用户名: 密码: 验证码:
北京市典型道路空气中挥发性有机物污染特征与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国高速增长的机动车保有量对城市交通道路环境的空气质量造成严重影响。挥发性有机物(VOCs)是城市交通道路的主要污染物之一。由于受机动车队特征与流量、街道地形特征和气象条件等因素的影响,城市交通道路空气中VOCs的浓度水平呈现一定的动态变化。深入分析不同条件下道路VOCs的污染特征、排放强度与扩散规律,对交通道路VOCs的有效控制具有重要的现实意义。
     本文选取交通道路空气中VOCs的主要代表物非甲烷烃(NMHCs)及苯系物(BTEX)为研究对象,考察了不同季节北京市和广州市开阔道路、交叉道路和街道峡谷等3种典型街道中NMHCs和BTEX污染物的浓度变化特征。结果表明,北京市夏季道路空气中的NMHCs和BTEX浓度高于其他三个季节的相应浓度。不同类型交通道路的NMHCs和BTEX浓度则呈现街道峡谷>交叉道路>开阔道路的特征。夏季NMHCs除早晚时段出现峰值外,正午时段浓度也明显升高,这与夏季正午气温高机动车燃油挥发性排放增加有关。广州市夏季NMHCs的浓度水平明显高于北京市同期的NMHCs的浓度,这与广州夏季高温天气造成的NMHCs挥发增强及日照时间长造成的植物源NMHCs排放增多有关。广州市不同类型道路BTEX浓度的相对关系与北京市的情况不同,呈现开阔道路>街道峡谷>交叉道路的特征,这与所选取开阔道路为广州市城区主干道有关。
     污染物的相关性分析结果表明,北京市交通道路空气中NMHCs与BTEX及BTEX各组分浓度之间均存在较好的正相关关系。NMHCs和各BTEX浓度与各自的背景值相关性很高,表明城市整体的污染物浓度水平对道路空气中的污染物浓度影响较大;交通流量与BTEX相关性相对较弱,这与B/T值在多数情况下大于1的结果相符。冬季时期BTEX的背景浓度降低,在交通道路BTEX浓度中的贡献减小,因此3种类型道路空气的B/T值均小于1,即空气中BTEX污染物主要来自局部道路交通。
     通过基于参数敏感性分析的MOBILE6.2简化方案,计算了北京市机动车的NMHCs和苯排放因子,并采用CALINE4和OSPM等模型分别模拟了开阔道路和交叉道路以及街道峡谷中NMHCs和苯的扩散过程。结果表明,在MOBILE6.2的各项输入参数中,评估年份、温度、登记分布、里程分布、平均速度、I/M项目和雷氏蒸汽压属于机动车非甲烷烃和苯排放因子的敏感性参数;芳香烃含量、苯含量和E300则是机动车苯排放因子的敏感性参数。通过基于参数敏感性分析的MOBILE6.2输入简化方案计算得到的北京市机动车NMHCs和苯排放因子仍具有较高的准确度。采用CALINE4模拟城市中心区的线源污染扩散时,车流量、风速和风向为道路空气污染扩散的敏感性参数。CALINE4对开阔道路和交叉道路非甲烷烃和苯浓度的模拟值与实测值具有较好的相关性。采用OSPM模拟城市街道峡谷内的机动车污染扩散时,风速和风向为污染扩散的敏感性参数。OSPM模型对街道峡谷非甲烷烃和苯浓度的模拟值与实测值具有较好的相关性,但当对照点的苯浓度较高时,OSPM的最终模拟值出现正向偏差。
The high-speed growth of motor vehicles in the urban areas in China imposed a severe impact on the local air quality. Volatile organic compounds (VOCs) are a group of major pollutants in the atmosphere of the urban traffic roads. The levels of VOCs can be influenced by the traffic fleet profiles, street geometry and meteological conditions, therefore show some dynamics. Further understanding of the characteristics of the VOCs, their emission factors and the disperstion patterns would help much the effective control of the VOCs from road traffic.
     Non-methane hydrocarbons (NMHCs) as one of the major groups in VOCs as well as the group of benzene, toluene, Ethylbenzene and xylene as BTEX were chosen in this study for investigating the dynamics of NMHCs and BTEX in the three typical roads in Beijing and Guangzhou, namely open roads, intersections and street canyons. The results show that the levels of NMHCs and BTEX in the traffic atmosphere in Beiing in summer were noticeably higher than those in the other three seasons. The levels of NMHCs and BTEX followed the order of street canyons>intersections>open roads. Except for the two rush periods, the levels of NMHCs in summer also increased during the noon time. This can be attributed to an increase in the evaporation of the fuel with high temperatures near noon time. The levels of NMHCs in the summer in Guangzhou were notable higher than those in Beijing. This can be explained by the fact that the evaporation of NMHCs was enhanced with high temperatures in the summer of Guangzhou and the more sun light led to more emission of NMHCs from the plants. The levels of BTEX in Guangzhou was in the order of open roads>street canyons>intersections, differing from the order found in Beijing. This can be due to the selection of the main road as the open road in Guangzhou.
     Based on the results of the correlation analysis of the pollutants, the levels of NMHCs and BTEX had a close positive correlation, which was also ture among the BTEX components. The NMHCs and BTEX had close correlations with their backgrounds, suggesting that the local backgrounds contributed largely to tested concentrations. The correlation between the levels of the pollutants and the traffic volume was low, which was consistent with the B/T values of<1in most cases. The background values of BTEX in the winter decreased and its contribution dropped. The ratios of B/T were thus seen<1, suggesting that BTEX in that period was of a local origin.
     A parameter sensitivity-based simplified MOBILE6.2was used to calculate the emission factors of NMHCs and benzene for the traffic roads in Beijing, and then CALINE4and OSPM packages were adopted to model the dispersion of NMHCs and benzene in the road atmosphere. The results showed that, among the input parameters of MOBILE6.2package, calendar year, temperature, registration distribution, vehicle mileage traveled, arerage speed, I/M program and Reid vapor pressure were sensitive for the modeling of the emissions of NMHCs and benzene. Aromatic content, benzene content and E300were found to be sensitive parameters only for the calculation of benzene emission. The calculation results by using the simplified MOBILE6.2based on the parameter sensitivity analysis still had a high accuracy for the modeling of NMHCs and benzene.
     When using CALINE4for the modeling of the dispersion of a line-source pollution, traffic volume, wind speed and wind direction were the sensitive parameters in determining the dispersion of the air pollutants. The modeling results of NMHCs and benzene from CALINE4agreed well with the tested values. In terms of OSPM model, wind speed and direction was shown as sensitive parameters in the modeling of traffic emission dispersions in the street canyons. The correlation between the modeled NMHCs and benzene agreed well with the measured. When the concentrations of benzene in the control site increased, a positive deviation of the modeling value was expected.
引文
1. 毕晔,葛蕴珊,韩秀坤.基于MOBILE6.2的北京市出租车排放污染物分析[J].安全与环境学报,2007,7(02):61-64.
    2. 陈长虹,景启国,潘汉生.重型机动车实际排放特性与影响因素的实测研究[J],环境科学学报,2005,25(7):870-878.
    3. 陈红梅,陈崇成,汪小钦等.应用CALINE4模式模拟机动车排气污染的时空分布——以厦门市主干道路为例[J].福州大学学报(自然科学版),2004,32(2):257-260.
    4. 崔仲华.基于MOBILE5模式的宁波市机动车排放因子和控制对策研究[D].长安大学,2008.
    5. 邓顺熙,曹申存,成平等.西安城市交通干道汽车污染物排放因子[J].交通环保,1999,20(4):7-10.
    6. 杜青,杨延相,郑伟等.机动车实际道路排放特性及若干影响因素的研究[J].内燃机学报,2002,20(4):297-302.
    7. 付琳琳.大气挥发性有机物(VOCs)人为源排放特征研究[D].北京大学,2005.
    8. 傅立新,郝吉明,何东全,贺克斌.城市街道汽车污染扩散规律模拟研究[J].环境科学,1999,20(06):22-25.
    9. 傅立新,郝吉明,何东全等.街道峡谷汽车污染模拟研究[J].清华大学学报(自然科学版),1999,39(6):99-101.
    10. 高继东.城市机动车道路排放因子和排放特性研究[D].天津大学,2008.
    11. 高翔,丁焰,谭建伟等.基于发动机动态试验台的整车排放特性研究[J].车辆与动力技术,2008,(4):25-30.
    12. 国家环境保护总局《空气和废气监测分析方法》编委会.空气和废气监测分析方法[M].中国环境科学出版社,2003.
    13. 郭淑霞,于雷,宋国华等.重型柴油车实测排放因子和MOBILE6预测值的对比分析[J].安全与环境工程,2007,14(2):17-21.
    14. 韩星,张旭MOBILE计算中国机动车CO排放因子时的计算年确定[J].环境科学与技术,2010,33(5):183-185,190.
    15. 黄琼,于雷,杨方等.机动车尾气排放评价模型研究综述[J].交通环保,2003,24(6):28-31.
    16. 黄山.北京及周边地区大气挥发性有机物组成、化学活性分析及健康风险初探[D].北京大学,2008.
    17. 霍红,贺克斌,王歧东等.机动车污染排放模型研究综述[J].环境污染与防治,2006,28(7):526-530.
    18. 李修刚,杨晓光,王炜等.用于城市交通规划的机动车污染物排放因子[J].交通运输工程学报,2001,1(4):87-91.
    19. 兰涛CALINE4模型在西安市主干道机动车CO污染扩散计算中的应用研究[D].西安建筑科技大学,2006.
    20. 刘运鹤.北京城市交通需求管理效果及对策模拟研究[D].北京交通大学,2012.
    21. 刘志强,梅德纯,张晓娜等.镇江市机动车污染物扩散模拟分析[J].江苏大学学报(自然科学版),2005,26(6):480-483.
    22. 陆思华.北京大气中挥发性有机化合物组成特征及人为来源研究[D].北京大学,2004.
    23. 陆晓燕.南京市城市空气中苯系物污染的观测分析与研究[D].南京林业大学,2006.
    24. 李丹.西安市机动车排放因子研究[D].长安大学,2011
    25. 李冬梅,刘冲,李朝旭等.盘锦冬季城区机动车污染物排放模拟研究[J].气象与环境学报,2006,22(3):20-23.
    26. 李用宇.南京北郊地区VOCs及其光化学特征研究[D].南京信息工程大学,2013.
    27. 马蔚纯,张超,王远飞.南京东路机动车尾气污染调查和计算分析[J].上海环境科学,1997,16(01):32-35.
    28. 莫飞,于雷,宋国华等.车载尾气检测技术及相关研究综述[J].车辆与动力技术,2006,(4):57-62.
    29. 任小平.基于MOBILE6.2模型的西安市机动车综合排放因子研究[D].西安建筑科技大学,2006.
    30. 孙昊.北京市五种供暖方式环境污染与供暖费用的比较分析[D].中国农业大学,2006.
    31. 宋心琦.光化学原理与应用[M].北京:高等教育出版,2001.
    32. 唐孝炎.大气环境化学[M].高等教育出版社,1990.
    33. 万涛,于雷,裴文文等.捷达车实测排放因子和MOBILE6预测值的对比分析[J].交通环保,2005,26(2):11-14.
    34. 王伯光,吕万明,周炎等.城市隧道汽车尾气中多环芳烃排放特征的研究[J].中国环境科学,2007,27(4):482-487.
    35. 王伯光,邵敏,张远航等.机动车排放中挥发性有机污染物的组成及其特征研究[J].环境科学研究,2006,19(6):75-80.
    36. 王伯光,张远航,吴政奇等.广州市机动车排放因子隧道测试研究[J].环境科学研究,2001,14(4):13-16.
    37. 王伯光,张远航,邵敏等.广州地区大气中C2~C9非甲烷碳氢化合物的人为来源[J].环境科学学报,2008,28(7):1430-1440.
    38. 王琳琳.北京大气污染特征研究[D].山东大学,2011.
    39. 王歧东,丁焰.中国机动车排放模型的研究与展望[J].环境科学研究,2002,15(6):52-55.
    40. 王文,于雷,刘娟等.中巴车实测排放因子和MOB1LE6预测值的对比分析[J].交通环保,2005,26(3):40-43.
    41. 王玮,叶慧海,李玉华等.谭裕沟隧道CO,SO2和NOx排放因子研究[J].环境科学研究,2001,14(4):5-8.
    42. 王炜,项乔君,常玉林等.城市交通系统能源消耗与环境影响分析方法[M].北京:科学出版社,2002.
    43. 王新明,傅家谟,盛国英等.广州街道空气中挥发烃类特征和来源分析[J].环境科学,1999,05:33-37.
    44. 汪民生.试论汽车排放的工况法测试及其应用(一)[J].城市管理与科技,2002,4(4):6-9.
    45. 吴烨,郝吉明,傅立新等.澳门机动车排放清单[J].清华大学学报(自然科学版),2002,42(12):1601-1604.
    46. 徐伟嘉.城市街道峡谷内机动车尾气排放与扩散的模拟研究[D].中山大学,2010.
    47. 袁东,周伟,叶舜华.含铅和无铅汽车尾气成分和致突变性[J].环境与健康杂志,1999,16(3):125-127.
    48. 姚志良,贺克斌,王岐东等.IVE机动车排放模型应用研究[J].环境科学,2006,27(10):1928- 1933.
    49. 张化天,谢绍东,张远航等.城市街道峡谷内机动车排放污染物的扩散规律[J].环境科学研究,2002,15(1):51-54.
    50. 张靖.大气中挥发性有机物来源解析研究[D].北京大学,2003.
    51. 张楠.济南城区空气中苯系物的污染特征研究[D].山东大学,2012.
    52. 张玉芬.交通运输与环境保护[M].北京:人民交通出版社,2003.
    53. 张玉洁.大气中典型挥发性有机物的污染水平、特征、来源及其降解机制[D].中国科学院研究生院,2012.
    54. 赵丹平.城市街道峡谷内的气流运动与污染扩散研究[D].东华大学,2010.
    55. 赵利容.广州市城区街道毒害空气污染物暴露特征及其来源分析[D].中国科学院广州地球化学研究所,2005.
    56. 赵静,王远成,马金花等.街道峡谷内汽车污染物扩散的模拟研究[J].建筑热能通风空调,2012,31(3):73-76.
    57. 赵盟.北京市奥运期间大气污染物减排效果评估[D].清华大学,2009.
    58. 周洪昌,高延令,吴晓琰.街道峡谷地面源污染物扩散规律的风洞试验研究[J].环境科学学报,1994,14(04):389-396.
    59. 周洪昌,杨佩昆,高延令.城市街道汽车排放物扩散过程的风洞试验[J].同济大学学报(自然科学版),1994,22(03):306-311.
    60. Alexopoulos A, Assimacopoulos D, Mitsoulis E. Model for traffic emissions estimation[J]. Atmospheric Environment. Part B. Urban Atmosphere,1993,27(4):435-446.
    61. Baker C J, Hargreaves D M. Wind tunnel evaluation of a vehicle pollution dispersion model[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(2):187-200.
    62. Baldasano J M, Delgado R, Calbo J. Applying receptor models to analyze urban/suburban VOCs air quality in Martorell (Spain)[J]. Environmental Science and Technology,1998,32(3): 405-412.
    63. Barletta B, Meinardi S, Sherwood Rowland F, et al. Volatile organic compounds in 43 Chinese cities[J]. Atmospheric Environment,2005,39(32):5979-5990.
    64. Barletta B, Meinardi S, Simpson I J, et al. Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan[J]. Atmospheric Environment,2002,36(21):3429-3443.
    65. Barletta B, Meinardi S, Simpson 1 J, et al. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region:Guangzhou and Dongguan[J]. Atmospheric Environment,2008,42(18):4393-4408.
    66. Batterman S A, Peng C-Y, Braun J. Levels and composition of volatile organic compounds on commuting routes in Detroit, Michigan[J]. Atmospheric Environment,2002,36(39):6015-6030.
    67. Beaton J L, Skog J B, Shirley E C, et al. Mathematical approach to estimating highway impact on air quality [R], International Transport Research Documentation (ITRD) Database.1972.
    68. Benson P E. CALINE4:A dispersion model for Predieting air Pollutant concentrations near roadways [R].State of California, Department of transPortation,1989.
    69. Bishop G A, Stedman D H, Hutton R B.Final technical report for ITS for voluntary emission reduction:an its operational test using real-time vehicle emissions detection. Final report to CDOT,May,1998.
    70. Bono R, Scursatone E, Schiliro T, et al. Ambient Air Levels and Occupational Exposure to Benzene, Toluene, and Xylenes in Northwestern Italy[J]. Journal of Toxicology and Environmental Health, Part A,2003,66(6):519-531.
    71. Bravo H, Sosa R, Sanchez P, et al. Concentrations of benzene and toluene in the atmosphere of the southwestern area at the Mexico City Metropolitan Zone[J]. Atmospheric Environment, 2002,36(23):3843-3849.
    72. Broderick B M, Marnane I S. A comparison of the C2-C9 hydrocarbon compositions of vehicle fuels and urban air in Dublin, Ireland[J]. Atmospheric Environment,2002,36(6):975-986.
    73. Bruno P, Caselli M, de Gennaro G, et al. High spatial resolution monitoring of benzene and toluene in the urban area of Taranto (Italy)[J]. Journal of atmospheric chemistry,2006, 54(2):177-187.
    74. California Air Resource Board.Calculating Emission Inventories for Vehicles in California (EMFAC2007), Version2.30, User's Guide [R].2007.
    75. Chan L Y, Lau W L, Wang X M, et al. Preliminary measurements of aromatic VOCs in public transportation modes in Guangzhou, China[J]. Environment International,2003,29(4):429-435.
    76. Chan T L, Dong G, Leung C W, et al. Validation of a two-dimensional pollutant dispersion model in an isolated street canyon[J]. Atmospheric Environment,2002,36(5):861-872.
    77. Cheng L, Fu L, Angle R P, et al. Seasonal variations of volatile organic compounds in Edmonton, Alberta[J]. Atmospheric Environment,1997,31(2):239-246.
    78. Clarke A G, Ko Y H. The relative significance of vehicular emissions and other emissions of volatile organic compounds in the urban area of Leeds, UK[J]. Science of The Total Environment,1996,189(401-407.
    79. Cooper C D, Arbrandt M. Mobile Source Emission Inventories-Monthly or Annual Average Inputs to MOBILE6?[J]. Journal of the Air & Waste Management Association,2004, 54(8):1006-1010.
    80. Costa M, Baldasano J. Development of a source emission model for atmospheric pollutants in the Barcelona area[J]. Atmospheric Environment,1996,30(2):309-318.
    81. De Vlieger I. On board emission and fuel consumption measurement campaign on petrol-driven passenger cars[J]. Atmospheric Environment,1997,31(22):3753-3761.
    82. DePaul F T, Sheih C M. Measurements of wind velocities in a street canyon[J]. Atmospheric Environment (1967),1986,20(3):455-459.
    83. Duffy B L, Nelson P F. Exposure to emissions of 1,3-butadiene and benzene in the cabins of moving motor vehicles and buses in Sydney, Australia[J]. Atmospheric Environment,1997, 31(23):3877-3885.
    84. Edwards R D, Jurvelin J, Saarela K, et al. VOC concentrations measured in personal samples and residential indoor, outdoor and workplace microenvironments in EXPOLIS-Helsinki, Finland[J]. Atmospheric Environment,2001,35(27):4531-4543.
    85. Fraser M P, Cass G R, Simoneit B R T. Gas-phase and particle-phase organic compounds emitted from motor vehicle traffic in a Los Angeles roadway tunnel[J]. Environmental Science & Technology,1998,32(14):2051-2060.
    86. Frey H C, Zhai H, Rouphail N M. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies[J]. Environmental Science & Technology,2009,43(21):8449-8455.
    87. Frey H C, Zhang K, Rouphail N M. Vehicle-specific emissions modeling based upon on-road measurements[J]. Environmental Science & Technology,2010,44(9):3594-3600.
    88. Giannelli R A, Gilmore J H, Landman L, et al., Sensitivity Testing of MOBILE6.0. EPA420.
    89. Gkatzofiia D, Kouridis C, Ntziachristos L, et al. COPERT 4:Computer programme to calculate emissions from road transport[R].2007:http://lat. eng. auth. gr/copert/files/tech01. pdf.
    90. Gomez-Perales J E, Colvile R N, Nieuwenhuijsen M J, et al. Commuters' exposure to PM2.5, CO, and benzene in public transport in the metropolitan area of Mexico City[J]. Atmospheric Environment,2004,38(8):1219-1229.
    91. Harrison R M, Jones A M, Barrowcliffe R. Field study of the influence of meteorological factors and traffic volumes upon suspended particle mass at urban roadside sites of differing geometries[J]. Atmospheric Environment,2004,38(37):6361-6369.
    92. Hoydysh W G, Dabberdt W F. Kinematics and dispersion characteristics of flows in asymmetric street canyons[J]. Atmospheric Environment (1967),1988,22(12):2677-2689.
    93. Hsieh L-T, Yang H-H, Chen H-W. Ambient BTEX and MTBE in the neighborhoods of different industrial parks in Southern Taiwan[J]. Journal of Hazardous Materials,2006,128(2):106-115.
    94. IARC. Monographs on the evaluation of carcinogenic risks to humans. IARC Lyon,1999, 71(Ⅱ):401-432.
    95. IPCC.The Second Assessment of Climate Change.1995.
    96. Jicha M, Pospisil J, Katolicky J. Dispersion of pollutants in street canyon under traffic induced flow and turbulence[J]. Environmental monitoring and assessment,2000,65(1-2):343-351.
    97. Jo W-K, Yu C-H. Public bus and taxicab drivers' work-time exposure to aromatic volatile organic compounds[J]. Environmental research,2001,86(1):66-72.
    98. Karakitsios S P, Delis V K, Kassomenos P A, et al. Contribution to ambient benzene concentrations in the vicinity of petrol stations:Estimation of the associated health risk[J]. Atmospheric Environment,2007,41(9):1889-1902.
    99. Kastner-Klein P, Fedorovich E, Rotach M W. A wind tunnel study of organised and turbulent air motions in urban street canyons[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001,89(9):849-861.
    100. Kenty K L, Poor N D, Kronmiller K G, et al. Application of CALINE4 to roadside NO/NO2 transformations[J]. Atmospheric Environment,2007,41(20):4270-4280.
    101. Kourtidis K A, Ziomas I, Zerefos C, et al. Benzene, toluene, ozone, NO 2 and SO 2measurements in an urban street canyon in Thessaloniki, Greece[J]. Atmospheric Environment, 2002,36(34):5355-5364.
    102. Lau W-L, Chan L-Y. Commuter exposure to aromatic VOCs in public transportation modes in Hong Kong[J]. Science of The Total Environment,2003,308(1):143-155.
    103. Lee 1 Y, Park H M. Parameterization of the pollutant transport and dispersion in urban street canyons[J]. Atmospheric Environment,1994,28(14):2343-2349.
    104. Lee S C, Chiu M Y, Ho K F, et al. Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong[J]. Chemosphere,2002,48(3):375-382.
    105. Levitin J, Harkonen J, Kukkonen J, et al. Evaluation of the CALINE4 and CAR-FMI models against measurements near a major road[J]. Atmospheric Environment,2005, 39(25):4439-4452.
    106. Li X-X, Liu C-H, Leung D Y C. Numerical investigation of pollutant transport characteristics inside deep urban street canyons[J]. Atmospheric Environment,2009,43(15):2410-2418.
    107. Liu C-H, Barth M C. Large-eddy simulation of flow and scalar transport in a modeled street canyon[J]. Journal of Applied Meteorology,2002,41(6).
    108. Liu C-H, Leung D Y C, Barth M C. On the prediction of air and pollutant exchange rates in street canyons of different aspect ratios using large-eddy simulation[J]. Atmospheric Environment,2005,39(9):1567-1574.
    109. Liu J, Mu Y, Zhang Y, et al. Atmospheric levels of BTEX compounds during the 2008 Olympic Games in the urban area of Beijing[J]. Science of The Total Environment,2009, 408(1):109-116.
    110. Liu P-W G, Yao Y-C, Tsai J-H, et al. Source impacts by volatile organic compounds in an industrial city of southern Taiwan[J]. Science of The Total Environment,2008,398(1):154-163.
    111. Liu Y, Shao M, Zhang J, et al. Distributions and Source Apportionment of Ambient Volatile Organic Compounds in Beijing City, China[J]. Journal of Environmental Science and Health, 2005:1843-1860.
    112. Mishra V K, Padmanabhamutry B. Performance evaluation of CALINE3, CAL3QHC and PART5 in predicting lead concentration in the atmosphere over Delhi[J]. Atmospheric Environment,2003,37(22):3077-3089.
    113. Mohamed M F, Kang D, Aneja V P. Volatile organic compounds in some urban locations in United States[J]. Chemosphere,2002,47(8):863-882.
    114. Monod A, Sive B C, Avino P, et al. Monoaromatic compounds in ambient air of various cities:a focus on correlations between the xylenes and ethylbenzene[J]. Atmospheric Environment, 2001,35(1):135-149.
    115. Mukherjee A K, Bhattacharya S K, Ahmed S, et al. Exposure of drivers and conductors to noise, heat, dust and volatile organic compounds in the state transport special buses of Kolkata city[J]. Transportation Research Part D:Transport and Environment,2003,8(1):11-19.
    116. Na K, Kim Y P, Moon I, et al. Chemical composition of major VOC emission sources in the Seoul atmosphere[J]. Chemosphere,2004,55(4):585-594.
    117. Na K, Kim Y P, Moon K C. Seasonal variation of the C2-C9 hydrocarbons concentrations and compositions emitted from motor vehicles in a Seoul tunnel[J]. Atmospheric Environment, 2002,36(12):1969-1978.
    118. Nakamura Y, Oke T R. Wind, temperature and stability conditions in an east-west oriented urban canyon[J]. Atmospheric Environment (1967),1988,22(12):2691-2700.
    119. Nicholson S E. A pollution model for street-level air[J]. Atmospheric Environment (1967), 1975,9(1):19-31.
    120. Pandian S, Gokhale S, Ghoshal A K. Evaluating effects of traffic and vehicle characteristics on vehicular emissions near traffic intersections[J]. Transportation Research Part D:Transport and Environment,2009,14(3):180-196.
    121. Pfeffer H-U, Friesel J, Elbers G, et al. Air pollution monitoring in street canyons in North Rhine-Westphalia, Germany[J]. Science of The Total Environment,1995,169(1-3):7-15.
    122. Pokharel S S, Bishop G A, Stedman D H. An on-road motor vehicle emissions inventory for Denver:an efficient alternative to modeling[J]. Atmospheric Environment,2002, 36(33):5177-5184.
    123. Qin Y, Chan L Y. Traffic source emission and street level air pollution in urban areas of Guangzhou, South China (PRC)[J]. Atmospheric Environment. Part B. Urban Atmosphere, 1993,27(3):275-282.
    124. Rappengliick B, Fabian P. Nonmethane hydrocarbons (NMHC) in the Greater Munich Area/Germany[J]. Atmospheric Environment,1999,33(23):3843-3857.
    125. Riediker M, Williams R, Devlin R, et al. Exposure to particulate matter, volatile organic compounds, and other air pollutants inside patrol cars[J]. Environmental Science & Technology, 2003,37(10):2084-2093.
    126. Robinson N F, Pierson W R, Gertler A W, et al. Comparison of MOBILE4.1 and MOBILE5 predictions with measurements of vehicle emission factors in Fort McHenry and Tuscarora Mountain tunnels[J]. Atmospheric Environment,1996,30(12):2257-2267.
    127. Rouphail N M, Frey H C, Colyar J D, et al.,2001. Vehicle emissions and traffic measures: exploratory analysis of field observations at signalized arterials 80th Annual Meeting of the Transportation Research Board, Washington, DC.
    128. Samaras Z, Kyriakis N, Zachariadis T. Reconciliation of macroscale and microscale motor vehicle emission estimates[J]. Science of The Total Environment,1995,169(1):231-239.
    129. So K L, Wang T. C3-C12 non-methane hydrocarbons in subtropical Hong Kong: spatial-temporal variations, source-receptor relationships and photochemical reactivity[J]. Science of The Total Environment,2004,328(1-3):161-174.
    130. Song Y, Shao M, Liu Y, et al. Source apportionment of ambient volatile organic compounds in Beijing[J]. Environmental Science & Technology,2007,41(12):4348-4353.
    131. Stein A F, Toselli B M. Street level air pollution in Cordoba City, Argentina[J]. Atmospheric Environment,1996,30(20):3491-3495.
    132. Sturm P J, Kirchweger G, Hausberger S, et al. Instantaneous emission data and their use in estimating road traffic emissions[J]. International journal of vehicle design,1998, 20(1):181-191.
    133. Thijsse T R, Van Oss R F, Lenschow P. Determination of source contributions to ambient volatile organic compound concentrations in Berlin[J]. Journal of the Air & Waste Management Association,1999,49(12):1394-1404.
    134. Truc V T Q, Kim Oanh N T. Roadside BTEX and other gaseous air pollutants in relation to emission sources[J]. Atmospheric Environment,2007,41(36):7685-7697.
    135. University of California at Riverside.IVE Model User's Manual Version 1.1.1.2004.
    136. University of California at Rverside. IVE Model Attachment A Development ofthe Emission Rates for Use in the IVE Model [R].2004.
    137. USEPA. User's Guide to MOBILE6.0:Mobile Source Emission Factor Model. EPA 420-R-02-001,2002
    138. USEPA.Compendium method TO-14A:determination of volatile organic compounds.1997.
    139. Vardoulakis S, Gonzalez-Flesca N, Fisher B E A. Assessment of traffic-related air pollution in two street canyons in Paris:implications for exposure studies[J]. Atmospheric Environment, 2002,36(6):1025-1039.
    140. Vardoulakis S, Solazzo E, Lumbreras J. Intra-urban and street scale variability of BTEX, NO2 and O3 in Birmingham, UK:Implications for exposure assessment J]. Atmospheric Environment,2011,45(29):5069-5078.
    141. Wang X-m, Sheng G-y, Fu J-m, et al. Urban roadside aromatic hydrocarbons in three cities of the Pearl River Delta, People's Republic of China[J]. Atmospheric Environment,2002, 36(33):5141-5148.
    142. Wang Y, Li J, Cheng X, et al. Estimation of PM10 in the traffic-related atmosphere for three road types in Beijing and Guangzhou, China[J]. Journal of Environmental Sciences,2014, 26(l):197-204.
    143. WHO. Air quality guidelines for Europe. Regional Publications, European Series,2000,21.
    144. WHO.Air Quality Guidelines for Europe[M].WHO Regional Publications,2000.
    145. Yamatino R J, Wiegand G. Development of CPBM models for urban street canyon. Atmospheric Environment,1986,20(14):2137-2156.
    146. Zhang K, Batterman S. Near-road air pollutant concentrations of CO and PM2.5:A comparison of MOBILE6.2/CALINE4 and generalized additive models[J]. Atmospheric Environment, 44(14):1740-1748.
    147. Zhang Y, Mu Y, Liu J, et al. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China[J]. Journal of Environmental Sciences,2012,24(1):124-130.
    148. Zhang Y, Stedman D H, Bishop G A, et al. Worldwide on-road vehicle exhaust emissions study by remote sensing[J]. Environmental Science & Technology,1995,29(9):2286-2294.
    149. Zhao L, Wang X, He Q, et al. Exposure to hazardous volatile organic compounds, PM10 and CO while walking along streets in urban Guangzhou, China[J]. Atmospheric Environment,2004, 38(36):6177-6184.
    150. Zimmerman J R, Thompson R S,1975. User's guide for HI WAY, a highway air pollution model. National Environmental Research Center, Office of Research and Development, US Environmental Protection Agency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700