用户名: 密码: 验证码:
多孔硅酸钙填料的造纸特性及其加填纸结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿物填料在改善成纸性能、降低生产成本与能耗方面的优势使其广泛应用于造纸工业中。近年来,以固体废弃物为主要原料制备环境友好型低成本造纸填料已经成为了制浆造纸领域的研究热点之一。粉煤灰作为火力发电厂的固体废弃物,在我国排放量大,综合利用率低,对环境与人类健康造成了严重危害。因此,提高粉煤灰资源化利用率,对我国乃至世界而言仍是一项重要的任务。在造纸工业中,粉煤灰可以作为一种潜在的造纸填料,但其白度低,粒径大的特点使其应用受到限制。论文以我国高铝粉煤灰提取氧化铝过程中产生的非晶态氧化硅所制备的新型硅酸钙作为造纸填料,与传统造纸填料沉淀碳酸钙(Precipitated Calcium Carbonate, PCC)和研磨碳酸钙(Ground Calcium Carbonate, GCC)对比,对新型多孔硅酸钙(FlyAsh basedCalcium Silicate,FACS)填料物化特性、化学组成、表面形貌、湿部性能、成纸性能和印刷适性等方面进行了研究,分析了FACS作为造纸填料的优势与不足。在此基础上,从填料特性出发,研究了加填纸结构与性能的关系,并通过填料热改性、填料与纤维共同磨浆以及填料复配等方式来改善加填纸的成纸性能,以期为优化填料的生产工艺、发挥填料应用优势以及开发高填料纸方面提供参考和借鉴。
     (1)FACS填料的表征与造纸性能
     对FACS填料特性进行了表征。FACS填料平均粒径为21.6μm,比表面积为121m2/g,堆积密度为0.31g/cm3,白度为91.5%ISO,与普通填料GCC和PCC相比,具有粒径大、比表面积高、堆积密度低,白度高的特点,该特点有利于改善成纸松厚度与光学性能,但会导致成纸的施胶性能较差。另外,该填料游离水和结合水含量较高,是造成灼烧损失较高的原因。XRD结果表明,该填料的主要成分为水化硅酸钙(C-S-H),除此之外,还有含水硫酸钙(CaSO42H2O和CaSO40.5H2O),这主要是由于在填料制备后期添加硫酸降低填料pH所致。SEM、TEM与EDAX结果显示,FACS填料包含表面多孔球状聚集体的水化硅酸钙粒子和针状的硫酸钙粒子,其中水化硅酸钙结晶程度较低,粒子由褶皱片状组成,而硫酸钙具有良好的单斜晶体结构。
     采用物理研磨方法制备3种不同粒径的FACS填料,并对FACS填料的造纸性能进行分析比较。结果发现,随着研磨强度的增加,水化硅酸钙的多孔结构逐渐被破坏,填料的粒径分布变宽,白度从91.5%ISO上升至93.1%ISO。在湿部特性方面,当添加助留剂CPAM时,填料的动态留着率随着粒径的增加而增大,原始FACS填料的留着率远高于GCC和PCC填料;添加CPAM后,较小粒径的FACS填料留着率较高。CPAM可明显提高FACS加填浆料的滤水速度,FACS与PCC填料加填浆料的滤水性能相近,但略低于GCC填料;粒径较低的FACS填料其滤水性能相对较差。
     对成纸物理性能测试结果表明,FACS填料在改善成纸松厚度方面优势明显,当FACS0填料含量为15%时,与未加填纸张相比,松厚度可提高约40%,在轻型纸领域具有较大优势。对于研磨FACS填料,成纸松厚度随填料粒径的降低而下降,但相应的抗张强度有所提高;粒径较大的FACS填料,其成纸撕裂强度也较高。FACS0加填纸的光散射系数高于GCC加填纸,这主要归因于FACS0表面多孔形貌和聚集体结构。另外,FACS加填纸的光散射系数随着填料粒径的降低而升高。FACS填料较高的比表面积以及加填纸较高的透气度导致成纸油墨需求量较高,但FACS的较好的油墨吸收性以及加填纸较高的松厚度是造成其透印值优于GCC加填纸的主要原因。粒径较小的FACS2填料(8.4μm)可在达到相同的印刷密度时降低油墨需求量与透印值。另外,FACS加填纸表面强度与GCC加填纸相近,均高于PCC和FACS2加填纸,填料在纸张的表面分布情况可能是导致表面强度不同的原因之一。
     (2)加填纸结构与性能的相关性研究
     当纤维定量固定时,增加PCC和GCC填料定量最终会提高成纸表观密度,而增加FACS定量却可显著降低成纸表观密度。表观密度的变化引起了纸张结构与性能的变化。另外发现,填料定量的提高会造成填料堆积指数(Packing index)的降低,从而影响成纸强度性能与光学性能的变化。当固定纤维定量而增加填料定量时,成纸有效抗张指数随着填料定量的增加而降低说明填料粒子通过位阻效应降低了纤维结合;然而FACS加填纸有效抗张指数损失在FACS定量超过7g/m2时逐渐降低,说明填料粒子之间的包裹能力的增加有利于降低填料对纤维结合能力的破坏作用。另外,填料堆积指数与成纸光散射系数的线性负相关关系解释了在高填料定量下,加填纸的光散射系数增加较慢的原因。
     对加填纸成形性能(匀度)与成纸性能相关性分析表明,加填有利于改善纸张匀度。加填纸成纸性能与不同匀度分量的相关性随着填料种类、物理性质的不同有一定差异。FACS加填纸的抗张指数和撕裂指数与匀度分量为0.6mm、0.8mm和1.3mm的PPF(Paper Perfect Formation)值(匀度)呈线性正相关,在匀度分量为0.6~0.8mm之间,其判定系数可达0.95以上。FACS加填纸白度和不透明度与匀度分量为0.6~1.3mm处PPF值相关性较高,呈负相关,该结果有利于纸厂在线快速检测产品性能变化,及时调整工艺参数以满足产品性能要求。
     为研究填料Z向分布对成纸结构与性能的影响,采用分层抄造的方法制备出具有不同填料Z向分布特征因子的加填纸张,通过图像分析方法对填料在纸张Z向分布进行了表征与验证,并研究了填料分布特征因子,即对称因子、形状因子和集中因子与成纸性能的关系。论文提出了与结构性能和强度性能关系密切的填料Z向分布的特征因子,集中因子(ConcentrationFactor, Fc)。结果表明,纸张的松厚度和透气度与填料分布集中因子成正相关,即集中因子越大,纸张的松厚度越高,透气度越大;纸张的抗张强度与填料分布的集中因子成负相关,即集中因子越小,抗张强度越大,当集中因子Fc=0时,与Fc>0的纸样相比,成纸抗张指数可提高70%以上,但却显著降低成纸内结合强度。在成纸光学性能方面,纸张填料含量越高,其表面填料含量也会提高,因而成纸白度也相对较高。对称因子与成纸白度的两面差呈线性正相关,其相关系数R2可达0.9802。当填料分布对称因子越小,成纸两面的白度差也越小。填料Z向分布的集中因子与层合纸页的不透明度呈正相关。当层合纸页集中因子相同时,增加上层纸页填料含量有利于提高成纸不透明度。
     (3)FACS加填纸性能的改善
     为了研究填料晶体结构对成纸性能的影响,对填料进行了热改性处理。结果发现,当温度超过840℃时,填料物理性质发生较大变化,FACS平均粒径由未改性的21.62μm减小至17.06μm;另外,由于其表面褶皱多孔形貌的消失,在900℃改性后填料热稳定性好,比表面积由原始填料121.0m2/g下降至4.0m2/g,有利于改善成纸施胶性能;化学成分也由当初的C-S-H和含水硫酸钙转变为硅灰石和无水硫酸钙。900℃改性后的FACS填料加填纸的松厚度与未改性FACS加填纸相比,在填料含量为17.5%和33.5%时分别降低了约27.2%和33.8%,而相应的透气度分别降低了约129%和79%。然而,使用900℃下热改性的填料可有效改善加填纸的抗张强度,但却降低了成纸白度与不透明度。
     研究采用纤维和填料共同磨浆的新方法可改善FACS加填纸的物理强度与光学性能。与常规浆内加填方式相比,采用纤维和填料共同磨浆方式可有效改善加填纸的光学性能,但却会降低成纸的松厚度。在磨浆转数为3500r时,该方法制备的手抄片的强度性能与常规加填方式相当,但却可显著改善加填纸的光散射系数和成纸白度。采用共同磨浆方式对填料粒径的降低作用是降低成纸松厚度,改善成纸光学性能的主要原因。
     此外,通过对填料进行复配使用有利于发挥填料各自优势,弥补自身不足。若以成纸强度与光学性能为目标时,可使用少量PCC填料与热改性FACS填料(IFACS)进行复配使用;而以成纸强度与松厚度为主要目标时,将FACS与IFACS填料复配可较好的平衡加填纸的松厚度与强度性能。
Mineral filler has been widely used in paper industry because of theadvantages in improvement of paper properties, cost reduction and energy saving.In recent years, the development of filler engineering becomes an urgent need forthe papermaking industry, especially for the new filler with low cost andenvironmental-friendliness. China produces a large amount of fly ash but the rateof utilization is relatively low, which result in undesired environmentalconsequences and health concern. Therefore, how to increase the utilization offly ash with added value has become a key focus for China, even for the world.As a solid waste in power plant, fly ash can be used as paper filler. However, itslow brightness and large particle size limit its potential applications in paperindustry. In this work, a novel fly ash based calcium silicate (FACS), which is abyproduct of aluminum extraction from fly ash, is employed as a potential paperfiller. The filler characteristics, chemical composition, morphology, wet endperformance, paper properties and printability were investigated. The resultswere compared with those of using ground calcium carbonate (GCC) andprecipitated calcium carbonate (PCC) filler, which are commonly used in paperindustry. Based the characteristics of FACS, the relationship between thestructure of FACS filled paper and properties was also discussed. Besides,calcination treatment, filler-fiber co-refining and filler blending methods werealso adopted in order to improve the properties of FACS filled paper. This papermainly consists of three parts:
     1. Fly ash based calcium silicate paper filler: characterization and itsapplication
     In comparison with GCC and PCC commonly used as paper fillers, the original fly ash based calcium silicate filler (FACS) has a larger particle size(21.6μm),a higher specific surface area (121m2/g), a much lower packingdensity (0.31g/cm3) and a similar brightness (91.5%ISO),which provide benefitsfor paper bulk and optical properties but compromise the paper internal sizing. Inaddition, higher free water and bonding water content of FACS result in moreignition loss at525℃. XRD results showed that the chemical composition ofFACS were calcium silicate hydrate (C-S-H), calcium sulfate hemihydrate(CaSO40.5H2O) and gypsum (CaSO42H2O). The use of sulphuric acid in theprocess of lowering the pH of FACS slurry is the main reason of containingcalcium sulfate hemihydrate and gypsum in FACS filler. Based on the results ofSEM, TEM and EDAX, it was found that there were two types of particles inFACS filler: calcium sulfate with needle-like particles and monoclinic structurewhile C-S-H exhibited low degree of crystallinity of aggregated particles withwrinkly porous surface.
     Three grades of FACS fillers with different particle size were prepared byball milling; their characteristics as paper fillers and the effects on the wet-endperformance and resulting paper properties were determined. Ball millingchanged the morphology and particle size distribution while decreasing theparticle size. Regarding to filler wet-end performance, the dynamic retention rateof FACS was increased with increasing particle size and the dynamic retentionrate of original FACS was superior to GCC and PCC filler when retention aidswas not used; while filler with small particle size exhibited higher filler retentionwhen CPAM was applied. In addition, CPAM can promote the drainage ability offilled furnish. FACS and PCC showed similar drainage ability but lower thanGCC filler in this study. Besides, it was found that FACS with small particle sizehad a detrimental effect on drainage ability.
     Physical test showed that FACS filler had an advantage of improving paperbulk. At a15%original FACS, the paper bulk was about40%higher than that ofthe control (no filler addition). For ball milled FACS, the paper bulk of FACSfilled paper decreased because the particle size of FACS filler decreased, whilethe paper tensile strength increased. A larger FACS particle size led to higher tearstrength. Although original FACS had a large particle size, the light scatteringcoefficient was higher than that of GCC-filled paper. This can be attributed to FACS’s porous surface and morphology. The light scattering coefficient for ballmilled samples increased as the particle size decreased. Printing quality testsindicated that FACS filled paper demanded more ink than GCC and PCC filledsheets due to its porous structure and low air resistance. Thanks to its high bulk,the FACS0filled paper had a lower print through than the GCC filled paper.FACS2, which was smaller in size than FACS0, can decrease the ink demand andimprove print through. In addition, the surface strength of FACS0filled sheetswas similar to GCC filled sheets, both of which were higher than PCC andFACS2filled sheets, which can be partly explained by filler distribution.
     2. How filler influences paper properties: fiber bonding ability and fillerZ-distribution
     When fiber mass was fixed, the use of PCC and GCC filler can increasepaper apparent density as filler mass increased while FACS addition reducedapparent density. The change in paper apparent density caused the differences instructure and properties among filled paper samples. Besides, it was found thatfiller packing index was decreased with increasing filler grammage, whichresulted in the changes in effective tensile index of filled paper and lightscattering ability of filler. The effective tensile index decreased with increasingfiller grammage, which verified filler particles prevented fiber bonding by stericeffect. In addition, the loss of effective tensile index of FACS filled paper wasfound to be maximized at7g/m2filler and decreased with filler grammage. Thisfact illustrated that the increase of packing ability of filler particles help toalleviate the negative effect on paper strength caused by filler. The linearrelationship between filler packing index and light scattering coefficient of fillerpaper explained the nonlinearly increase of light scattering coefficient as fillergrammage increased.
     The correlation between formation components and paper properties wasalso analyzed. It was proved that the use of filler can improve paper formation.The differences in correlation between formation components and filled paperproperties can be varied with filler type and properties. A high positive linearcorrelation can be found between tensile and tear index of FACS filled paper andformation component at0.6mm,0.8mm and1.3mm, especially at0.6mm and0.8mm with R2>0.95. Additionally, a high negative linear correlation can be found between the brightness and opacity of FACS filled paper and formationcomponent of0.6~1.3mm. The results can help paper mill control paper qualityby rapid test formation of filled paper.
     In order to investigate the effect of filler distribution in Z-direction on paperproperties, the layered handsheets with various distribution factors were prepared.Filler distribution in Z-direction of FACS filled layered handsheets wascharacterized and verified by image analysis. A new factor of filler distribution inZ direction, i.e. concentration factor, was proposed, which was related to paperstructure and strength properties. The results showed that the bulk and porosityof FACS filled paper had a positive correlation with Fcwhile a negativecorrelation could be found between tensile index and Fc. An increase around70%in the tensile index of FACS filled paper with Fc=0could be observed comparedto paper sample with Fc≠0. However, the interbonding index of FACS filledpaper with Fc=0could be dramatically reduced. Regarding to optical properties,it was found that the surface filler content increased with increasing the averagefiller content of paper,resulting in the improvement in paper brightness. Apositive linear correlation between symmetrical factor (Fs) and the differences inbrightness of both sides of layered paper can be found, which the coefficient ofdetermination R2can be up to0.9802. In addition, the opacity of FACS filledpaper had a positive correlation with concentration factor, i.e. increasing fillercontent in top layer helps to improve opacity of layered paper.
     3. Improvement of the properties of FACS filled paper
     Calcination modification was applied to FACS filler based on thethermostability of FACS. The results showed that the characteristics of FACSwas changed significantly when temperature was over850℃. FACS exhibitedgood stability when filler was modified at900℃(i.e. IFACS) while the poroussurface of FACS was disappeared, the average particle size was reduced from21.6μm to17.1μm and the specific surface area decreased to4.0m2/g, which isbeneficial to internal sizing. In addition, the chemical composition was changedto wollatonite (CaSiO3) and calcium sulfate (CaSO4). In comparison withoriginal FACS filled paper, the bulk of paper filled with IFACS was decreased27.2%and33.8%at filler content of17.5%and33.5%, respectively. Meanwhile,the corresponding porosity was reduced129%and79%, respectively. Importantly, IFACS can improve paper tensile index significantly but had anegative effect on paper brightness and opacity.
     Fiber-filler co-refining was employed to improve the strength and opticalproperties of FACS filled paper. In comparison with regular filling method, thenew method can improve optical properties effectively but reduce paper bulk.When refining revolutions was fixed around3500r, the brightness and lightscattering coefficient of FACS filled paper were improved significantly while thetensile index was maintained well. The changes in bulk and optical propertiescan be explained by the decrease in average particle size in process ofco-refining.
     Besides, the concept of filler blending can be used to take full advantage offiller properties and balance the filled paper properties. Blending of PCC andIFACS can be used to balance paper optical properties and strength propertieswhile FACS and IFACS can also be blended if a good balance between paperbulk and strength become a concern factor.
引文
[1] Laufmann M,Hubschmid S. Handbook of Paper and Board: Volume1&2[M],Germany: Wiley,2013:109-127.
    [2]沈静.沉淀碳酸钙填料的改性及其在造纸中的应用研究[D].哈尔滨:东北林业大学,2010.
    [3] Baker Colin. The latest technology in fillers[R]. Pira International,2004.
    [4] Laufmann M, Hummel W. Calcium carbonate fillers in wood-free uncoatedpaper[C]. Paperex International Conference&Exhibition. New Delhi: Tappi,2009.
    [5] Gullichsen J, Paulapuro H. Papermaking science and technology[M]. Book4:Papermaking Chemistry[M]. American: Finnish Paper Engineers’ Associationand TAPPI,1999.
    [6] Shen J, Song Z, Qian X, et al. A review on use of fillers in cellulosic paper forfunctional applications[J]. Industrial&Engineering Chemistry Research,2011,50(2):661-666.
    [7] Shen J, Song Z, Qian X, et al. Carbohydrate-based fillers and pigments forpapermaking: A review[J]. Carbohydrate Polymer,2011,85(1):17-22.
    [8] Laufmann M, Forsblom M, Strutz M, et al. GCC vs. PCC as the primary fillerfor uncoated and coated wood-free paper[J]. Tappi Journal,2000,83(5):75-77.
    [9] Nanri Y, Konno H, Goto H. A new process to produce high-quality PCC by thecausticizing process in a kraft pulp mill[J]. Tappi Journal,2008, May:19-24.
    [10] J rnstr m L, Wikstr m M, Rigdahl M. Porous mineral particles as coatingpigments[J]. Nordic pulp and paper research Journal.2000,15(2):88-97.
    [11]李向清,陈强,张林鄂等.微米级硫酸钙晶须的制备[J].应用化学,2007,24(8):945-948.
    [12]刘峰.精制碱回收白泥的制备及其作为造纸填料的研究[D].西安:陕西科技大学,2012.
    [13] Beazley K M,Petereit H. Effect of China clay and calcium carbonate on paperproperties[J]. Wochenbl. Papierfabr.,1975,103(4):143-147.
    [14] Fairchild G H. Increasing the filler content of PCC-filled alkaline papers[J].Tappi Journal,1992,75(8):85-90.
    [15] Adams J M. Particle size and shape effects in materials science: examplesfrom polymer and paper systems[J]. Clay Minerals,1993,28:509-530
    [16] Han Y R, Seo Y B. Effect of particle shape and size of calcium carbonate onphysical properties of paper[J]. Journal of Korea Tappi,1997,29(1):7-12.
    [17] Bown R. Particle size, shape and structure of paper fillers and their effect onpaper properties[J]. Paper Technology,1998,39(Mar):44-48.
    [18] Chauhan V S, Bhardwaj N K. Preflocculated talc using cationic starch forimprovement in paper properties. Appita Journal,2013,66(3):220-228.
    [19] Odell M. Paper structure engineering[J]. Appita Journal,2000,53(3):371-377.
    [20] Szikla Z, Paulapuro H. Z-directional distribution of fines and filler materialin the paper web under wet pressing conditions[J]. Pap. Puu.,1986,68(9):654.
    [21] Tananka H, Luner P, Cote W. How retention aids change the distribution offiller in paper[J]. Tappi Journal,1982,65(4):95-96.
    [22]龚木荣,毕松林.填料分布对纸的光学性能的影响[J].上海造纸,1997,28(4):167-171.
    [23] Puurtinen A. Controlling filler distribution for improved fine paperproperties[J]. Appita Journal,2004,57(3):204-208.
    [24] Puurtinen, A. A laboratory study on the chemical layering of WFC basepaper[J]. Professional papermaking,2003,1(1):22-23.
    [25]陈有庆,石淑兰,陈佩容.纸的性能[M].北京:中国轻工业出版社,1985:305-307.
    [26] Bristow J A, Pauler N. Multilayer structures in printing papers[J]. SvenskPapperstidning,1983,86(15):164-172.
    [27] Li L, Collis A, Pelton R. A new analysis of filler effects on paper strength[J].Journal of pulp and paper science,2002,28(8):267-273.
    [28] Doelle K,Amaya J J. Application of calcium carbonate for uncoated digitalprinting paper from100%eucalyptus pulp[J]. Tappi Journal,2012,11(1):51-59.
    [29] Gill R, Scott W. The relative effects of different calcium carbonate fillerpigments on optical properties[J]. Tappi Journal,1987, January:93-98.
    [30] Alince B. Effect of different types of clay on optical properties of filled TMPpapers[R]. Pulp and paper research institute of Canada internal researchreport.1990, November.
    [31]龚木荣,毕松林.滑石粉最佳粒径的研究[J].中国造纸,1998,(2):20-23.
    [32] Thorn I, Au C O. Applications of wet-end paper chemistry,2nd edition[M].New York: Springer,2009:113-135.
    [33] Karademir A, Chew Y S, Hoyland R W, et al. Influence of fillers on sizeefficiency and hydrolysis of alkyl ketene dimer[J]. The Canadian Journal ofChemical Engineering,2005,83(3):603-606.
    [34]程金兰.填料物理化学特性对留着性能的影响[D].南京:南京林业大学,2009.
    [35] Kurrle F L. Process for enhancing sizing efficiency in filled papers[P]. UnitedStates:5514212,1996-05-07.
    [36] Gill R A. surface modified fillers for sizing paper[P]. United States:6126783,2000-08-03.
    [37]郑水林.粉体表面改性(第二版)[M].北京:中国建材工业出版社,2003.
    [38] Unbehend J E. Pulp and Paper Manufactuer,3rdedition[M]. Montreal:Tappi&CPPA Joint Textbook Committee of Paper Industry,1992:119.
    [39]程金兰,翟华敏,谢承俊.填料颗粒粒度对留着率的影响[J].中国造纸,2010,29(11):1-4.
    [40]刘温霞,邱化玉.造纸湿部化学[M].北京:化学工业出版社,2006.
    [41] Liimatainen H. Interactions between fibers,fines and fillers in papermaking:Influence on dewatering and retention of pulp suspensions [D]. Oulu:University of Oulu,2009.
    [42] Britt K W, Unbehend J E., Shridharan R. Observations on water removal inpapermaking[J]. Tappi Journal,1986,69(7):76-79.
    [43] Dodds J A. The porosity and contact points in multicomponent random spherepacking calculated by a simple statistical geometric model[J]. Journal ofColloid and Interface Science.1980,77(2):317-327.
    [44] Liimatainen H, Kokko S, Rousu P, et al. Effect of PCC filler on dewatering offiber suspension[J]. Tappi Journal,2006,5(11):11-17.
    [45]张顺成,王胜春,曾武.我国粉煤灰高值利用及研究进展[J].化工技术与开发,2010,39(9):26-28.
    [46] Song Shunxi, Zhang Meiyun, Li Zhe Jack, et al. A novel fly ash based calciumsilicate paper filler: characterization and application[C]. Jin Yongcan, WangZhiguo, Wu Wenjuan. Proceeding of the4th International conference onpulping, papermaking and biotechnology. Nanjing: China Light IndustryPress,2012:423-428.
    [47]我国出台一系列政策进一步鼓励粉煤灰综合利用[EB/OL]. http://www.gov.cn/jrzg/2013-02/18/content_2333977.htm,2013-02-18.
    [48]2010中国粉煤灰调查报告[EB/OL]. http://www.greenpeace.org/china/zh/publications/reports/climate-energy/2010/coal-ash2010-rpt/,2012-02-28.
    [49]大宗固体废弃物综合利用“十二五”规划[EB/OL]. http://www.miit.gov.cn/n11293472/n11293832/n11293907/n11368223/14416612.html,2012-07-15.
    [50]沈志刚,李策镭,王明珠等.粉煤灰空心微珠及其应用.北京:国防工业出版社,2008:2-3.
    [51]王亮.粉煤灰综合利用研究[D].天津:天津大学,2006.
    [52]张浩,许荣华.粉煤灰资源化利用及其展望[J].山西能源与节能,2008,49(2):21-23.
    [53]王祝堂.高铝粉煤灰提取氧化铝[J].轻金属,2009,(8):47.
    [54] Font O, Querol X, Juan R, et al. Recovery of gallium and vanadium fromgasification fly ash[J]. Journal of Hazard Materials,2007,139(3):413-423.
    [55] Okada T, Tojo Y, Tanaka N, et al. Recovery of zinc and lead from fly ash fromash melting and gasification melting process of MSW-Comparison andapplicability of chemical leaching methods[J]. Waste Management,2007,27(1):69-80.
    [56]何佳振,胡晓莲,李运勇.从粉煤灰中回收金属镓的工艺研究[J].粉煤灰,2002,(5):23-26.
    [57] Sinha A S K. Effects of pulverized coal fly-ash addition as a wet-end filler inpapermaking[J]. Tappi Journal,2008,7(9):3-7.
    [58]范玉敏,钱学仁.粉煤灰用作造纸填料的研究[J].中国造纸,2012,31(4):22-26.
    [59]付建生,张军礼,付丹等.粉煤灰的利用[J].湖北造纸,2008,(1):45-48.
    [60]杨其玉,郝永涛,周大仕.粉煤灰矿物纤维造纸性能研究[J].中华纸业,2011,32(24):61-63.
    [61]苏芳,陈均志.造纸用粉煤灰纤维的性质及其漂白工艺研究[J].中国造纸,2009,28(11):74-76.
    [62]张明,王威,袁广翔.粉煤灰制备填料碳酸钙及其在造纸中的应用[J].江苏造纸,2011,(4):42-44.
    [63]刘延湘,汤媛玲,胡德文等.粉煤灰在废水处理中的应用[J].江汉大学学报,2002,(4):80-83.
    [64]吴盼,张美云,王建.粉煤灰在造纸工业中的应用及研究现状[J].造纸科学与技术,2013,(4):58-63.
    [65]王玉珑,陈金山,詹怀宇等.碱回收白泥精制碳酸钙的应用实践[J].造纸科学与技术,2013,32(3):87-89.
    [66]王进,危鹏,刘鹏等.苛化轻质碳酸钙晶型的影响因素研究[J].造纸科学与技术,2013,32(1):63.
    [67] Wang J, Liu L, Wang Z, et al. AKD sizing efficiency of paper filled withCaCO3from the kraft causticizing process[J]. BioResources,2014,9(1):143-149.
    [68] Song S, Zhang M, He Z, et al. Investigation on a novel fly ash based calciumsilicate filler: Effect of particle size on paper properties[J]. Industrial&Engineering Chemistry Research,2012,51:16377-16384.
    [69]魏晓芬,孙俊民,王成海等.新型硅酸钙填料的理化特性及对加填纸张性能的影响[J].造纸化学品,2012,24(6):24-30.
    [70] Mikkonen H,Kataja K,Qvintus-Leino P, et al. Development of novel starchbased pigments and fillers for paper making[EB/OL]. http://www.vtt.fi/liitetiedostot/cluster5_metsa_kemia_ymparisto/PIRA7.pdf,2013-01-02.
    [71] Raukola J, Peltonen S. Novel starch derivatives for paper and boardapplication. Symposium of Finnish Paper Research Community ServingEurope,2007[EB/OL]. http://www.kcl.fi/tiedostot/Raukola.pdf,2013-01-02.
    [72] Koivunen K, Paulapuro H. Papermaking potential of novel structured PCCfillers with enhanced refractive index[J]. Tappi Journal,2010, January:4-11.
    [73] Chen X, Qian X, An X. Using calcium carbonate whiskers as papermakingfiller[J]. BioResources,2011,6(3):2435-2447.
    [74] Fibrous fillers to manufacture ultra-high ash/performance paper. RetrievedOct.20,2011. URL; http://www.eere.energy.gov/industry/forest/pdfs/fibrous_fillers. pdf
    [75]李贤惠,钱学仁.镁铝水滑石用作造纸阻燃填料的研究.中国造纸,2008,27(12):16-19.
    [76]李贤惠,钱学仁.镁铝水滑石用作造纸填料对阴离子垃圾捕集的影响.中国造纸,2009,28(5):26-29.
    [77]陈晓宇,钱学仁.四角氧化锌晶须在抑菌纸制备中的应用研究[J].中国造纸,2010,(5):30-35.
    [78]陈晓宇,钱学仁.以碱式硫酸镁晶须为填料制备阻燃纸的研究[C].特种纸委员会第五届年会论文集.丹东:全国特种纸技术交流会暨特种纸委员会,2010:1-13.
    [79]韩晨.淀粉包覆PCC在造纸中的制备与应用研究[D].南京:南京林业大学,2009.
    [80] Yoon S Y, Deng Y. Experimental and modeling study of the strengthproperties of clay-starch composite filled papers[J].Industrial&EngineeringChemistry Research,2007,46:4883-4890.
    [81]张光华,王慧萍,来智超等.研磨碳酸钙复合填料的制备及其应用[J].中华纸业,2009,30(22):31-34.
    [82] Zhao Y, Kim D, White D, et al. Developing a new paradigm for linerboardfillers[J]. Tappi Journal,2008, March:3-7.
    [83] Lourenco A F, Gamelas J A, Zscherneck C, et al. Evaluation of silica-coatedPCC as new modified filler for papermaking[J]. Industrial&EngineeringChemistry Research,2013,52:5095-5099.
    [84]冯春,陈港.制备温度对碳酸钙-细小纤维复合填料性能的影响[J].造纸科学与技术,2010,29(1):33-37.
    [85]冯春,陈港,柴欣生等. CaCO3-细小纤维复合填料对纸张物理性能的影响[J].中国造纸,2010,29(2):14-17.
    [86]Subramanian R, Fordsmand H, Paulapure H. Precipitated calcium carbonate(PCC)-cellulose composite fillers: effect of PCC particle structure on theproduction and properties of uncoated fine paper[J]. BioResources,2007,2(1):91-105.
    [87] Nalco case study: FillerTEK Technology helps achieve fiber reduction of840ton kraft/yr and energy conservation of5600tons steam/yr. http://www.nalco.com/document-library/5485.htm[EB/OL],2013-05-07.
    [88] Fulfill high filler technologies. www.specialtyminerals.com/.../Fulfill-Brochure-11-5-10.pdf [EB/OL],2012-03-07.
    [89] Shen J, Song Z, Qian X, et al. Filler engineering for papermaking:comparison with fiber engineering and some important research topics[J].BioResources.2010,5(2):510-513.
    [90] Yoon S Y, Deng Y. Clay-starch composites and their application inpapermaking[J]. Journal of Applied Polymer Science,2006,100(2):1032-1038.
    [91] Zhang M, Song S, Wang J, et al. Using a novel fly ash based calcium silicateas a potential paper filler[J]. BioResources,2013,8(2):2768-2779.
    [92] Kim C H, Cho S H, Park W P. Inhibitory effect of functional packaging paperscontaining grapefruit seed extracts and zeolite against microbial growth[J].Appita Journal,2005,58(3):202-207.
    [93]安显慧,钱学仁,龙玉峰.基于镁铝水滑石原位合成制备阻燃纸[J].中国造纸,2007,26(8):1-5.
    [94] Tsuru S, Yokoo A, Sakurai T, et al. A functional paper and its use as adeodorant, filtering medium or adsorbent[P]. Europoean:0393723,1997-07-16.
    [95]戴红旗,高兰敏.多孔磷酸钙除臭纸及其制备方法[P].中国:101235609,2008-08-06.
    [96] Matsubara H, Takada M, Koyama S. et al. Photoactive TiO2containing paper:preparation and its photocatalytic activity under weak UV lightillumination[P]. Chemistry Letters,1995,24(9):767-768.
    [97] Ko S, Pekarovic J, Fleming P D, et al. High performance nano-titaniaphotocatalytic paper composite. Part I: Experimental design study for TiO2composite sheet using a natural zeolite microparticle system and itsphotocatalytic property[J]. Materials Science and Engineering B,2010,166:127-131.
    [98] Ko S., Fleming P D, Joyce M, et al. High performance nano-titaniaphotocatalytic paper composite. Part Ⅱ: Preparation and characterization ofnatural zeolite-based nano-titania composite sheet and study of theirphotocatalytic activity[J]. Materials Science and Engineering B,2009,164:135-139.
    [99] Anderson R E, Guan J, Ricard M, et al. Multifunctional single-walled carbonnanotubecellolose composite paper[J]. Journal of Materials Chemistry,2010,20:2400-2407.
    [100] Agarwal M, Xing Q, Shim B S, et al. Conductive paper from lignocellulosewood microfibers coated with a nanocomposite of carbon nanotubes andconductive polymers[J]. Nanotechnology,2009,20:215602.
    [101]付建生,张军礼,李杨等.粉煤灰在瓦楞原纸中的应用[J].湖北工业大学学报,2007,22(6):5-6.
    [102]吴盼,张美云,王建等.粉煤灰联产新型活性硅酸钙作为造纸填料的可行性探讨[J].中国造纸,2012,31(12):28.
    [103]张战军,孙俊民,曹慧芳.中国:一种高铝粉煤灰制备硅酸钙微粉的方法[P],200810112618.1,2008-05-26.
    [104]张战军,陈刚,孙俊民等.降低活性硅酸钙pH的方法[P].中国:201110083559.1,2011-04-02.
    [105] Velho J. How mineral fillers influence paper properties: some guidelines[C].Iberoamerican Congress on Pulp and Paper Research,2002.
    [106] Chauhan V S, Bhardwaj N K, Chakrabarti S K. Effect of particle size ofmagnesium silicate filler on physical properties of paper[J]. Canadian Journalof Chemical Engineering,2012,9999:1-7.
    [107] Brown R. Particle size,shape and structure of paper fillers and their effect onpaper properties[J]. Paper Technololy,1998,39(2):44-48.
    [108]孙德文,宋宝祥,王成海.合成硅酸钙特性及其在造纸废水处理中的应用[J].纸和造纸,2011,30(6):52-54.
    [109]俞淑梅.水化硅酸钙脱水相及其再水化特性研究[D].武汉:武汉理工大学,2012年.
    [110] Baltakys K. Influence of gypsum additive on the formation of calciumsilicate hydrates in mixtures with C/S=0.83or1.0[J]. MaterialsScience-Poland,2009,27(4/1):1091-1101.
    [111]赵晓刚.水化硅酸钙的合成及其组成、结构与形貌[D].武汉:武汉理工大学,2010年.
    [112]何永佳,胡曙光.29Si固体核磁共振技术在水泥化学研究中的应用[J].材料科学与工程,2007,25(1):150-153.
    [113] McFarhane A J. The synthesis and characterization of nano-structuredcalcium silicate[D]. Victoria: Victoria University of Wellington,2007.p85-99
    [114]彭小芹,杨巧,黄滔等.水化硅酸钙超细粉体微观结构分析.沈阳建筑大学学报(自然科学版),2008,24(5):823-827.
    [115]张坚,张薇.石膏脱水热分解动力学研究[J].中国陶瓷,49(10):29-31.
    [116] Grutzeck M W, Larosa T J, Kwan S. Characteristic of C-S-H gels [A].Proceedings of the10thInternational Congress on the Chemistry of Cement.1997, volⅡ. Gothenburg, Sweden,1997.
    [117] Gerli A, Eigenbrood L C, Nurmi S. Relationship of surface strength and bulkstrength properties in uncoated woodfree paper. Tappi Journal,2011,10(2):17-23.
    [118] Corson S R, Flowers A G, Morgan D G, et al. Tappi Journal,2004,3(6):14-18.
    [119] Kumar P, Negi Y S, Singh S P. Offset printing behavior of bagasse andhardwood paper sheets loaded by in-situ precipitation. BioResources,2011,6(1):207-218.
    [120] Lorusso M, Sampson W W, Dodson C T J. http://www.tappi.org/Downloads/unsorted/UNTITLED-IPP99349pdf.aspx[EB/OL],2013-07-01.
    [121] Nutbeem C, Preston J, Hiorns A, et al. Tappi conference,2010.
    [122]何北海,张美云主编.造纸原理与工程.北京:中国轻工业出版社,2010.
    [123] Peng P. and Garnier G. Effect of Cationic polyacrylamide adsorptionkinetics and ionic strength on precipitated calcium carbonate flocculation.Langmuir,2010,26(22):16949-16957.
    [124] Springer A M, Kuchibhotla S. The influence of filler components on specificfiltration resistance. Tappi Journal,1992,75(4):187-194.
    [125] Liu X A, Whiting P, Pande H, et al. The contributionof different fractions offines to pulp drainage in mechanical pulps. Journal of Pulp and Paper Science,2001,27(4):139-143.
    [126] Hubbe M A,Heitmann J A. Review of factors affecting the release of waterfrom cellulosic fibers during paper manufacture. Bioresources,2007,2(3):500-533.
    [127] Hubbe M A, Gill R A. Filler particle shape vs. paper properties-A review.2004TAPPI paper summit-spring technical and international environmentalconference,2004,141-150.
    [128] Casey J P. Pulp and paper chemistry and chemical technology. Light industryPress: Beijing,1988.
    [129] Fatehi P, McArthur T, Xiao H. Improving the strength of old corrugatedcarton pulp (OCC) using a dry strength additive. Appita Journal.2010,63(5):364-369.
    [130] Kinoshita N, Katsuzawa H, Nakano S, et al. Influence of fibre length andfiller particle size on pore structure and mechanical strength offiller-containing paper. Can. J. Chem. Eng.2000,78(5):974-982.
    [131] Mathur V K. Novel silicate “fibrous fillers” and their application in paper.TAPPI paper summit-spring technical and international environmentalconference,2004.
    [132] Peng X, Gu S, Huang T, et al. Reinforcement of hydrated calcium silicatepowder to silicone rubber. Journal of Civil,Architectural&EnvironmentalEngineering.2010,32(5):109-113.
    [133] Liu H, Chen Y, Zhang H, et al. Increasing the use of high-yield pulp incoated high-quality wood-free papers: from laboratory demonstration to milltrials. Industrial&Engineering Chemistry Research.2012,51:4240-4246.
    [134]胡开堂.纸页的结构与性能.北京:中国轻工业出版社,2006:50-52.
    [135] Page D H. A theory for the tensile strength of paper. Tappi Journal.1969,52(4):674-680.
    [136]张素风.芳纶纤维/浆粕界面及结构与成纸性能相关性研究[D].西安:陕西科技大学,2010.
    [137]赵会芳,张美云.芳纶纸匀度与机械强度的相关性研究[J].中华纸业,2011,32(16):43.
    [138] Bernié J P, Romanetti J L, Douglas W J M. Use of components of formationfor predicting print quality and physical properties of newsprint,86thmeeting, Pulp&Paper Technical Association of Canada, Montreal (Canada),2000.
    [139]杨伯钧.纸的匀度.中华纸业,2004,25(3):33-35.
    [140]潘诚,付建生,袁世炬等.填料和助剂预絮聚对填料留着和成纸抗张强度的影响[J].中国造纸,2012,31(11):30-33.
    [141] Haggblom-Ahnger U M, Pakarinen P I, Odell M H, et al. Conventional andstratified forming of office paper grades. Tappi Journal,1998,81(4):149-158.
    [142] Erkkila A L, Pekarinen P, Odell M. Sheet forming studies using layeredorientation analysis. CPPA99(1),1996:91.
    [143] Parker J, Mil W. A new method for sectioning and analyzing paper in thetransverse direction. Tappi Journal,1964,47(5):255.
    [144]余徐润,周亮,荆彦平等.Image-Pro Plus软件在小麦淀粉粒显微图像分析中的应用[J].电子显微学报,2013,04:344-351.
    [145]赖均.面向肺疾病检测的胸腔CT影像分割研究[D].成都:电子科技大学,2013.
    [146]王静文,刘弘.基于Snake模型的植物叶片面积计算方法[J].计算机工程,2013,(01):234-238.
    [147] Allen R. An improved image analysis technique for measuring the Z-dirctiondistributions of structural elements of paper[R]. Paprican research report.2001.
    [148] Bergman I, Rennel I. The relation between fiber strength and paper strength[J]. Svensk Paperstidn,1967,70(22):757-771.
    [149] Murray H H, Kogel J E. Engineered clay products for the paper industry[J].Applied Clay science.2005,29:199-206
    [150]潘国耀,毛若卿,袁坚.低温型水化硅酸钙脱水相及其特性[J].武汉工业大学学报,1997,19(3):21-24.
    [151] Ferreira P, Velho J, Figueiredo M, et al. Effect of thermal treatment on thestructure of PCC particles[J]. Tappi Journal.2005,11(4):18-22.
    [152] Rohaya otheman,Sarani zakaria. Mechanical and optical properties ofCaCO3lumen-loaded paper: effect of poly ethylenimine and alum [J]. SainsMalaysiana,2010,(29):435.
    [153] Chia C H, Zakaria S, Ahamd S. Preparation of magnetic paper from kenaf:lumen loading and in situ synthesis method[J]. American Journal of AppliedSciences,2006(3):1751.
    [154] Middleton S R,Scallan A M. Lumen-loaded paper pulp: Mechanism offiller-to-fibre bonding [J]. Colloids and Surfaces,1985,(16):309-322.
    [155] Zhao Y, Hu Z, Ragauskas A. Improvement of paper properties usingstarch-modified precipitated calcium carbonate filler[J]. Tappi Journal,2005,4(2):3-7.
    [156] Yoon Se-Young, Deng Yu lin. Starch-fatty complex modified filler forpapermaking[J]. Tappi Journal,2006,5(9):3-9.
    [157] Yan Z, Liu Q, Deng Y. Improvement of paper strength with starch modifiedclay[J]. Journal of Applied Polymer Science,2005,97(1):44-50.
    [158] Gill Robert A. Cationic polymer modified filler material process for itspreparation and method for its use in papermaking[P]. Canada:2037525,1992-09-15.
    [159]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2006:159-163.
    [160]刘洪斌.纤维特性与纸页撕裂性能关系的研究[D].天津:天津科技大学,2004.
    [161] Stark H, Eichinger R, Stecher W. Effect of filler characteristics on retentionand sheet strength[J]. Wochenbl. Papierfabr,1984,112(11/12):409-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700