用户名: 密码: 验证码:
竹材原态多方重组单元与冷压热固工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹材原态多方重组材料研究,是在竹材高效利用形势下符合我国林业长期发展规划的新课题,是解决我国木材供需矛盾的有效途径之一,符合“生态林业、民生林业”的发展模式,具有广泛应用前景和发展空间。
     本文以4~6年生毛竹为研究对象,提出冷压定形、热压固化成型工艺制备竹材原态多方重组材料,研发冷压热固成型专用卡具,以单元性能、材料小样制备及力学性能为重点,主要研究竹材原态多方重组材料横向胶合成型技术,旨在掌握竹材原态多方重组材料基本性能和冷压热固成型制造工艺,为该材料工业化生产提供技术指导和理论基础,并对进一步开发竹材原态多方重组材料冷压热固成型机提供必要的试验基础,推进竹材原态多方重组材料工业化进程。
     本论文结论如下:
     (1)采用木材常规干燥窑干燥法、蒸煮和高温热处理法、化学与增容结合处理法对竹材单元进行防裂处理,优选出竹材原态多方重组材料单元防裂干燥处理工艺:常压下,原竹浸入0.8%氯化钠和1%醋酸混合溶液中,在温度100℃条件下蒸煮4h;蒸煮处理后原竹进行常规低温干燥:干燥阶段温度为50℃~58℃,湿度为75%~85%,风速1.5m/s,干燥至当地平衡含水率。此工艺条件下处理的竹材原态多方重组材料单元,90d后仅5%生开裂,干燥效果优良,适应工业化生产。
     (2)适合制备竹材原态多方重组材料单元的直径范围是90mm~110mm;经六面铣削一次成型制备的竹材原态多方重组材料单元,轮廓算术平均偏差Ra均值为2.79μm,微观不平度十点高度Rz均值为18.31μm,轮廓最大高Rzmax均值为26.51μm,Ra和Rz随原竹直径增大呈增加趋势,Rzmax无明显规律;试验结果表明,竹材原态多方重组材料单元轮廓算术平均偏差Ra和微观不平度十点高度Rz处于胶合强度高的粗糙度范围内。
     (3)全因子试验法研究竹材原态多方重组材料单元基本力学性能:竹节对横向抗压强度提高明显,竹节在中间处横向抗压强度最高,无竹节次之,竹节在端头最小,竹材原态多方重组材料单元横向抗压强度随直径增大出现逐渐减小的变化趋势,随重组单元质量增加呈减小趋势,横向抗压强度平均值4.47MPa,最小值3.38MPa,竹材原态多方重组材料横向成型时优选抗压强度为1.0MPa~1.5MPa;竹材原态多方重组材料单元纵向抗压强度均值为51.78MPa,较原竹强度损失约5.7%,采用竹材原态多方重组材料单元理论模型计算其抗压强度为61.47MPa,强度偏大约18.7%,修正系数为0.85,误差±5%之内。六面成型铣削对原竹纵向使用性能影响不大。
     (4)研发冷压热固成型工艺专用卡具,实现二维加压,横向平面加压,纵向异型面加压,最大承载压力6kN;卡具由2件成90°夹角的构件组成,采用螺栓螺母固定位置,卡具结构用材Q235,板簧材料选择65Mn,自重12kg;引入板簧结构,在冷压热固成型过程中,补偿应力松弛引起的压力降低;纵向采用120°V形卡具,将线接触转化为面接触,减少竹单元压溃,提高竹材原态多方重组材料胶合强度,单元间结合较冷压成型更为致密;专用卡具加工竹材原态多方重组材料尺寸为210mm~350mm,专用卡具冷压热固成型工艺制备竹材原态多方重组材料2h,工艺固化周期为冷压冷固工艺的1/84。
     (5)7单元竹材原态多方重组材料横截面横向尺寸(侧面对侧面)平均值为288.11mm,热固成型后平均减少3.61mm,约1.25%;纵向尺寸(顶点对顶点)平均值为271.78mm,热固成型后减少2.67mm,约0.98%;横截面横向和纵向最大尺寸减少均为4.5mm,陈放24h后,产生0.3mm~0.4mm的弹性恢复,弹性恢复率约11%;竹材原态多方重组材料热固应力随时间延长逐渐降低,压力降低主要发生在停止施加压力后的前180s,360s后应力曲线基本呈直线,建议将600s时载荷定为最终载荷设计相关设备。
     (6)试验采用正交分析法研究胶黏剂种类、施胶量、热固成型温度、热固成型时间与竹材原态多方重组材料小样试件纵向抗压性能的关系,结果表明:酚醛树脂胶制备的竹材原态多方重组材料性能最好,异氰酸酯胶黏剂次之,脲醛胶黏剂强度最低;该材料纵向抗压强度随施胶量增加呈下降变化,200g/m2施胶量抗压强度最大;随温度上升呈增加变化,150℃时达到最大值,但增加比例不高;随时间延长纵向抗压强度基本不变。冷压热固法制备竹材原态多方重组材料优选工艺参数:酚醛胶黏剂、施胶量200g/m2,热固成型温度130℃、热固成型时间10min,此工艺条件下验证试验表明:纵向载荷793.7kN,抗压强度73.80MPa,比强度为0.0559N m/kg,优于普通钢材0.0540N m/kg,高于正交试验法平均值0.0529N m/kg。参照木材容许应力研究方法,提出竹材原态多方重组材料安全系数为2.85~4.0,则容许载荷≤195kN。
     (7)使用钢筋作为预应力增强材料,可增加竹材原态多方重组材料纵向抗压强度,但降低该材料的强度—容重比,竹材原态多方重组材料强度-容重比比值为0.07和红松相同,优于钢材的0.054,低于玻璃钢的强度-容重比(0.20),高于其他类型的常用材料。随竹材原态多方重组材料重组单元增加纵向抗压强度增加,14单元为7单元的2.2倍;竹材原态多方重组材料的破坏形式主要是胶层撕裂,改善其横向拼接胶合强度是提高该材料力学性能和使用寿命的关键。长方体型竹材原态多方重组材料抗弯强度低于圆柱体型竹材原态多方重组材料,但其位移量仅为圆柱体型一半,约50mm,适合制备梁材,两种类型的竹材原态多方重组材料均可作为柱材使用。
Bamboo Multi-sides Recombining in Original Status (BMROS), which is the new projectthat fits long-term forestry development especially in high efficiency bamboo usage demand, isone of efficient methods to solve the problem between need and requirement of wood. Thisprojects has a broad application prospect and developing space.
     This paper studied on phyllostachys pubescens, which is4~6year old. The cold press shaping heat curing prepare for BMROS. The investigation aim is to grasp the basic properties and the cold press shaping heat curing manufacturing process, focus on bamboo unit and preparation of sample and mechanical properties,especially transverse bonding technology. The research provided theoretical and technical instruction for industrial production and technical parameters for special equipment. In addition, the cold press
     shaping heat curing promoted the industrialization of BMROS.
     Results are as followings:
     (1)In order to prevent cracking of bamboo units, discussion and analysis conventional wood drying, steaming and high temperature heat treatment method, chemical andcompatibilization, preferred BMROS units dry skills: in normal pressure, bamboo unitswere soaked into0.8%NaCl and1%CH3COOH mixed buffer boiled4h in100℃;then
     dried in low temperature, treated with mist spray, in50℃~58℃, relative humidity55~60%and wind speed1.5m/s, until reaching the equilibrium moisture content. After drying treatment, only5%have cracks meaning that this treatment is suitable for the industrialized process.
     (2)Bamboo diameters in the range of90mm~110mm were suitable for the preparation of BMROS unit. Profile arithmetic average Error Ra of BMROS unit mean valuewas2.79μm, ten point height of irregularities Rz mean value was18.31μm, Rzmax maximum height of profile mean value was26.51μm. Ra and Rz were increased with unit
     diameter increasing. However, there was no obvious change in Rzmax. From entire effect, BMROS unit has high bonding strength.
     (3)Full factorial experiment was applied to study physical and mechanical properties of BMROS:the transverse compressive strength was increased obviously with bambooknot, which was in the middle part is the highest.Preferred pressure value was1.0MPa~1.5MPa based on the mean value4.47MPa and the lowest value3.38MPa; the transverse compressive strength decreased with diameter and bamboo unit amount quality increased. BMROS units longitudinal compressive strength were51.78MPa. Compared to bamboo strength loss of about5.7%, calculation of compression the strength of61.47MPausing recombined unit model, strength was increased18.7%, the correction coefficientwas0.85,so six surface was little effect on the longitudinal compressive strength.
     (4)Manufacture of special fixture can achieve two-dimensional pressurized, transverse plane compression and longitudinal profiled surface pressure. The maximum bearingpressure was6kN; the fixture was made of2parts as components of90°, bolt and nutfixed position, fixture structure materials Q235,65Mn spring material, weight:12kg; thespring was fixed in the special fixture which could make up for the loss of pressure.The line contact changed into surface contact with V card in an angle of120°, this structure improved the bonding strength of BMROS and prevented crushing of bamboounits. The special fixture was characterized by convenient assembly and disassembly,stable processing performance,size of BMROS was210mm-350mm. It took2hour toprepare of BMROS by the cold press shaping heat curing,increased84times productionefficiency than cold curing.
     (5)After heat curing, bamboo Multi-sides recombining in original status was made of7units. The transverse dimensions (side to side) of it was reduced to3.61mm, the loss rate was1.25%, mean vale was288.11mm, longitudinal dimension (vertex to vertex) was reduced2.67mm, the loss rate was0.98%, mean vale was271.78mm, horizontal and vertical maximumsize reduction was4.5m. After24h heat curing, the elasticity recovery was almost0.3mm-0.4mm, the elasticity recovery rate was11%. The heat curing pressure was reducedwithin time elongation, always happened in former180s,360s later heat curing pressure wasno change. For design and manufacture of BMROS’s equipment, load pressure after600seconds was preferred.
     (6)The orthogonal analysis method was applied to study longitudinal compressiveproperties of BMROS: PF was better for BMROS; the longitudinal compressive strength decreased with the size increasing.200g/m2was maximum strength; the longitudinalcompressive strength increased with heat curing temperature rising and150℃was maximum strength. But the increasing was small. Moreover, with time extending the longitudinal compressive strength was basically unchanged. The optimization parameters for cold press shaping heat curing: PF glue quantity200g/m2, cold press shaping heat curingtemperature was130℃, cold press shaping heat curing time was10min, the results showed that: the longitudinal load:793.7kN, compressive strength of73.80MPa, ratio of compressive strength of0.0559N m/kg, was better than the orthogonal test method of0.0529N m/kg and ordinary steel of0.054N m/kg.The safety coefficient of BMROS was
     2.85~4.00, so the allowable longitudinal load≤195kN.
     (7)Steel application, as a prestressed reinforced material, can increase the longitudinal compressive strength of BMROS, but reduce the strength to density ratio of thematerial. The BMROS strength to density ratio was0.07, same to pine and was betterthan ordinary steel (0.054), smaller than the glass steel(0.2), but higher than other types
     of common building materials. With the increasing of BMROS units, the longitudinalcompressive strength was increased. The main destroy form of BMROS was layer tearing, which gives rise to requirement in improving the transverse bonding strength.It was
     the key to improve the mechanical properties and lifetime. Cuboid structure was lesscompared with cylinder in bending strength, but the deformation was half of cylinder about50mm, and could be used for constructive materials. Both the two types of BMROS could be used as column material.
引文
[1]江泽慧.世界竹藤[M].沈阳:辽宁科学技术出版社,2002
    [2]傅万四.竹材定向刨花板制造技术研究[M].北京:中国林业出版社,2008
    [3] Scurlock J, Dayton D, Hames B. Bamboo:an overlooked biomass resource Biomass and Bioenergy.2000(1):229-244
    [4] http://www. gov. cn/jrzg/2006-02/09/content_183787. htm
    [5]周建波,傅万四.我国竹工机械发展现状及未来趋势[J].木材加工机械,2008,19(3):44-47
    [6]傅万四.竹材原态多方重组材料[P].中国: CN200720187496.3,2007,12,26
    [7]傅万四.竹材原态多方重组材料及其制造方法[P].中国: CN200710179001.7,2007,12,07
    [8]国家林业局.中国森林资源报告.1976~2007
    [9]张宏健.世界竹材工业的现状和思考[J].世界林业研究,1994(6):7-24
    [10] Zhao-Yong Sun,Yue-Qin Tang. Production of fuel ethanol from bamboo by concentrated sulfuric acidhydrolysis followed by continuous ethanol fermentation[J]. Bioresource Technology,2011,(102):10929-10935
    [11] Joost V, Pablo, V. The sustainability of bamboo products for local and western europen application:LCAS and land-use[J]. Journal of Cleaner Production,2010,(18):1260-1269
    [12]陈存及,唐小丽.附件竹业发展的基础和前景[J].竹子研究汇刊,2002,21(3):11-15
    [13]张齐生.中国竹材工业化利用[M].北京:中国林业出版社,1995
    [14]国家林业局.全国竹产业发展规划,2013-2020
    [15]任明亮,宋维明.国内外竹产业研究的现状与未来[J].林业经济,2008,(6):33-37
    [16]孙正军,程强,江泽慧.竹质工程材料的制造方法与性能.复合材料学报,2008,24(1):80-83
    [17]张丹,王戈,张文福,等.毛竹原竹力学性能的研究[J].中南林业科技大学学报,2012,32(4):119-123
    [18]孙士平,赖余东.蜂窝体胞尺寸对夹芯板性能的影响研究[J].航空材料学报,2011,31(2):61-66
    [19] Home J, Becker W. A mechanical model for two dimensional cellular sandwich cores with generalgeometry[J]. Computational Materials Science,2000,19:108-115
    [20] Hassani B, Hinton E. A review of homogenization and topology optimization II: Analytical andnumerical solution of homogenization equations[J]. Computers&Structures,1998,69:719-738
    [21]傅万四,周建波.竹材原态多方重组材料的创新与初探[J].林产工业,2010,37(3):45-48
    [22]傅万四.竹材原态多方重组预应力结构材料的制造方法[P].中国: CN200910203495.7,2008,5,27
    [23]傅万四.竹材原态多方重组预应力梁[P].中国: CN200820109893.3,2008,08,22
    [24]范利海.竹材原态多方重组单元六面成型技术与设备研究[D].硕士学位论文,中国林业科学研究院,2012
    [25]刘星雨.竹材原态多方重组单元指接性能及设备研究[D].博士学位论文,中国林业科学研究院,2013
    [26]赵章荣.结构用竹材关键机械性能的数值模拟研究[D].博士后出站报告,中国林业科学研究院,2013
    [27] Zhao zhang-rong,, Fu Wan-si, Zhou Jian-bo, Han Wang. Study on bamboo culm used for structure axialcompression performance numerical simulation[C]. Applied Mechanics and Materials Vol.842.2014:pp13-17
    [28] Fu Wan-si, Zhao zhang-rong, Han Wang, Zhou Jian-bo. Research on Finite Element Model for Parallelto Bamboo Culms Axial Shear. Applied Mechanics and Materials[C]vols.477-478.2014: pp986-989
    [29] Zhao zhang-rong, Fu Wan-si, Zhou Jian-bo, Han Wang. Study on Finite Element Model for SplittingCapacity of Bamboo Culms[C]. Applied Mechanics and Materials Vols.494-495.2014: pp558-562
    [30] Moaveni S.著,王崧,董春敏,金云平,等译.有限元分析-ANSYS理论与应用.北京,2005
    [31] Hutchings B,Leicester F. Scrimber. In:Proceedings of the1988international conference on timberengineering.1988. Vol.2, pp525-533
    [32]张贵麟,华统坤.澳大利亚重组木的考察[J].林产工业,1991,(6):3-7
    [33]秦莉,于文吉.重组竹研究现状与展望[J].世界林业研究,2009,22(6):55-59
    [34]王玲.竹类植物的工业利用途径综述[J].安徽农业科学,2011,39(17):10294-10296
    [35]于文吉,余养伦,周月,等.小径竹重组结构材性能影响因子的研究[J].林产工业,2006,33(6):24-28
    [36]于文吉.我国重组竹产业发展现状与趋势分析[J].木材工业,2012,26(1):11-14
    [37]刘婧靖,傅万四,周建波.弧形竹材原态重组材料的研发[J].木材加工机械,2010,(1):26-29
    [38]汪孙国,华毓坤.重组竹制造工艺研究[J].木材工业,1991,5(2):14-18
    [39]李武,张占宽,程放,等.弧形竹片加工方法及利用率分析计算[J].木材加工机械,2009,(2):1-6
    [40]汪孙国,华毓坤.软化工艺条件下对竹材及其重组材性能的影响[J].南京林业大学学报,1994,18(1):57-62
    [41]张方文.竹基重组结构材料制造技术的研究[C].北京:中国林科院,2008
    [42]叶良明,姜志宏,叶建华.重组竹板材的研究[J].浙江林学院学报,1991,8(8):133-140
    [43]叶良明,叶建华.软化工艺条件对竹材及其重组材性能的影响[J].南京林业大学学报,1994,18(1):57-62
    [44]张宏健,叶喜,李君.竹大片刨花板的生产开发前景[J].林业建设,1995(3):15-17
    [45]关明杰,朱一辛,张心安.重组木与重组竹抗弯性能的比较[J].东北林业大学学报,2006,34(4):20-23
    [46]张俊珍,任海青,钟永.重组竹抗压与抗拉力学性能的分析[J].南京林业大学学报(自然科学版),2012,(4):75-79
    [47]刘柏平,程万里,周建波,等.原态重组竹制造工艺的初步研究[C].第二届中国林业学术大会,654-659
    [48]李和平.木材胶黏剂[M].北京:化学工业出版社,2008
    [49]于文吉,余养伦,江泽慧.竹材表面胶合性能[J].竹子研究汇刊,2006,25(1):30-37
    [50]程亮,王喜明,余养伦.浸胶工艺对绿竹重组竹材性能的影响[J].木材工业,2009,23(3):16-19
    [51]李琴,汪奎宏,杨伟明,等.重组竹材胶合板制造技术的研究[J].竹子研究汇刊,2003,22(4):56-60
    [52]王戈,郭起荣,黄红兰,等.不同胶粘剂在毛竹和杉木表面的润湿性[J].中南林学院学报,2006,26(6):155-160
    [53]傅万四.竹质OSB削片技术及工艺学研究[D].博士学位论文,东北林业大学,2007
    [54] Wang Hong-yan, Du Guan-ben, LI Qin. Effect of Cold Plasma on Binding Strength of Bamboo[J].Agricultural Science&Technology,2011,12(11):1741-1743
    [55]陈广琪,李建华.改善竹材胶合性能的研究[J].竹子研究汇刊,1991,10(1):37-42
    [56] Jin Tong, Arnell R. D, Lu-Quan Ren. Dry sliding wear behaviour of bamboo[J]. Wear221,1998,37-46
    [57]许斌.竹材防裂及防蛀的研究[D].南京:南京林业大学,2002
    [58]邹怡佳,陈玉.竹材防开裂研究进展[J].浙江林业科技,2012,32(5):85-88
    [59]张文福.圆竹性能评价及其帚化加工技术的研究[D].硕士学位论文,北京:中国林业科学研究院,2009
    [60]吴学旦.台湾省产经济竹种人工干燥之研究(二).中华林学季刊,1977,10(2):81-94
    [61]钟莎,覃道春等.毛竹竹筒防裂技术初步研究[J].北京林业大学学报,2009,31(1):189-192
    [62]韩健,罗丹.毛竹圆竹人工干燥特性研究[J].竹子研究汇刊,2012,31(4):12-16
    [63] Sharama S. Seasoning behaviour and related properties of some India spices of bamboo. India Forester,1988, october:613-621
    [64] K-T Wu. The effect of high-temperature drying on the an tispliting properties of makino bamboo cu lm(Phyllostachys m akinoi Hay.), Wood Sci&Techno,1992,26:271-277
    [65] Buro A. Die Wirkung von Hitzebhhandlungen auf die Pilzresistenz von Kiefern-und Buchenholz. Holzals Roh-und Werkstoff.1964,12:297-304
    [66] Weiland J J,Guyonnet R. Study of chemical modifications and fungi degradation of thermally modifiedwood using DRIFT spectroscopy. Holz als Roh-und werkstoff,2003,61:216-220
    [67] Francis W M R,Schwarze,Melanie S. Resistance of thermo-mechanically densified wood tocolonizationg and degradation by brown-rot fungi. Holzforscchung,2005,59:358-363
    [68] Schneider A. Investgation on the convection drying of lmber at extremely high temperatures. PartII:Drying degrade,changes in sorption,colour and strength of pine sapwood and beech wood at dryingtemperatures form110℃to180℃. Holz als Roh-und Werkstoff,1973,31:198-206
    [69] Sanderman W,Augustin H. Chemical investigations on the thermal decomposition of wood. Part I:Standof research. Holz als Roh-und Werstoff,1963b,21:256-365
    [70] Fengel D. On the changes of the wood components within the temperature range up to200℃. Part I:Hotand cold water extracts of thermally treated spruce wood. Holz als Roh-und Werstoff,1996,24:9-14
    [71] Jones D. Recent Advances in Treatment of Wood and Plant Fibres:Chemical,Pressurised Thermal andSteam Treatments. Technical University of Denmark,Publication I-23, ISBN87-258-8,41
    [72] Manninen A, Pasanen P, Holopainen J K. COM Paring the VOC emissions between air-dried andheat-treated Scots pine wood. Atmonspheric Environment. ElSEVIER Science Ltd.1999,36:1763-1768
    [73] Mcdonald A G,Dare P H,Gifford J S,et al. Assessments of air emissions from INdustrial kiln drying ofPinus radiate wood,Holz als Roh-und Werstoff.2002,60:181-190
    [74] Navi P,Girardet F. Effect of thermo-hydro-mechanical treatment on the structure and properties of wood.Holzforschung.2000,54:287-293
    [75] Hietala S, Maunu S L, Sundholm F, et al. Stuucture of thermally modified wood studied by Liquid StateNMR measurements. Holzforschung.2002,56:522-528
    [76] Schneider M, Hinterstoisser N, Gierlinger N, et al. Application of fourier transform near infraredspectroscopy(FT-NIR)to themally modified wood. Holz als Roh-und Werstoff.1973,31:313-319
    [77] Ruyter H P,Arnoldy P. Process for upgrading low-quality wood. Patent:EP0623433. Shell Int. Research.1994
    [78] Hologer M, Och B,Tjeerds M. Heat treatment of wood by the PLATO-process. In proceedings2000
    [79]张亚梅.热处理对竹材性能的影响[D].硕士学位论文,北京:中国林业科学研究院,2010
    [80]林勇,沈钰程,于利,等.高温热处理竹材的物理力学性能研究[J].林业机械与木工设备,2012,40(8):22-24
    [81]吴开云,翁月霞.竹材霉腐类型及其与环境条件的关系[J].林业科学研究,2000,13(1):63-70
    [82]杨晓生.国内外竹子化学利用及其研究概况[J].林业科技通讯,1997,(7):34-35
    [83]张齐生.科学、合理地利用我国竹材资源[J].木材加工机械,1995,(4):23-32
    [84]付惠,陈玉惠,王文久等.云南五种竹材的致霉菌及其致霉特性研究[J].竹子研究汇刊,1999,18(1):16-22
    [85]赵鹤,张建,李琴.竹材防霉防腐研究现状及发展趋势[J].山西建筑,2010,36(29):137-139
    [86]刘磊,廖红霞,苏海涛等.毛竹等6中竹材的天然耐久性试验[J].广东林业技,2005,21(2):6-13
    [87]王雅梅,刘君良,蒋明亮等.不同药剂处理毛竹室内耐腐性[J].木材工业,2007
    [88]许斌.竹材防裂及防蛀的研究.硕士学位论文,南京:南京林业大学,2002
    [89]孙照斌,田芸,安胜足.竹材干燥技术研究现状[J].世界林业研究,2006,19(6):41-44
    [90] Kazuya O, Toru F,Erik T. Multi-scale hybrid biocomposite:Processing and mechanicalcharacterizationof bamboo fiber reinforced PLA with microfibrillated cellulose Composites: Part A40,2009,469–475
    [91]周永东.低分子量酚醛树脂强化毛白杨木材干燥特性及其机理研究[D].博士学位论文,北京:中国林业科学研究院,2009
    [92]傅万四,余颖,周建波.一种整竹防裂加工方法[P].中国: CN101927516A,2010,10,29
    [93]王戈.毛竹/杉木层积复合材料及其性能[D].博士学位论文,中国林业科学研究院,2003:86-100
    [94]江泽慧,于文吉,叶克林.探针法测量与分析竹材表面粗糙度[J].木材工业,2001,15(5):14-16
    [95]姚利宏,王喜明.浅析粗糙度对竹木复合板胶合性能的影响[J].木材加工机械,2010(4):28-31
    [96]姚利宏.毛竹/杉木复合材料胶合界面理化性质研究[D].博士学位论文,呼和浩特:内蒙古农业大学,2010
    [97]贾贤.天然生物材料及其仿生工程材料[M].北京:化学工业出版社,2007
    [98]华毓坤.人造板工艺学[M].北京:中国林业出版社,2002
    [99]李坚.木材科学(第二版).高等教育出版社,2002
    [100]尹思慈.木材学[M].中国林业出版社,北京:1996
    [101] Guangping Han, Wanli Cheng, Qinglin Wu. A comparative study of flak alignment distribution andlinear expansion fo commercial oriented strand board
    [102] Andrews E, Gioux G, Onck P, et al. Size effectsin ductile cellular solids. Part II: Experimentalresults[J]. International Journal of Mechanical Sciences,2001,43:701-713
    [103] Naresworo N, Naoto A. Development of structural composite products made from bamboo II:fundamental properties of laminated bamboo lumber[J]. The Japan Wood Research Society2001,47:237-242
    [104] Roger E. H, Julie C. Evaluation of three surfacing methods on paper birth wood in relation towater-and solvent-borne coating performance[J]. Wood and fiber science,2008,40(3):459-469
    [105]韩望.沙柳纤维/聚丙烯(PP)发泡复合材料的制备工艺及性能研究[D].硕士学位论文,呼和浩特,内蒙古农业大学,2011
    [106]王恺.竹材在土木建筑工程上的应用[J].北京木材工业,1996,(3):3-8
    [107]Krzysik A. M,Youngquist J. A. Bonding of air-firmed wood fiber/polypropylene. Fiber Composites[J].Adhesion and Adhesives,1991,(11):235-240
    [108]江泽慧,费本华等.结构复合竹材的研究与应用[J]. International Wood Industry,2003:12-17
    [109]宋金恒.建筑轻质高强指标的探讨[J].东北林业大学学报,1985,13(4):107-110
    [110] Sanadi A. R,Caulfield D. F, Rowell R. M. Reinforcing polypropylene with natural fibers J. PlasticEngineering,1994,(4):27-28
    [111] Saeed K. N, Mehdi T, Elham H. Effect of temperature, plastic type and virginity on the water uptake ofsawdust/plastic composite[J]. Holz Roh Werkst,2007,65:377-382
    [112]Correal J F, Ramirez F. Adhesive bond performance in glue shear and bending for glued lamintedguadua bamboo. Journal of Tropical Forest Science,2010,22(4):433–439
    [113]高黎,王正,常亮.建筑结构用竹质复合材料的性能及应用研究[J].世界竹藤通讯,2008,6(5):1-5
    [114]许清风,朱雷,陈建飞,等.内嵌CFRP筋/片加固木梁受弯性能试验研究[J].建筑结构学报,2012,33(8):149-155
    [115]黄桂秋.竹材加固的力学性能试验研究分析[D].硕士学位论文,2013
    [116]阎军,程耿东,刘书田等.周期性点阵类桁架材料等效弹性性能预测及尺度效应[J].固体力学学报,2005,26(4):421-428.
    [117]肖岩,陈国,单波,等.竹结构轻型框架房屋的研究与应用[J].建筑结构学报,2010,31(6):195-200
    [118] W. K. Yu, K. F. Chung. Axial buckling of bamboo columns in bamboo scaffolds[J]. EngineeringStructures,2005,(27):61-73
    [119] Yuhei Shiji,Yuji Muramoto. AC Breakdown Properties of Bamboo Pulp-ice[J]. Composite System atCryogenic Temperature,296-300
    [120]方滨.竹材绿色设计理念[D].硕士学位论文,南京:南京林业大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700