel was established byusing the Arrhenius equation and artificial neural network theory. By comparing theprediction results of artificial neural network model and regression model, advantages anddisadvantages of two flow stress models were analyzed, which establishes the foundation for the future finite element calculation of the hollow steel rolling.
     Based on the hollow steel rolling process with Mechanical Drilling Method of thedomestic manufacturer, finite element model about the thermal, stress, microstructureevolution and density variation during hollow steel rolling was established by therigid-plastic finite element software; macroscopic fields (temperature field, effective strainand effective stain rate), microscopic fields (austenite grain size) and density distributionand variation of the workpiece were obtained by numerical simulation. With comparisonof the simulated results and experimental data of austenite grain size, the accuracy of finiteelement model during hollow steel rolling was verified.
     Adopting the Orthogonal Test method, the rolling parameters’ impact on theeccentricity and ovality of workpiece hole was analyzed base on the numerical modelingwith finite element software, and the relation model of influence factors and hole sizeaccuracy was obtained by nonlinear regression. With the relation model, the objectivefunction of hole size dimensional accuracy was established. Meanwhile combining withthe revised broadening formula, hollow steel rolling pass system of the domesticmanufacturer was optimized by using the genetic algorithm to improve the workpiece sizeaccuracy. In addition, the numerical simulation results were verified through the leadrolling experiment.
     In order to study the microstructure phase transformation during hollow steel coolingprocess after rolling, and analyze the cooling process of hollow steel, the isothermalexpansion test was conducted by using the Formaster-F type dilatometer, and the timetemperature transformation (TTT) curve of55SiMnMo steel was measured. Base onJMAK phase transformation kinetics model and finite element method, the continuouscooling process of55SiMnMo steel was simulated numerically, the microstructure phasetransformation with different cooling rates was analyzed, and the numerical simulationaccuracy was verified by comparison of the experimental result and simulated data.Hollow steel cooling process after rolling was also simulated numerically, and thetemperature field and microstructure field during hollow steel cooling process wereobtained; different cooling conditions’ impacts on the microstructure of final workpiecewere also analyzed, which provides the theoretical foundation for the optimization of cooling process.
引文
[1]洪达灵,顾太和,徐曙光,等.钎钢与钎具[M].北京:冶金工业出版社,2000:119-121.
    [2]贺建国.我国小钎杆的质量问题及其原因分析[J].矿业研究与开发,2000,20(5):48-50.
    [3]张国榉.长寿命冲击凿岩钎杆:工业炸药和凿岩机发明后困扰世界采掘工业的百年难题[J].凿岩机械气动工具,1999,(4):21-25.
    [4]赵统武,黎炳雄.钎钢工作载荷谱的研究[J].金属学报,1983,18(5):41.
    [5]赵统武,洪达灵,黎炳雄.钎杆的工作载荷谱和疲劳寿命估测[J].钢铁,1983,18(7):41-43.
    [6]黎炳雄,洪达灵.钎钢内壁强化的研究[J].有色金属,1982,4:7-13.
    [7]王嘉新.稀土元素对55SiMnMo钢疲劳断裂影响的研究[J].中南矿冶学院学报,1983,37(3):50-54.
    [8]托普卡耶夫,杨福新.各种不同结构凿岩枪案的试验结果[J].国外金属矿采矿,1984,(9):61-65.
    [9]塔拉诺夫,王维德.深孔早沿用新式接杆钎杆[J].国外金属矿采矿,1985,(5):21-22.
    [10]李润隆,宋守志,徐小荷.55SiMnMo钢疲劳的试验研究[J].东北大学学报(自然科学版),1986,3:014.
    [11]宋守志,徐小荷.钎杆寿命的理论分析[J].金属学报,1986,22(5):233-235.
    [12]宋守志,徐小荷,李润隆.用计算机预估钎杆疲劳寿命的研究[J].钢铁,1986,21(3):30-34.
    [13]宋守志,徐小荷. YGZ—90凿岩机钎尾使用寿命的试验研究[J].钢铁,1994,29(1):32-36.
    [14]顾太和.冶轧质量对钎钢性能与凿岩寿命的影响[J].钢铁,1989,24(8):54-59.
    [15]刘正义,黄振宗,余国展,等.55SiMnMo钢小钎杆疲劳断口初步分析[J].华南理工大学学报(自然科学版),1981,3:19-26.
    [16]刘正义,黄振宗,林鼎文.55SiMnMo钢的上贝氏体形态[J].金属学报,1981,17(2):148-155.
    [17]罗承萍,刘正义,许癣康,等.55SiMnMo钢正火组织的精细结构和晶体学特征[J].材料科学进展,1990,4(3):200-205.
    [18]刘正义,李祖鑫,林鼎文.55siMnM.钢中以马氐体为主的复合结构[J].1986,22(2):69-73.
    [19] Luo C P, Weatherly G C, Liu Z Y. The Crystallography of Bainite in a Medium-carbon SteelContaining Si, Mn, Mo[J]. Metallurgical Transactions A,1992,23(5):1403-1441.
    [20] Liao Y Y, Liu Z Y. Transformation of Upper Bainite in55SiMnMo Steel during Tempering[J].Acta Metallurgica Sinica,1990,3(1):138-141.
    [21]刘世华.用局部应力-应变法估算钎杆寿命[J].凿岩机械气动工具,2000,1:24-27.
    [22]郑光海,李学伟,孙俭峰. ZK55SiMnMo钎杆早期失效分析及工艺改进[J].吉林林业科技,2004,33(4):44-45.
    [23]林健,赵海燕,蔡志鹏,等.磁处理提高钎杆服役寿命的研究[J].材料工程,2006,(2):3-6.
    [24]邢军,钟勇,宋守志.一种抗疲劳钎杆的理论与实验研究[J].东北大学学报(自然科学版),2006,27(11):1279-1282.
    [25]王筑生,熊家泽,吴少斌,等.锥体连接钎杆热影响区的高频疲劳实验研究[J].凿岩机械气动工具,2009,(3):33-36.
    [26]许竹桃,陈方玉,熊焰,等.55SiMnMo钢中空钎杆的脆断原因分析[J].理化检验:物理分册,2010,(11):736-738.
    [27]熊家泽.中空钢疲劳寿命试验参数研究[J].现代机械,2011,(1):89-91.
    [28]刘清彪.55SiMnMo六角钎钢的热处理工艺[J].矿山机械,1980,(3):55-63.
    [29]徐曙光,董鑫业,杨一峰,等.钎钢控制轧制工艺的研究[J].钢铁,1984,19(1):28-34.
    [30]王兴.六角中空钢的轧制[J].南方钢铁,1999(5):18-20.
    [31]赵文雅,饶建华,戴勇波.中空钢控冷温度场的数值模拟[J].热加工工艺,2006,35(20):68-69.
    [32]于恩林,赵玉倩,刘辉,等.钎钢轧制过程主要工艺参数对成品质量的影响[J].中国机械工程,2007,18(18):2249-2251.
    [33]赵玉倩.钎钢热穿热轧成型过程三维热力组织耦合模拟及试验研究[D].秦皇岛:燕山大学学位论文.2012.
    [34]刘辉.钎杆用中空钢轧制过程的数值模拟及实验研究[D].秦皇岛:燕山大学学位论文.2006.
    [35]姜杰凤.奇数边中空钎钢成型过程的数值模拟[D].秦皇岛:燕山大学学位论文.2007.
    [36]沈红伟.中空钢三辊斜轧过程的数值模拟[D].秦皇岛:燕山大学学位论文.2009.
    [37]许小林.中空钢轧制过程数值模拟及尺寸精度分析[D].秦皇岛:燕山大学学位论文.2010.
    [38]张鹏飞.基于遗传算法的中空钢孔型优化设计及试验研究[D].秦皇岛:燕山大学学位论文.2013.
    [39] Serajzadeh S, Zebarjad S M. Modeling the Flow Behavior of Steel under Non-isothermalConditions[J]. Materials Science and Technology,2003.19:1065-1069.
    [40] Johnson G R, Cook W H. A Constitutive Model and Data for Metals Subjected to Large Strains,High Strain Rates and High Temperatures[C]//Proceedings of the7th International Symposium onBallistics. The Hague, Netherlands: International Ballistics Committee,1983,21:541-547.
    [41] Khan A S, Huang S. Experimental and Theoretical Study of Mechanical Behavior of1100Aluminum in the Strain Rate Range10-5-104s-1[J]. International Journal of Plasticity,1992,8(4):397-424.
    [42] Khan A S, Zhang H, Takacs L. Mechanical Response and Modeling of Fully CompactedNanocrystalline Iron and Copper[J]. International Journal of Plasticity,2000,16(12):1459-1476.
    [43] Fields D S, Backofen W A. Determination of Strain Hardening Characteristics by TorsionTesting[C]. ASTM.1957,57:1259-1272.
    [44] Farrokh B, Khan A S. Grain Size, Strain Rate, and Temperature Dependence of Flow Stress inUltra-fine Grained and Nanocrystalline Cu and Al: Synthesis, Experiment, and ConstitutiveModeling[J]. International Journal of Plasticity,2009,25(5):715-732.
    [45] Molinari A, Ravichandran G. Constitutive Modeling of High-strain-rate Deformation in MetalsBased on the Evolution of an Effective Microstructural length[J]. Mechanics of Materials,2005,37(7):737-752.
    [46]韩伟,吕彩琴,张翼.7B04-T6铝合金板材温拉伸流变应力行为研究[J].金属功能材料,2011,18(2):51-55.
    [47]胡诗超,张恒华,吴晓春,等.3Cr3MoV钢热压缩流变应力行为研究[J].上海金属,2011,33(3):1-5.
    [48] Rokni M R, Zarei-Hanzaki A, Roostaei A A. Constitutive Base Analysis of a7075AluminumAlloy during Hot Compression testing[J]. Materials and Design,2011,(32):4955-5959.
    [49] Mirzadeh H, Cabrera J M, Prado J M. Hot Deformation Behavior of a Medium CarbonMicroalloyed Steel[J]. Materials Science and Engineering A,2011,(528):3876-3882.
    [50] Momeni A, Abbasi S M, Badri H. Hot Deformation Behavior and Constitutive Modeling ofVCN200Low Alloy Steel[J]. Applied Mathematical Modelling,2012,36(11):5624-5632.
    [51] Zhang K, Ma M L, Li X G, et al. Hot Deformation Behavior of Mg-7.22Gd-4.84Y-1.26Nd-0.58Zr Magnesium Alloy[J]. Rare Metals,2011,30(1):87-93.
    [52] Lin Y C, Chen M S, Zhong J. Constitutive Modeling for Elevated Temperature Flow Behavior of42CrMo Steel[J]. Computational Materials Science,2008,42(3):470-477.
    [53] Krishnan S A, Phaniraj C, Ravishankar C, et al. Prediction of High Temperature Flow Stress in9Cr-1Mo Ferritic Steel during Hot Compression[J]. International Journal of Pressure Vessels andPiping,2011,(88):501-506.
    [54]孙朝阳,栾京东,刘赓,等. AZ31镁合金热变形流动应力预测模型[J].金属学报,2012,48(7):853-860.
    [55] Xiao M L, Li F G, Zhao W, et al. Constitutive Equation for Elevated Temperature Flow Behaviorof TiNiNb Alloy Based on Orthogonal Analysis[J]. Materials and Design,2012,35:184-193.
    [56] Cai J, Li F G, Liu T Y, et al. Constitutive Equations for Elevated Temperature Flow Stress ofTi-6Al-4V Alloy Considering the Effect of Strain[J]. Materials and Design,2011,32(3):1144-1151.
    [57] Yin F, Hua L, Mao H, et al. Constitutive Modeling for Flow Behavior of GCr15Steel under HotCompression Experiments[J]. Materials and Design,2012,43(1):393-401.
    [58] Liang X P, Liu Y, Li H Z, et al. Constitutive Relationship for High Temperature Deformation ofPowder Metallurgy Ti–47Al–2Cr–2Nb–0.2W Alloy[J]. Materials and Design,2012,37:40-47.
    [59] Zerilli F J, Armstrong R W. Dislocation-mechanics-based Constitutive Relations for MaterialDynamics Calculations[J]. Journal of Applied Physics,1987,61(5):1816-1825.
    [60] Preston D L, Tonks D L, Wallace D C. Model of Plastic Deformation for Extreme LoadingConditions[J]. Journal of Applied Physics,2003,93(1):211-220.
    [61] Voyiadjis G Z, Almasri A H. A Physically Based Constitutive Model for Fcc Metals withApplications to Dynamic hardness [J]. Mechanics of Materials,2008,40(6):549-563.
    [62] Rusinek A, Klepaczko J R. Shear Testing of a Sheet Steel at Wide Range of Strain Rates and aConstitutive Relation with Strain-rate and Temperature Dependence of the Flow Stress[J].International Journal of Plasticity,2001,17(1):87-115.
    [63] Bodner S R, Partom Y. Constitutive Equations for Elastic-viscoplastic Strain HardeningMaterials[R]. Journal of Applied Mechanics,1975,(42):385-389.
    [64] Goetz R L, Seetharaman V. Modeling Dynamic Recrystallization Using Cellular Automata[J].Scripta Materialia,1998,38(3):405-413.
    [65] Senuma T, Yada H, Matsumura Y, et al. Calculation Model of Resistance to Hot Deformation inConsideration of Metallurgical Phenomena in Continuous Hot Deformation Processes[J]. ISIJInternational,1984,70(10):1392-1399.
    [66] Yoshie A, Fujita T, Fujioka M, et al. Formulation of Flow Stress of Nb Added Steels byConsidering Working-hardening and Dynamic Recovery[J]. ISIJ International,1996,36(4):467-473.
    [67] Suh D W, Cho J Y, Oh K H, et al. Evaluation of Dislocation Density from the Flow Curves of HotDeformed Austenite[J]. ISIJ International,2002,42(5):564-566.
    [68] Laasraoui A, Jonas J J. Prediction of Steel Flow Stresses at High Temperatures and Strain Rates[J].Metallurgical transactions A,1991,22(7):1545-1558.
    [69] Haghdadi N, Zarei-Hanzaki A, Khalesian A R, et al. Artificial Neural Network Modeling toPredict the Hot Deformation Behavior of an A356Aluminum Alloy[J]. Materials and Design,2013,49(8):386-391.
    [70] Lu Z L, Pan Q L, Liu X Y, et al. Artificial Neural Network Prediction to the Hot CompressiveDeformation Behavior of Al–Cu–Mg–Ag Heat-resistant Aluminum alloy[J]. Mechanics ResearchCommunications,2011,38(3):192-197.
    [71] Sabokpa O, Zarei-Hanzaki A, Abedi H R, et al. Artificial Neural Network Modeling to Predict theHigh Temperature Flow Behavior of an AZ81Magnesium Alloy[J]. Materials and Design,2012,39:390-396.
    [72] Li H Y, Hu J D, Wei D D, et al. Artificial Neural Network and Constitutive Equations to Predictthe Hot Deformation Behavior of Modified2.25Cr–1Mo Steel[J]. Materials and Design,2012,42:192-197.
    [73]王勖成,邵敏.有限单元法基本原理与数值方法[M].北京:清华大学出版社,1988:37.
    [74] Clough R W. The Finite Element Method in Plane Stress Analysis[C]. Proceedings of2nd ASCEConference on Electronic Computation,1960:345-348.
    [75] Lee C H, Kobayashi S. New Solutions to Rigid-plastic Deformation Problems Using a MatrixMethod[J]. Journal of Engineering for Industry,1973,95:865-870.
    [76]李长生,刘相华,王国栋.40Cr钢棒材连轧过程温度场有限元模拟[J].钢铁研究,1999,(2):33-35.
    [77]李长生,刘相华,王国栋,等. FEM网格对圆钢温度场计算结果的影响[J].钢铁,1998,33(9):38-41.
    [78]管仁国,张秋生,戴春光,等. AZ31镁合金连续强流变轧制成形过程温度场模拟与优化[J].金属学报,2011,47(9):1167-1173.
    [79]赵显蒙,康永林,刘旭辉,等.半无头轧制超长铸坯均热过程中温度场的数值模拟[J].钢铁研究学报,2011,23(8):16-20.
    [80]郭星晔,朱国明,吕超,等.大型H型钢轧制热力耦合模拟及腹板波浪分析[J].中国冶金,2013,23(3):26-32.
    [81] Qu Z D, Zhang S H, Li D Z, et al. Finite Element Analysis for Microstructure Evolution in HotFinishing Rolling of Steel Strips[J]. Acta Metallurgica Sinica (English Letters),2007,20(2):79-86.
    [82] Zhao Y, Hou H. Simulation for Microstructure Evolution of Al-Si Alloys in SolidificationProcess[C]//Journal of Physics: Conference Series. IOP Publishing,2006,29(1):210-213.
    [83] Logé R E, Chastel Y B. Coupling the Thermal and Mechanical Fields to Metallurgical Evolutionswithin a Finite Element Description of a Forming Process[J]. Computer Methods in AppliedMechanics and Engineering,2006,195(48):6843-6857.
    [84] Shen Y G, Lu Y H, Liu Z J. Microstructure Evolution and Grain Growth of NanocompositeTiN–TiB2Films: Experiment and Simulation[J]. Surface and Coatings Technology,2006,200(22):6474-6478.
    [85]罗皎,李淼泉,李宏.塑性变形时的微观组织模拟[J].材料导报,2008,22(3):102-103.
    [86] Kopp R, Karnhausen K, De Souza M M. Numerical Simulation Method for DesigningThermomechanical Treatment Illustrated by Bar Rolling Scand[J]. Journal of Metallurgy,1991,20:351-363.
    [87] Ishikawa T. Modelling the Microstructural Evolution and Mechanical Properties of Forged Parts[J].Electric Furnace Steel,1995,66(3):186-192.
    [88] Devadas C, Samarasekera I V, Hawbolt E B. The Thermal and Metallurgical State of Steel Stripduring Hot Rolling: Part III. Microstructural evolution[J]. Metallurgical Transactions A,1991,22(2):335-349.
    [89] Sellars C M. Modelling Microstructural Development during Hot Rolling[J]. Materials Scienceand Technology,1990,6(11):1072-1081.
    [90] Zhichao S, He Y, Xinzhe O. Effects of Process Parameters on Microstructural Evolution duringHot Ring Rolling of AISI5140steel[J]. Computational Materials Science,2010,49(1):134-142.
    [91] Pietrzyk M, Madej, Rauch, et al. Multiscale Modeling of Microstructure Evolution duringLaminar Cooling of Hot Rolled DP Steels[J]. Archives of Civil and Mechanical Engineering,2010,10(4):57-67.
    [92] Xu Y B, Yu Y M, Xiao B L, et al. Modelling of Microstructure Evolution during Hot Rolling of aHigh-Nb HSLA Steel[J]. Journal of Materials Science,2010,45(10):2580-2590.
    [93]王连生,曹起骧,许思广.三维热耦合刚粘塑性有限元数值模拟技术的开发和应用[J].塑性工程学报,1994,1(3):34-41.
    [94]张芳.大型轧辊热变形行为及热处理过程理论与实验研究[D].秦皇岛:燕山大学学位论文.2008.
    [95]康永林,朱国明.大型H型钢轧制过程数值模拟及应用[J].山东冶金,2009,31(5):1-5.
    [96]沈斌,张海峰,张恒华.船板钢热轧过程温度场及显微组织演变模拟[J].金属热处理,2013,38(005):18-21.
    [97]贺庆强,孙佳,赵军友,等.型材多道次热轧奥氏体演化三维有限元模拟[J].中南大学学报(自然科学版),2013,44(11):4468-4473.
    [98]岳重祥,张立文,阮金华.70~80轴承钢棒材轧制过程的孔型设计及三维模拟[J].材料工程,2011(2):60-64.
    [99]束学道,程超,龚文炜,等.挤压式楔横轧小料头轧制的微观组织演变分析[J].中国机械工程,2013,24(015):2109-2113.
    [100] Lusk M T, Lee Y K, Jou H J, et al. An Internal State Variable Model for the Low TemperatureTempering of Low Alloy Steels[J]. Journal of Shanghai Jiaotong University (Science),2000,5(1):178-184.
    [101] Liu C, Ju D Y, Inoue T. A numerical Modeling of Metallo-thermo-mechanical Behavior in BothCarburized and Carbonitrided Quenching Processes[J]. ISIJ international,2002,42(10):1125-1134.
    [102] Ju D Y, Narazaki M, Kamisugi H, et al. Computer Predictions and Experimental Verification ofResidual Stresses and Distortion in Carburizing-quenching of Steel[J]. Journal of ShanghaiJiaotong University (Science),2000,5(1):165-172.
    [103] Jou H J, Lusk M T. Comparison of Johnson-mehl-avrami-kologoromov Kinetics with aPhase-field model for Microstructural Evolution Driven by Substructure Energy[J]. PhysicalReview B,1997,55(13):8114.
    [104] Pariser G, Schaffnit P, Steinbach I, et al. Simulation of the γ-α-transformation Using thePhase-field Method[J]. Steel research,2001,72(9):354-360.
    [105] Wu W T, Tang J P, Li G. Recent Development of Process Simulation and Its Applications toManufacturing Processes[J]. Journal of Shanghai Jiaotong University (Science),2000,5(1):235-241.
    [106] Tszeng T C. Autocatalysis in Bainite Transformations[J]. Materials Science and Engineering: A,2000,293(1):185-190.
    [107] Jang J W, Park I W, Kim K H, et al. FE program Development for Predicting ThermalDeformation in Heat Treatment[J]. Journal of Materials Processing Technology,2002,130:546-550.
    [108] Denis S, Gautier E, Simon A, et al. Stress–phase-transformation Interactions–basic Principles,Modelling, and Calculation of Internal Stresses[J]. Materials Science and Technology,1985,1(10):805-814.
    [109] Denis S, Sj str m S, Simon A. Coupled Temperature, Stress, Phase Transformation Calculation[J].Metallurgical Transactions A,1987,18(7):1203-1212.
    [110] Denis S, Farias D, Simon A. Mathematical Model Coupling Phase Transformations andTemperature Evolutions in Steels[J]. ISIJ international,1992,32(3):316-325.
    [111]谷口尚司.钢在冷却过程中的相变与传热[J].国外金属热处理,1988,(6):1-7.
    [112] Carlone P, Palazzo G S, Pasquino R. Finite Element Analysis of the Steel Quenching Process:Temperature Field and Solid–solid Phase Change[J]. Computers and Mathematics withApplications,2010,59(1):585-594.
    [113] Li H P, Zhao G Q, Niu S T, et al. FEM Simulation of Quenching Process and ExperimentalVerification of Simulation Results[J]. Materials Science and Engineering: A,2007,452:705-714.
    [114] Serajzadeh S. Modelling of Temperature History and Phase Transformations during Cooling ofSteel[J]. Journal of Materials Processing Technology,2004,146(3):311-317.
    [115]刘春成,刘庄.应力对核反应堆压力容器大型锻件用钢相变动力学和相变塑性影响的研究[J].大型铸锻件,1998(4):6-13.
    [116]姚可夫,钱滨,刘庄,等.应力对珠光体相变动力学及相变塑性的影响[J].材料热处理学报,2002,23(4):1-5.
    [117]刘春成,姚可夫,高国峰,等.应力应变对马氏体相变动力学及相变塑性影响的研究[J].金属学报,1999,11.
    [118]刘庄,吴肇基,吴景之,等.热处理过程的数值模拟[M].北京:科学出版社,1996:283-313.
    [119]蒋昱,曾攀,娄路亮.26Cr2Ni4MoV钢淬火过程的三场耦合数值模拟[J].哈尔滨工业大学学报,2002,34(3):302-307.
    [120]宋广胜,刘相华,王国栋,等.齿轮钢淬火过程多场耦合分析[J].特殊钢,2007,28(1):7-9.
    [121]董达善,孙儒中,乔榛.运用DEFORM的连续冷却转变曲线数值仿真[J].上海海事大学学报,2010,31(002):61-65.
    [122]陈睿恺.30Cr2Ni4MoV钢抵押转子热处理工艺的研究[D].上海:上海交通大学学位论文.2012.
    [123]刘才,高林,王玉峰,等.42CrMo棒材轧后冷却过程组织转变的计算机模拟[J].钢铁,2012,47(11):73-78.
    [124] Mirzadeh H, Najafizadeh A. Extrapolation of Flow Curves at Hot Working Conditions[J].Materials Science and Engineering: A,2010,527(7):1856-1860.
    [125] Wang H F, Zuo D W, Huang M M, et al. Study on Flow Stress of7022Aluminum Alloy Sheetunder Different Temperatures and Strain Rates[J]. Transactions of Nanjing University ofAeronautics and Astronautics,2010,27(3):248-254.
    [126] Kowalski B, Sellars C M, Pietrzyk M. Development of a Computer Code for the Interpretation ofResults of Hot Plane Strain Compression Tests[J]. ISIJ international,2000,40(12):1230-1236.
    [127] Zener C, Hollomon J H. Effect of Strain Rate upon Plastic Flow of Steel[J]. Journal of AppliedPhysics,1944,15(1):22-32.
    [128] Liao S, Zhang L, Yue C, et al. Research on Thermal Deformation Behavior and Model of FlowStress of GCr15Steel [J]. Journal of Materials Engineering,2008,4:8-11.
    [129] Karhausen K, Kopp R. Model for Integrated Process and Microstructure Simulation in Hotforming[J]. Steel Research,1992,63(6):247-256.
    [130] Poliak E I, Jonas J J. A One-parmenter Approach to Determining the Critical Conditions for theInitiation of Dynamic Recrystallization[J]. Acta Materialia,1996,44(1):127-136.
    [131] Karhausen K, Kopp R, De Souza M M. Numerical Simulation Method for DesigningThermomechanical Treatments, Illustrated by Bar Rolling[J]. Scandinavian Journal of Metallurgy,1991,20(6):351-363.
    [132] Mirzadeh H, Najafizadeh A. Prediction of the Critical Conditions for Initiation of DynamicRecrystallization[J]. Materials and Design,2010,31(3):1174-1179.
    [133] Serajzadeh S. Prediction of Temperature Distribution and Required Rnergy in Hot Forging Processby Coupling Neural Networks and Finite Element Analysis[J]. Materials Letters,2007,61(14):3296-3300.
    [134] Chen F C. Back-propagation Neural Networks for Nonlinear Self-tuning Adaptive Control[J].Control Systems Magazine, IEEE,1990,10(3):44-48.
    [135]李晓丽,陈胜晖,李淼泉.金属热态塑性成形过程中组织演变的模型化研究[J].中国机械工程,2004,15(1):86-90.
    [136] McBride J, Malinov S, Sha W. Modelling Tensile Properties of Gamma-based TitaniumAluminides Using Artificial Neural Network[J]. Materials Science and Engineering: A,2004,384(1):129-137.
    [137] Rumelhart D E, McClelland J L. Parallel distributed Processing: Explorations in theMicrostructure of Cognition. Volume1. Foundations[M]. London: The mit press,1986.
    [138]张乐福,谢生长.人工神经网络在材料实验数据处理中的应用[J].材料科学与工艺,1997,5(1):28-31.
    [139]苏高利,邓芳萍.论基于MATLAB语言的BP神经网络的改进算法[J].科技通报,2003,19(2):130-135.
    [140] Lippmann R. An Introduction to computing with Neural Nets[J]. ASSP Magazine, IEEE,1987,4(2):4-22.
    [141] Cybenko G. Approximation by Superpositions of a Sigmoidal Function[J]. Mathematics of Control,Signals and Systems,1989,2(4):303-314.
    [142] Hecht-Nielsen R. Theory of the Backpropagation Neural Network[C]//Neural Networks,1989.IJCNN., International Joint Conference on. IEEE,1989:593-605.
    [143]乔端,钱仁根.非线性有限元法及其在塑性加工中的应用[M].北京:冶金工业出版社,1990:27-30.
    [144] Nakasaki M, Takasu I, Utsunomiya H. Application of Hydrostatic Integration Parameter forFree-forging and r\Rolling[J]. Journal of Materials Processing Technology,2006,177(1):521-524.
    [145]岳重祥.棒线材轧制过程多场耦合数值模拟与工艺优化[D].大连:大连理工大学学位论文.2010:53-61.
    [146]刘天佑.氧化法检验钢的奥氏体晶粒度的研究[J].理化检验:物理分册,2000,36(011):501-504.
    [147]刘天佑,田景利.关于用氧化法检验钢的奥氏体晶粒度的问题[J].热加工工艺,2000(2):40-42.
    [148]庞超明.试验的设计与分析[M].北京:高等教育出版社,2005:45-50.
    [149]范大茵,陈永华.概率与数理统计[M].杭州:杭州大学出版社,2003:60-63.
    [150] Yang D, Kogiso N, Murotsu Y. Structural Optimization Based on the Experimental DesignMethod[J]. Jsuan Lixue Xuebao(Chinese Journal of Computational Mechanics)(China),2001,18(2):173-178.
    [151] Tarley C R T, Silveira G, dos Santos W N L, et al. Chemometric Tools in ElectroanalyticalChemistry: Methods for Optimization Based on Factorial Design and Response SurfaceMethodology[J]. Microchemical Journal,2009,92(1):58-67.
    [152] Wu C F J, Hamada M S. Experiments: Planning, Analysis, and Optimization[M]. John Wiley andSons,2011:87-90.
    [153]俞飞,姬鸿丽,雪原,等.利用非线性回归技术建立洛阳机场大风预报方法[J].气象与环境科学,2010,33(4):53-58.
    [154]张金标,王泾文.热挤压工艺多元非线性回归与多目标优化技术研究[J].中国机械工程,2010(11):1338-1341.
    [155]赵茂俞,薛克敏,李萍.多元非线性回归的铝合金覆盖件成形模拟优化设计[J].农业机械学报,2008,39(9):166-169.
    [156]马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,29(4):1201-1206.
    [157]公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289.
    [158]墨岩峰,杨日杰,周旭.基于遗传算法的浮标优化布阵算法研究[J].微计算机信息,2010(19):208-209.
    [159]周洪波.改进的遗传算法及其在H型钢连轧张力控制中的应用研究[D].燕山大学,2007.
    [160]王广博,韩庆,钟小平. NSGA-II中重复个体的控制[J].科学技术与工程,2011,11(34):8602-8604.
    [161]刘正义,林鼎文.55SiMnMo钎钢正火态硬度与金相组织[C].第十五届全国钎钢钎具年会论文集.浙江乐清,2010,15:106-109.
    [162]张芳.大型轧辊热变形行为及热处理过程理论与实验研究[D].秦皇岛:燕山大学学位论文.2009:.66-67
    [163] Carlone P, Palazzo G S, Pasquino R. Finite Element Analysis of the Steel Quenching Process:Temperature Field and Solid–solid Phase Change[J]. Computers and Mathematics withApplications,2010,59(1):585-594.
    [164] Tzitzelkov I, Hougardy H P, Rose A. Mathematische BeschreibungDeszeit-temperatur-umwandlungs-schaubildes Für Isotermische and Kontinuierliche abkühlung[J].Arch. Eisenhüttenwesen,1974,45:525-532.
    [165]董鑫业,徐曙光,方成悦,等.55SiMnMo钢轧后控冷工艺的研究[J].轧钢,1987,(1):16-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700