用户名: 密码: 验证码:
含腐蚀损伤金属材料剩余寿命与剩余强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程上常用的金属材料如铝合金、钢,对腐蚀介质十分敏感,腐蚀与疲劳共同作用严重影响金属结构的完整性和安全性。如何根据含腐蚀损伤金属结构表面形貌得到其剩余寿命和剩余强度,而无需进行大量试验,成为急需解决的问题。
     本文针对金属材料预腐蚀疲劳损伤形式,从局部和整体两个方面深入研究预腐蚀损伤对剩余寿命的影响,分别基于断裂力学理论和分形理论建立了根据腐蚀形貌预测预腐蚀疲劳剩余寿命的理论模型,并对模型的合理性及其预测能力进行深入分析和试验验证。基于试验数据和机理分析给出预腐蚀疲劳剩余强度概率分布模型,统一了前人研究得到的矛盾观点。本文主要工作和创新成果如下:
     (1)完成了预腐蚀疲劳剩余寿命及剩余强度试验,共227件试验件。在实验室环境条件下,对LC4CS铝合金及钢材进行了预腐蚀疲劳剩余寿命和剩余强度试验,为后续剩余寿命和剩余强度模型研究提供试验观测数据。
     (2)提出了危险蚀坑新的评判标准—张开角。针对现有CM-EIFS方法中无法合理地确定裂纹萌生蚀坑问题,使用三维显微镜拍摄大量腐蚀形貌并结合文献中SEM图像分析影响裂纹萌生的形貌细节,给出张开角定义。通过张开角筛选得到萌生裂纹蚀坑,采用CM-EIFS方法计算得到剩余寿命,结果表明张开角定义明确合理,计算结果准确,改进了CM-EIFS方法。
     (3)提出了初始裂纹尺寸的等效面积法及裂纹扩展模型。以蚀坑投影面积为参量将蚀坑等效为半椭圆表面初始裂纹,使其与裂纹扩展寿命最关键的因素-应力强度因子相关联且初始裂纹形貌与试验结果相一致。在张开角筛选得到危险蚀坑基础之上,得到等效初始裂纹尺寸。给出新的裂纹扩展模型,构成了新的CM-EIFS计算体系,与试验结果对比表明该模型计算结果准确。
     (4)提出了光滑试件预腐蚀疲劳剩余寿命估算的分形维数方法。根据分形维数能够在整体上描述形貌复杂程度且不会忽略任何细节形貌的特性,创新性地提出用分形维数描述腐蚀形貌并找到其与剩余寿命之间规律。提出新的三维腐蚀形貌分形维数计算方法并以此预测剩余寿命。剩余寿命预测结果与试验结果吻合良好,表明该方法可以在仅有腐蚀形貌和未腐蚀S-N曲线条件下很好的预测剩余寿命而无需任何预腐蚀疲劳实验数据,大大节省了试验时间和试验经费。
     (5)提出了预腐蚀疲劳缺口系数定义及其随预腐蚀时间变化的经验公式。定义预腐蚀疲劳缺口系数并由实验数据得到预腐蚀疲劳缺口系数随预腐蚀时间变化规律经验公式。由此公式结合预腐蚀光滑试件剩余寿命可以计算得到缺口件剩余寿命。
     (6)提出了缺口试件预腐蚀疲劳剩余寿命估算的分形维数方法。给出预腐蚀应力集中系数定义及其物理意义,由分形维数特性,计算预腐蚀疲劳缺口系数。剩余寿命预测结果与试验结果吻合良好,表明该方法可以在仅有腐蚀形貌与缺口几何尺寸条件下计算得到预腐蚀疲劳缺口系数,继而得到缺口件预腐蚀疲劳剩余寿命。
     (7)对预腐蚀疲劳剩余强度进行实验研究,给出含腐蚀疲劳损伤金属材料剩余强度概率分布模型。在实验室环境下,对国产LC4CS铝合金试件进行预腐蚀剩余强度试验,并对某在实际环境中使用30余年钢材进行剩余强度试验(共44件试验件),提出剩余强度分布的双峰模型。该模型很好的解释了前人和本人实验中一些结论的矛盾之处,为今后剩余强度校核提供参考。
Metallic material such as aluminum, steel, is sensitive to corrosive environment. Corrosiondamage and fatigue damage together seriously affect the integrity and security of the metal structure.How to calculate residual life and residual strength of metal structure contained the corrosion damageby surface morphology of metal structure without large number of tests become ankey problem.
     In this thesis, metal material pre-corrosion fatigue damage was concerned, from both local andglobal perspective, the impact on the residual life of metal material by pre-corrosion damage wasin-depth studied. Based on the fracture mechanic and fractal dimension, theoretical models to predictthe pre-corrosion fatigue residual life which were only need the data of corrosion morphology wereestablished. The rationality and predictive ability of the models were analyzed and experimentalverified. The probability distribution of the pre-corrosion fatigue residual strength was also given byexperimental analysis. This model unified conflicting views of previous studies. The main work andinnovations in this paper are as follows:
     (1) Pre-corrosion fatigue residual life and residual strength tests (227specimens) were done. Inthe laboratory ambient conditions, pre-corrosion fatigue residual life and residual strength tests onaluminum alloy LC4CS and steel were completed. Provided observational data for the follow-upstudy and experimental verification of predicted results of residual life and residual strength.
     (2) Proposed new criteria for critical pits-opening angle. For existing CM-EIFS method cannotreasonably determine crack initiation pit, the definition of opening angle was proposed by analyzed alot of corrosion morphology observed by three-dimensional microscopy and topography details ofSEM image which influenced crack initiation. Through filtering crack initiation pits by opening angle,remaining life was calculated by CM-EIFS method. The predicted results showed that the openingangle definition was reasonable. Predicted results were accurate, so the CM-EIFS method wasimproved.
     (3) Proposed an equivalent area method to calculate the initial crack size and crack propagationmodel. The pit is equivalent to a semi-elliptical surface initial crack by projected area of the pit. Thismethod associated initial crack size with the most critical factors of crack propagation life-stressintensity factorand the morphology of initial crack was consistent with experimental results. Based onfiltering the critical pits by opening angle, the equivalent initial crack size could be gotten by equivalent area method. A new crack growth model was also given in this paper, and constituted anew, complete CM-EIFS calculation system. Compared with the experimental results showed that themethod was accurate enough.
     (4) Proposed a new method to estimate pre-corrosion fatigue residual life of smooth specimenbased on fractal dimension.Because fractal dimension can describe the complexity of overallmorphology and will not ignore any details, an innovative method based on fractal dimension todescribe corrosion morphology and the relationship between fractal dimension and residual life wasproposed. Proposed a new three-dimensional fractal dimension calculation method to predict residuallife. Predicted results with the experimental results were in good agreement and showed that thismethod could well predict the residual life in the only corrosion morphology and pristine S-N curveconditions, saved test time and expenses.
     (5) Pre-corrosion fatigue notch factor was defined and its empirical formula with pre-corrosiontime change was given. This formula combined with pre-corrosion residual life of smooth specimencould calculate residual life of notched specimen.
     (6) Proposed a new method to estimate pre-corrosion fatigue residual life of notched specimenbased on fractal dimension. Defined pre-corrosion stress concentration factor and discussed itsphysical meaning. Given the method to calculate pre-corrosion fatigue notch factor by fractaldimension. Predicted results with the experimental results were in good agreement and showed thatthis method could well predict pre-corrosion fatigue notch factor in the only corrosion morphologyand geometry size of notch conditions, and then calculated residual life of notch specimen.
     (7) Experimental study of pre-corrosion fatigue residual strength was completed, probabilitydistribution model of residual strength of metallic materials containing corrosion fatigue damage wasproposed. In a laboratory environment, residual strength test of the domestic LC4CS aluminum alloyand steel used more than30years in a real environment was implemented (49specimens). A bimodaldistribution model of residual strength was proposed and it provided a good explanation for theinconsistency of experiment results of residual strength in literatures and this thesis. This modelprovided reference for future residual strength check.
引文
[1]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社,2002.
    [2]韦丽金.点蚀疲劳寿命估算的投影面积法[D].南京:南京航空航天大学,2008.
    [3]王荣,材料.金属材料的腐蚀疲劳[M].西安:西北工业大学出版社,2001.
    [4]穆志韬,金平,段成美.现役飞机结构腐蚀疲劳及寿命研究[J].中国工程科学.2000,2(4):34-38.
    [5]刘文珽,李玉海,贾国荣.腐蚀条件下飞机结构使用寿命的评定与监控[J].北京航空航天大学学报.1996(3):19-23.
    [6]刘文珽,杨洪源,贺小帆.腐蚀条件下民机结构疲劳寿命评定方法研究[J].北京航空航天大学学报.2004,30(8):753-756.
    [7]陈群志,刘文珽,齐贤德,等.预腐蚀后飞机结构疲劳S-N曲线研究[C].第十届全国疲劳与断裂学术会议,中国广州,2000:143-147.
    [8]张蕾,陈群志,宋恩鹏,等.某型飞机典型疲劳关键件加速腐蚀条件下C-T曲线的测定[J].机械强度.2004,26(z1):55-57.
    [9]李玉海,刘文珽.腐蚀条件下飞机结构疲劳寿命评定技术研究[J].飞机设计.2002(4):1-10.
    [10]赵海军,金平,柳文林,等.预腐蚀疲劳寿命影响系数模型研究[J].腐蚀科学与防护技术.2006(4):265-267.
    [11]刘文,李玉海,贾国荣.腐蚀条件下飞机结构使用寿命的评定与监控[J].北京航空航天大学学报.1996(3):19-23.
    [12]王忠波,刘文珽,蒋冬滨,等.腐蚀条件下疲劳寿命评定的名义应力法[J].北京航空航天大学学报.2003,29(2):161-164.
    [13]杨玉恭,薛景川,焦坤芳,等.飞机结构腐蚀疲劳分析中的DFR法[J].机械强度.2004, S(26):52-54.
    [14]张建宇,鲍蕊,陈勃,等.腐蚀环境下疲劳分析的DFR方法研究[J].北京航空航天大学学报,30(6):547-550.
    [15]鲍蕊,张建宇,陈勃,等.试验测定DFR的升降法方法[J].北京航空航天大学学报.2004,30(1):47-50.
    [16]鲍蕊.腐蚀条件下民机结构DFR方法及裂纹扩展分析[D].北京:北京航空航天大学,2005.
    [17]鲍蕊,张建宇,郑晓玲,等. DFR腐蚀影响系数及其试验测定[J].北京航空航天大学学报.2006,32(6):639-644.
    [18]董登科,王俊扬,薛景川.考虑环境腐蚀效应影响的飞机结构日历使用寿命修正方法[J].机械强度.1999,21(3):215-224.
    [19]穆志韬.腐蚀环境下飞机结构疲劳寿命的分析方法[J].中国工程科学.2002,4(3):68-72.
    [20] Paris P C. A Critical Analysis of Crack Propagation Laws[J]. Trans. ASME.1963,85:528-534.
    [21] Forman R G, Kearney V E, Engle R M. NUMERICAL ANALYSIS OF CRACK PROPAGATIONIN CYCLIC-LOADED STRUCTURES[J]. J basic Eng.1967,89(3):459-464.
    [22]王自强,陈少华.高等断裂力学[M].科学出版社,2009.
    [23] Elbert W. The significance of fatigue crack closure[C]. ASTM International, Toronto,1971:230-242.
    [24] Forman R G, Mettu S R. Behavior of surface and corner cracks subjected to tensile and bendingloads in Ti-6Al-4V alloy[R]. National Aeronautics and Space Administration, Houston, TX (USA).Lyndon B. Johnson Space Center,1990.
    [25] Gruenberg K M, Craig B A, Hillberry B M, et al. Predicting fatigue life of pre-corroded2024-T3aluminum[J]. International Journal of Fatigue.2004,26(6):629-640.
    [26] Kim S, Burns J T, Gangloff R P. Fatigue crack formation and growth from localized corrosion in Al–Zn–Mg–Cu[J]. Engineering Fracture Mechanics.2009,76(5):651-667.
    [27] Sharp K, Mills T, Russo S, et al. Effects of Exfoliation Corrosion on the Fatigue Life of TwoHigh-strength Aluminum Alloys[C]. Proceedings,4th Joint DoD/FAA/NASA Conference on AgingAircraft, St. Louis, MO, USA, Universal Technology Corporation,2000:15-17.
    [28] Gangloff R P, Burns J T, Kim S. Laboratory characterization and fracture mechanics modeling ofcorrosion–fatigue interaction for aluminum alloy substitution[R]. Contract F09650–03-D-001.WPAFB, OH.2005.
    [29] Barter S A, Sharp P K, Holden G, et al. Initiation and early growth of fatigue cracks in an aerospacealuminium alloy[J]. Fatigue&Fracture of Engineering Materials&Structures.2002,25(2):111-125.
    [30] Van Der Walde K, Brockenbrough J R, Craig B A, et al. Multiple fatigue crack growth inpre-corroded2024-T3aluminum[J]. International journal of fatigue.2005,27(10):1509-1518.
    [31] Liao M, Renaud G, Bellinger N C. Fatigue modeling for aircraft structures containing naturalexfoliation corrosion[J]. International journal of fatigue.2007,29(4):677-686.
    [32] Sankaran K K, Perez R, Jata K V. Effects of pitting corrosion on the fatigue behavior of aluminumalloy7075-T6: modeling and experimental studies[J]. Materials Science and Engineering: A.2001,297(1):223-229.
    [33] van der Walde K, Hillberry B M. Initiation and shape development of corrosion-nucleated fatiguecracking[J]. International Journal of Fatigue.2007,29(7):1269-1281.
    [34] Duquesnay D L, Underhill P R, Britt H J. Fatigue crack growth from corrosion damage in7075-T6511aluminium alloy under aircraft loading[J]. International Journal of Fatigue.2003,25(5):371-377.
    [35] van der Walde K, Hillberry B M. Characterization of pitting damage and prediction of remainingfatigue life[J]. International Journal of Fatigue.2008,30(1):106-118.
    [36] Crawford B R, Loader C, Ward A R, et al. The EIFS distribution for anodized and pre‐corroded7010‐T7651under constant amplitude loading[J]. Fatigue&Fracture of Engineering Materials&Structures.2005,28(9):795-808.
    [37] Medved J J, Breton M, Irving P E. Corrosion pit size distributions and fatigue lives—a study of theEIFS technique for fatigue design in the presence of corrosion[J]. International Journal of Fatigue.2004,26(1):71-80.
    [38] Gruenberg K M, Craig B A, Hillberry B M, et al. Predicting fatigue life of pre-corroded2024-T3aluminum from breaking load tests[J]. International Journal of Fatigue.2004,26(6):615-627.
    [39] Frantziskonis G N, Simon L B, Woo J, et al. Multiscale characterization of pitting corrosion andapplication to an aluminum alloy[J]. European Journal of Mechanics-A/Solids.2000,19(2):309-318.
    [40] Bellinger N C, Komorowski J P, Liao M, et al. Preliminary study into the effect of exfoliationcorrosion on aircraft structural integrity[C]. Proc.6th Joint FAA/DoD/NASA Aging Aircraft Conf.,San Francisco, CA,2002:16-19.
    [41] Spence S H, Williams N M, Stonham A J, et al. Fatigue in the presence of corrosion pitting in anaerospace aluminium alloy[C]. Proceedings of the8th International Fatigue Congress, Sweden,2002:2-7.
    [42] Sharp P K, Mills T, Clark G. Aircraft Structural Integrity: The Impact of Corrosion[C].10thInternational Congress of Fracture, Honolulu, USA,2001:3-7.
    [43] Burns J T. Modeling fatigue behavior of pre-corroded aluminum alloys using linear elastic fracturemechanics[D]. University of Virginia,2006.
    [44] Zamber J E, Hillberry B M. Probabilistic approach to predicting fatigue lives of corroded2024-T3[J].AIAA journal.1999,37(10):1311-1317.
    [45] Dolley E J, Lee B, Wei R P. The effect of pitting corrosion on fatigue life[J]. Fatigue and Fracture ofEngineering Materials and Structures.2000,23(7):555-560.
    [46] Molent L. Fatigue crack growth from flaws in combat aircraft[J]. International Journal of Fatigue.2010,32(4):639-649.
    [47] Pao P S, Gill S J, Feng C R. On fatigue crack initiation from corrosion pits in7075-T7351aluminumalloy[J]. Scripta materialia.2000,43(5):391-396.
    [48] Bray G H, Bucci R J, Colvin E L, et al. Effect of prior corrosion on the S/N fatigue performance ofaluminum sheet alloys2024-T3and2524-T3[M]. ASTM STP.1997,1298:89-106.
    [49] Perez R. Corrosion/fatigue metrics[C]. ICAF97-Fatigue in new and ageing aircraft.1997:215-229.
    [50] Tuegel E J. Investigation of the effect of corrosion pitting on fatigue life of aluminum structure[R].Ohio: Air Force Research Laboratory,2003.
    [51] Dolley E J, Lee B, Wei R P. The effect of pitting corrosion on fatigue life[J]. Fatigue and Fracture ofEngineering Materials and Structures.2000,23(7):555-560.
    [52]周向阳,柯伟.点蚀坑的形貌与腐蚀疲劳裂纹萌生[J].金属学报.1992,28(8):356-360.
    [53] Chaussumier M, Shahzad M, Mabru C, et al. A fatigue multi-site cracks model using coalescence,short and long crack growth laws, for anodized aluminum alloys[J]. Procedia Engineering.2010,2(1):995-1004.
    [54]张有宏.飞机结构的腐蚀损伤及其对寿命的影响[D].西北工业大学,2007.
    [55]张有宏,吕国志,陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究[J].航空学报.2005(6):125-128.
    [56] Burns J T, Kim S, Gangloff R P. Effect of corrosion severity on fatigue evolution in Al–Zn–Mg–Cu[J]. Corrosion Science.2010,52(2):498-508.
    [57] van der Walde K, Brockenbrough J R, Craig B A, et al. Multiple fatigue crack growth inpre-corroded2024-T3aluminum[J]. International Journal of Fatigue.2005,27(10–12):1509-1518.
    [58] Newman Jr J C, Wu X R, Venneri S L, et al. Small-crack effects in high-strength aluminumalloys[R]. NASA STI/Recon Technical Report N,1994.
    [59] Rokhlin S I, Kim J Y, Nagy H, et al. Effect of pitting corrosion on fatigue crack initiation and fatiguelife[J]. Engineering Fracture Mechanics.1999,62(4-5):425-444.
    [60] Jones K, Hoeppner D W. Prior corrosion and fatigue of2024-T3aluminum alloy[J]. Corrosionscience.2006,48(10):3109-3122.
    [61] Xiang Y, Liu Y. EIFS-based crack growth fatigue life prediction of pitting-corroded testspecimens[J]. Engineering Fracture Mechanics.2010,77(8):1314-1324.
    [62] S owik J, agoda T. The fatigue life estimation of elements with circumferential notch under uniaxialstate of loading[J]. International Journal of Fatigue.2011,33(9):1304-1312.
    [63] Sakane M, Zhang S, Kim T J. Notch effect on multiaxial low cycle fatigue[J]. International Journalof Fatigue.2011,33(8):959-968.
    [64] Christman T K. Relationships Between Pitting, Stress, and Stress Corrosion Cracking of Line PipeSteels[J]. Corrosion.1990,46(6):450-453.
    [65] Cerit M, Genel K, Eksi S. Numerical investigation on stress concentration of corrosion pit[J].Engineering Failure Analysis.2009,16(7):2467-2472.
    [66]谢伟杰,李荻,胡艳玲,等. LY12CZ和7075T7351铝合金在EXCO溶液中腐蚀动力学的统计研究[J].航空学报.1999(1):35-39.
    [67]胡艳玲,李荻,郭宝兰. LY12CZ铝合金型材的腐蚀动力学统计规律研究及日历寿命预测方法探讨[J].航空学报.2000(S1):103-107.
    [68]陈跃良,杨晓华,秦海勤.飞机结构腐蚀损伤分布规律研究[J].材料科学与工程.2002(3):378-380.
    [69]陈跃良,吕国志,段成美.服役条件下飞机结构腐蚀损伤概率模型研究[J].航空学报.2002(3):249-251.
    [70]王逾涯,韩恩厚,孙祚东,等. LY12CZ铝合金在EXCO溶液中的腐蚀行为研究[J].装备环境工程.2005(1):20-24.
    [71]黄桂桥,郁春娟.金属材料在海洋飞溅区的腐蚀[J].材料保护.1999(2):31-33.
    [72] Li X, Wang X, Ren H, et al. Effect of prior corrosion state on the fatigue small cracking behaviour of6151-T6aluminum alloy[J]. Corrosion Science.2012,55:26-33.
    [73] Schmidt C G, Kanazawa C H, Shockey D A, et al. Corrosion–Fatigue Crack Nucleation in the AlClad Layer of2024T3Commercial Aircraft Skin[C]. ASME International Mechanical EngineeringCongress and Exposition,San Francisco, California,1995:171-174.
    [74] Jones K, Hoeppner D W. Pit-to-crack transition in pre-corroded7075-T6aluminum alloy undercyclic loading[J]. Corrosion science.2005,47(9):2185-2198.
    [75]张有宏,常新龙,张世英,等.铝合金结构腐蚀损伤性能评价指标[J].试验技术与试验机.2007,47(4):5-7,20.
    [76] Rezig E, Irving P E, Robinson M J. Development and early growth of fatigue cracks from corrosiondamage in high strength stainless steel[J]. Procedia Engineering.2010,2(1):387-396.
    [77] Kim S, Burns J T, Gangloff R P. Fatigue crack formation and growth from localized corrosion in Al–Zn–Mg–Cu[J]. Engineering Fracture Mechanics.2009,76(5):651-667.
    [78] Barsom J M, Rolfe S T. Fracture and fatigue control in structures: Applications of fracturemechanics[M]. ASTM International, West Conshohocken, Pa,1999.
    [79] Dominguez Almaraz G M, Mercado Lemus V H, Jesús Villalon Lopez J. Rotating bending fatiguetests for aluminum alloy6061-T6, close to elastic limit and with artificial pitting holes[J]. ProcediaEngineering.2010,2(1):805-813.
    [80] Burns J T, Larsen J M, Gangloff R P. Driving forces for localized corrosion‐to‐fatigue cracktransition in Al–Zn–Mg–Cu[J]. Fatigue&Fracture of Engineering Materials&Structures.2011:745-773.
    [81] Papazian J, Anagnostou E L, Christ R J, et al. DARPA/NCG structural integrity prognosis system[R].Contract number HR0011-04-C-0003, Northrop Grumman Aerospace Systems, Bethpage (NY),2009.
    [82] Papazian J M, Anagnostou E L, Engel S J, et al. A structural integrity prognosis system[J].Engineering Fracture Mechanics.2009,76(5):620-632.
    [83]张有宏.飞机结构的腐蚀损伤及其对寿命的影响[D].西安:西北工业大学,2007.
    [84] Codaro E N, Nakazato R Z, Horovistiz A L, et al. An image processing method for morphologycharacterization and pitting corrosion evaluation[J]. Materials Science and Engineering: A.2002,334(1):298-306.
    [85] Xiang Y, Lu Z, Liu Y. Crack growth-based fatigue life prediction using an equivalent initial flawmodel. Part I: Uniaxial loading[J]. International Journal of Fatigue.2010,32(2):341-349.
    [86] Zamber J E. A Probabilistic approach to predicting fatigue lives of corroded2024-T3aluminum[D].Purdue University,1997.
    [87] Liu Y, Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw sizedistribution[J]. International Journal of Fatigue.2009,31(3):476-487.
    [88] Molent L, Sun Q, Green A J. Characterisation of equivalent initial flaw sizes in7050aluminiumalloy[J]. Fatigue&Fracture of Engineering Materials&Structures.2006,29(11):916-937.
    [89] Barter S A, Sharp P K, Holden G, et al. Initiation and early growth of fatigue cracks in an aerospacealuminium alloy[J]. Fatigue&Fracture of Engineering Materials&Structures.2002,25(2):111-125.
    [90] Makeev A, Nikishkov Y, Armanios E. A concept for quantifying equivalent initial flaw sizedistribution in fracture mechanics based life prediction models[J]. International Journal of Fatigue.2007,29(1):141-145.
    [91] Fawaz S A. Equivalent initial flaw size testing and analysis of transport aircraft skin splices[J].Fatigue&Fracture of Engineering Materials&Structures.2003,26(3):279-290.
    [92] Moreira P M G P, de Matos P F P, de Castro P M S T. Fatigue striation spacing and equivalent initialflaw size in Al2024-T3riveted specimens[J]. Theoretical and applied fracture mechanics.2005,43(1):89-99.
    [93] White P, Molent L, Barter S. Interpreting fatigue test results using a probabilistic fractureapproach[J]. International Journal of Fatigue.2005,27(7):752-767.
    [94] Yang J N, Manning S D. Distribution of equivalent initial flaw size[C]. Annual Reliability andMaintainability Symposium, San Francisco, Calif,1980:112-120.
    [95] Newman Jr. J C, Abbott W. Fatigue-life calculations on pristine and corroded open-hole specimensusing small-crack theory[J]. International Journal of Fatigue.2009,31(8–9):1246-1253.
    [96] Murakami Y. Metal fatigue: effects of small defects and nonmetallic inclusions[M]. Elsevier Science,2002.
    [97] Yukitaka M, Masahiro E. Quantitative evaluation of fatigue strength of metals containing varioussmall defects or cracks[J]. Engineering Fracture Mechanics.1983,17(1):1-15.
    [98] Laz P J, Hillberry B M. The role of inclusions in fatigue crack formation in aluminum2024-T3[C].Fatigue,1996.
    [99] Murakami Y, Endo M. Effects of Hardness and Crack Geometries on Delta K sub th of Small CracksEmanating From Small Defects[J]. Mechanical Engineering,1986:275-293.
    [100] Newman Jr J C, Edwards P R. Short-Crack Growth Behaviour in an Aluminum Alloy-an AGARDCooperative Test Programme[R]. AGARD Report,1988.
    [101] Lankford J. The growth of small fatigue cracks in7075–T6aluminum[J]. Fatigue&Fracture ofEngineering Materials&Structures.1982,5(3):233-248.
    [102]穆志韬,熊玉平.高强度铝合金的腐蚀损伤分布规律研究[J].机械工程材料.2002(4):14-16.
    [103]李玉海,贺小帆,陈群志,等.铝合金试件腐蚀深度分布特性及变化规律研究[J].北京航空航天大学学报.2002(1):98-101.
    [104]陈群志,崔常京,孙祚东,等. LY12CZ铝合金腐蚀损伤的概率分布及其变化规律[J].装备环境工程.2005(3):1-6.
    [105]穆志韬,李荻. LY12CZ铝合金型材构件腐蚀失效动力学规律研究[J].机械工程材料.2003(8):18-20.
    [106] Hoeppner D W. Model for prediction of fatigue lives based upon a pitting corrosion fatigueprocess[M]. ASTM, Philadelphia,1979:841-863.
    [107] Chen G S, Wan K C, Gao M, et al. Transition from pitting to fatigue crack growth—modeling ofcorrosion fatigue crack nucleation in a2024-T3aluminum alloy[J]. Materials Science andEngineering: A.1996,219(1):126-132.
    [108] Harlow D G, Wei R P. A probability model for the growth of corrosion pits in aluminum alloysinduced by constituent particles[J]. Engineering Fracture Mechanics.1998,59(3):305-325.
    [109] Sankararaman S, Ling Y, Shantz C, et al. Inference of equivalent initial flaw size under multiplesources of uncertainty[J]. International Journal of Fatigue.2011,33(2):75-89.
    [110] El Haddad M H, Topper T H, Smith K N. Prediction of non propagating cracks[J]. EngineeringFracture Mechanics.1979,11(3):573-584.
    [111] El Haddad M H, Dowling N E, Topper T H, et al. J integral applications for short fatigue cracks atnotches[J]. International Journal of Fracture.1980,16(1):15-30.
    [112] Fujimoto Y, Hamada K, Shintaku E, et al. Inherent damage zone model for strength evaluation ofsmall fatigue cracks[J]. Engineering Fracture Mechanics.2001,68(4):455-473.
    [113] Newman Jr J C. A nonlinear fracture mechanics approach to the growth of small cracks[R]. AGARDBehaviour of Short Cracks in Airframe Components,1983.
    [114] Herman W A, Hertzberg R W, Jaccard R. A simplified laboratory approach for the prediction ofshort crack behavior in engineering structures[J]. Fatigue&Fracture of Engineering Materials&Structures.2007,11(4):303-320.
    [115] Burns J T, Larsen J M, Gangloff R P. Effect of initiation feature on microstructure-scale fatiguecrack propagation in Al–Zn–Mg–Cu[J]. International Journal of Fatigue.2012,42:104-121.
    [116] Merati A, Eastaugh G. Determination of fatigue related discontinuity state of7000series ofaerospace aluminum alloys[J]. Engineering Failure Analysis.2007,14(4):673-685.
    [117] Park J S, Kim S J, Kim K H, et al. A microstructural model for predicting high cycle fatigue life ofsteels[J]. International journal of fatigue.2005,27(9):1115-1123.
    [118] Newman J C. Prediction of fatigue crack-growth patterns and lives in three-dimensional crackedbodies[J]. Advances in fracture research(Fracture84).1986,3:1597-1608.
    [119] Koch G H, Hagerdorn E L, Berens A P. Effect of preexisting corrosion on fatigue cracking ofaluminum alloys2024-T3and7075-T6[R]. Ohio: Wright-Patterson Air Force Base,1995.
    [120] Cross R, Makeev A, Armanios E. Simultaneous uncertainty quantification of fracture mechanicsbased life prediction model parameters[J]. International Journal of Fatigue.2007,29(8):1510-1515.
    [121] Burns J T, Gangloff R P. Scientific advances enabling next generation management of corrosioninduced fatigue[J]. Procedia Engineering.2011,10:362-369.
    [122]赵新伟,路民旭,白真权.管线腐蚀剩余强度评价的研究现状及发展趋势[J].石油专用管.1997,5(4):9-14.
    [123] Milne I, Ainsworth R A, Dowling A R, et al. Assessment of the integrity of structures containingdefects[J]. International Journal of Pressure Vessels and Piping.1988,32(1):3-104.
    [124] British Standard. Guide on methods for assessing the acceptability of flaws in fusion weldedstructures[C].4th draft after public comment, England,1999.
    [125] Kiefner J F, Maxey W A, Eiber R J, et al. Failure stress levels of flaws in pressurized cylinders[J].ASTM special technical publication.1973(536):461-481.
    [126] Maxey W A, Kiefner J F, Eiber R J, et al. Ductile fracture initiation, propagation and arrest incylindrical vessels[M]. ASTM STP,1972,514:70-81.
    [127] Institute A N S. Manual for Determining the Remaining Strength of Corroded Pipelines: ASupplement to ASME B31Code for Pressure Piping[M]. American Society of MechanicalEngineers,1991.
    [128]帅健,张春娥,陈福来.基于爆破试验数据对腐蚀管道剩余强度评定方法的验证[J].压力容器.2006(10):5-8.
    [129] Dnv RP. F101-1999, Corroded pipelines[S].
    [130] Api A. RP579-2000, Recommended Practice for Fitness-For-Service[S].
    [131]赵新伟,罗金恒,郑茂盛,等.点腐蚀损伤管道剩余强度的评价方法[J].机械工程材料.2006(6):26-29.
    [132]秦剑波,王生楠,刘亚龙,等.腐蚀环境下2024-T3铝合金疲劳裂纹扩展和剩余强度实验研究[J].材料工程.2006(003):14-17.
    [133]邵煜,张土乔,俞亭超.考虑腐蚀的埋地灰口铸铁管失效预测及可靠度分析[J].浙江大学学报(工学版).2010(1):160-165.
    [134]张有宏,吕国志,李仲,等.铝合金结构腐蚀疲劳裂纹扩展与剩余强度研究[J].航空学报.2007,28(2):332-335.
    [135]陈平伟,王峰会,王绍明.含腐蚀缺陷X70钢剩余强度分析[J].腐蚀与防护.2011(2):150-152.
    [136]赵新伟,罗金恒,路民旭.含腐蚀缺陷管道剩余强度的有限元法分析[J].油气储运.2001(3):18-21.
    [137]刘墨山.油气管道剩余强度有限元模拟分析及剩余寿命预测[J].科技导报.2009(6):34-37.
    [138]蔡文军,陈国明,潘东民.腐蚀管线剩余强度的非线性分析[J].石油大学学报(自然科学版).1999,23(1):66-68.
    [139]谭开忍,肖熙.含有腐蚀缺陷海底管道极限载荷分析[J].海洋工程.2006,24(3):63-67.
    [140]魏化中,周小兵,舒安庆,等.含组合腐蚀缺陷压力管道剩余强度分析[J].通用机械.2007(5):84-86.
    [141]陈跃良,谭晓明,段成美.孔蚀对飞机结构静强度影响规律研究[J].机械强度.2004(S1):70-73.
    [142] Petroyiannis P V, Kermanidis A T, Akid R, et al. Analysis of the effects of exfoliation corrosion onthe fatigue behaviour of the2024-T351aluminium alloy using the fatigue damage map[J].International Journal of Fatigue.2005,27(7):817-827.
    [143]林冠发,仝明信,高蓉,等.模拟点腐蚀多孔的两种油套管钢的拉伸性能[J].中国机械工程.2005,16(20):1871-1875.
    [144] Wang Q, Liu Y, Zhu X, et al. Study on the effect of corrosion on the tensile properties of the1.0wt.%Yttrium modified AZ91magnesium alloy[J]. Materials Science and Engineering: A.2009,517(1-2):239-245.
    [145] Wang Q, Liu Y, Fang S, et al. Evaluating the improvement of corrosion residual strength by adding1.0wt.%yttrium into an AZ91D magnesium alloy[J]. Materials Characterization.2010,61(6):674-682.
    [146] Li C, Liu Y, Wang Q, et al. Study on the corrosion residual strength of the1.0wt.%Ce modifiedAZ91magnesium alloy[J]. Materials Characterization.2010,61(1):123-127.
    [147]敖波,张定华,赵歆波,等.多级载荷作用下剩余强度的估算[J].机械强度.2007(3):463-467.
    [148]杨晓华,姚卫星,陈跃良.日历腐蚀环境下LY12CZ铝合金力学性能研究[J].机械强度.2003(2):227-228.
    [149] Nakamura S, Suzumura K, Tarui T. Mechanical properties and remaining strength of corroded bridgewires[J]. Structural engineering international.2004,14(1):50-54.
    [150]徐伟,张敏.受腐蚀桥梁钢丝的力学性能和剩余强度[J].世界桥梁.2006(2):54-58.
    [151]蒋祖国.飞机结构腐蚀疲劳[M].航空工业出版社,1992.
    [152]王正,王俊扬,刘文埏.近代飞机耐久性设计技术[M].北京:航空航天工业部科学技术研究院.1989:1-10.
    [153]张福泽,潭卫东,宋军,等.腐蚀温度对飞机疲劳寿命的影响[J].航空学报.2004,25(5):473-475.
    [154] Wanhill R J, Luccia J J. An AGARD-coordinated corrosion fatigue cooperative testingprogramme[R]. AGARD-R-695, France,1982.
    [155]周希沅.中国飞机结构腐蚀分区和当量环境谱[J].航空学报.1999(3):39-42.
    [156]陈群志.腐蚀环境下飞机结构日历寿命技术体系研究[D].北京:北京航空航天大学,1999.
    [157]吴富强,姚卫星.一个新的材料疲劳寿命曲线模型[J].中国机械工程.2008,19(13):1634-1637.
    [158] Zupanc U, Grum J. Effect of pitting corrosion on fatigue performance of shot-peened aluminiumalloy7075-T651[J]. Journal of Materials Processing Technology.2010,210(9):1197-1202.
    [159] Goswami T K, Hoeppner D W. Pitting corrosion fatigue of structural materials[J].ASME-PUBLICATIONS-AD.1995,47:129-140.
    [160] Harlow D G, Wei R P. Probability approach for prediction of corrosion and corrosion fatigue life[J].AIAA journal.1994,32(10):2073-2079.
    [161] Turnbull A, Wright L, Crocker L. New insight into the pit-to-crack transition from finite elementanalysis of the stress and strain distribution around a corrosion pit[J]. Corrosion Science.2010,52(4):1492-1498.
    [162] Murakami Y. Analysis of stress intensity factors of modes I, II and III for inclined surface cracks ofarbitrary shape[J]. Engineering Fracture Mechanics.1985,22(1):101-114.
    [163] Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength[J].International Journal of Fatigue.1994,16(3):163-182.
    [164] Murakami Y, Endo T. Effects of small defects on fatigue strength of metals[J]. International Journalof Fatigue.1980,2(1):23-30.
    [165] Murakami Y, Beretta S. Small Defects and Inhomogeneities in Fatigue Strength: Experiments,Models and Statistical Implications[J]. Extremes.1999(2):123-147.
    [166] Chlistovsky R M, Heffernan P J, Duquesnay D L. Corrosion-fatigue behaviour of7075-T651aluminum alloy subjected to periodic overloads[J]. International Journal of Fatigue.2007,29(11):1941-1949.
    [167] Raju I S, Newman J C. Stress-intensity factors for a wide range of semi-elliptical surface cracks infinite-thickness plates[J]. Engineering Fracture Mechanics.1979,11(4):817-829.
    [168] Santus C, Taylor D. Physically short crack propagation in metals during high cycle fatigue[J].International Journal of Fatigue.2009,31(8):1356-1365.
    [169] Harlow D G, Wei R P. Probability modeling and material microstructure applied to corrosion andfatigue of aluminum and steel alloys[J]. Engineering Fracture Mechanics.2009,76(5):695-708.
    [170] Rokhlin S I, Kim J Y. In situ ultrasonic monitoring of surface fatigue crack initiation and growthfrom surface cavity[J]. International Journal of Fatigue.2003,25(1):41-49.
    [171]高镇同,蒋新桐,熊峻江.疲劳性能试验设计和数据处理:直升机金属材料疲料性能可靠性手册[M].北京:北京航空航天大学出版社,1999.
    [172]邵箭,朱承斌.飞机设计手册[M].北京:航空工业出版社,1997.
    [173] Mandelbrot B. B.,陈守吉,凌复华译.大自然的分形几何学[M].上海:上海远东出版社,1998.
    [174] Mandelbrot B.,文志英,苏虹.分形对象:形,机遇和维数[M].北京:世界图书出版公司,1999.
    [175] Rajasankar J, Iyer N R. A probability-based model for growth of corrosion pits in aluminiumalloys[J]. Engineering Fracture Mechanics.2006,73(5):553-570.
    [176]许述剑,翁永基.图像灰度与腐蚀特征的相关性研究[J].中国腐蚀与防护学报.2006,26(6):321-324.
    [177]许述剑,翁永基,李相怡.图像分维对腐蚀坑分布特征的表征[J].中国腐蚀与防护学报.2007,27(2):109-113.
    [178] Wang S, Song S. Corrosion morphology diagnosing system of metallic materials in seawater basedon fractal[J]. ACTA METALLURGICA SINICA.2004,40(1):94-98.
    [179]宋诗哲,王守琰,高志明,等.图像识别技术研究有色金属大气腐蚀早期行为[J].金属学报.2002,38(8):893-896.
    [180]张玮.金属腐蚀形貌特征提取用于腐蚀诊断的研究[D].大连理工大学,2004.
    [181]张玮,梁成浩.金属材料表面腐蚀形貌分形特征提取[J].大连理工大学学报.2003,43(1):61-64.
    [182]高庆吉,王少辉.基于分形关联维数的飞机蒙皮腐蚀特征提取算法[J].计算机应用.2010,30(z1):137-139,161.
    [183]赵明坚,蔡超.纯镁在中性1.0mass%NaCl溶液中的腐蚀行为研究[J].腐蚀科学与防护技术.2009,21(2):101-103.
    [184]范颖芳,周晶,冯新.受腐蚀钢筋混凝土构件破坏过程的分形行为[J].工程力学.2002,19(5):123-129.
    [185]许成龙,吕胜利,王振果,等.铝合金表面腐蚀形态演化规律的分形几何表征[J].机械科学与技术.2011,30(2):233-236.
    [186]郑洪龙,吕英民,董绍华.腐蚀管道评定方法研究--对B31G公式的分形修正[J].机械强度.2004,26(z1):67-69.
    [187] El-Sonbaty I A, Khashaba U A, Selmy A I, et al. Prediction of surface roughness profiles for milledsurfaces using an artificial neural network and fractal geometry approach[J]. Journal of MaterialsProcessing Technology.2008,200(1):271-278.
    [188] Kurose M, Hirose Y, Sasaki T, et al. Fractal characteristics of stress corrosion cracking in SNCM439steel having different prior-austenite grain sizes[J]. Engineering fracture mechanics.1996,53(2):279-288.
    [189]边丽,翁永基,许述剑.基于分形动力学过程的腐蚀预测模型[J].化学通报.2006,69(3):207-210.
    [190] Azevedo C, Marques E R. Three-dimensional analysis of fracture, corrosion and wear surfaces[J].Engineering Failure Analysis.2010,17(1):286-300.
    [191]孙霞,吴自勤,黄畇.分形原理及其应用[M].合肥:中国科学技术大学出版社,2003.
    [192] Yang Q, Ding J, Shen Z. Investigation on fouling behaviors of low-energy surface and fouling fractalcharacteristics[J]. Chemical engineering science.2000,55(4):797-805.
    [193] Underwood E E, Banerji K. Quantitative fractography[C]. ASM Handbook.1987,12:193-210.
    [194] Underwood E E, Banerji K. Fractal analysis of fracture surfaces[C]. ASM Handbook.1987,12:211-215.
    [195]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [196]夏开全,姚卫星.疲劳缺口系数评述[J].南京航空航天大学学报.1994,26(5):676-685.
    [197] Weixing Y. Stress field intensity approach for predicting fatigue life[J]. International Journal ofFatigue.1993,15(3):243-246.
    [198]杨晓华,姚卫星,陈跃良.日历腐蚀环境下LY12CZ铝合金力学性能研究[J].机械强度.2003,25(2):227-228.
    [199]叶彬.飞机结构腐蚀疲劳寿命预估工程方法研究[J].洪都科技.2003(2):1-6.
    [200]秦剑波,王生楠,刘亚龙,等.腐蚀环境下2024-T3铝合金疲劳裂纹扩展和剩余强度实验研究[J].材料工程.2006(3):14-17.
    [201]张有宏,吕国志,李仲,等.铝合金结构腐蚀疲劳裂纹扩展与剩余强度研究[J].航空学报.2007(2):332-335.
    [202]张行,崔德渝,孟庆春.断裂与损伤力学[M].北京航空航天大学出版社,2006.
    [203]姚卫星,顾怡.结构可靠性设计[M].航空工业出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700