用户名: 密码: 验证码:
顾及时空差异性的太湖水体中叶绿素a浓度的遥感估算实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太湖是中国长三角区域的最大淡水湖,日益严重的水质污染和富营养化问题影响了当地经济的发展和居民的健康,利用遥感手段进行太湖水体水质参数的估算和监测具有重要意义。叶绿素a是水体重要的水质参数之一,是表征水体富营养化程度的主要指标。
     本研究针对二类水体中叶绿素a浓度(Chla)估算模型的不足,以改进模型的应用精度为目标,提出了考虑数据时空差异性的Chla估算模型构建方法。基于2004-2012年共19期太湖野外调查数据,对已有的典型Chla估算模型进行了验证,分析了模型残差的时空差异性特征,提出了基于月份和湖区的水质类型划分规则,并构建了顾及时空差异性的太湖水体Chla估算模型,提高了Chla估算模型的应用精度。主要研究内容和成果如下:
     (1)典型二类水体Chla估算模型的太湖验证与残差分析
     基于不同数据集,验证了18个Chla高光谱估算模型在太湖水体的适用性,分析了模型残差的时空差异特征及其影响因素。结果表明:R-NIR算法在太湖中的应用精度优于荧光算法,重新率定模型参数或优化波段位置后所建模型的应用精度显著高于模型的直接应用,模型参数的率定验证的均方根误差(RMSE)可降低到20mg/m3以下。不同数据集的验证精度不同,模型残差随着不同样点时间和空间位置的变化而变化,表明水体的时空差异性影响着Chla估算模型的表现。
     (2)考虑季节性差异的Chla估算与模型改进
     使用相邻月的观测数据,研究了改进模型应用精度的数据变换方法,使用夏秋季数据,构建了新的水体Chla指数,考虑数据的季节性差异,构建了Chla估算模型。结果表明:使用Chla的对数变换与光谱核回归平滑处理可以改进反演模型残差的方差齐性和模型的应用精度,使用2004年7月平滑后数据建立的三波段模型,8月数据验证的RMSE从平滑前的33.56mg/m3降低到了平滑后的25.60mg/m3;基于夏季和秋季的调查数据,构建了新的叶绿素a指数(NCI=(R690/R550-R675/R700)/(R690/R550+R675/R700))所建立的模型在多期数据集上的验证精度优于已有的三波段和四波段算法。数据季节划分后部分改进了Chla估算模型的精度和残差分布。
     (3)水质的时空差异性分析和划分
     结合太湖水质的时空差异性及水质参数的时空分布规律,以样点的月份和所在湖区编号作为输入,使用CRT和C5.0决策树方法构建了顾及时空差异性的Chla分组规则。调查水域按Chla级别的不同分成三种类型,其划分规则为:
     ①如果月份∈(3,5)|(月份∈(4,8,9,11)&区域∈(湖心区)),则为类型Ⅰ;
     ②如果月份∈(6,7,10)|(月份∈(4,11)&区域∈(梅梁湾,竺山湾)),则为类型Ⅱ;
     ③如果月份∈(8,9)&区域∈(梅梁湾,竺山湾),则为类型Ⅲ。
     数据划分后三种水体类型的遥感反射率和光学特性具有较明显的差异,分别代表了悬浮物主导、悬浮物和浮游藻类共同主导以及浮游藻类主导的水体。基于上述规则对数据进行划分,不同类型水体光学特性的相互区分度及其对Chla的指示作用优于基于Chla分级和光谱分类的结果。
     (4)顾及时空差异性的太湖Chla遥感估算模型的构建
     基于所建立的规则,将建模集和验证集的样点进行了划分,使用建模集构建了波段比值、三波段、四波段和NCI模型,通过比较模型精度和残差分布,确定了新模型中各类型所使用的模型变量和参数。新模型为Chla=exp(ax2+bx+c),x在类型Ⅰ、Ⅱ、Ⅲ中分别为R701/R677、(1/R686-1/R695)×R710、NCI,模型在验证集的应用精度(R2=0.75,RSE=11.54mg/m3)优于基于季节划分的模型(R2=0.56,RMSE=17.63mg/m3)及比值、三波段、四波段和NCI组合参数率定的验证结果(R2<0.61;RSE>16.79mg/m3)。基于HJ1/HSI数据的模型应用结果表明,新模型计算出的水体叶绿素a浓度时空分布与已有的调查研究具有可比性。本文构建的顾及时空差异性的Chla估算模型,改进了模型的稳健性和应用精度,在太湖水体的叶绿素a浓度的遥感估算中具有较好的适用性。
Taihu Lake is the largest freshwater lake in the Yangtze River Delta, China, its increasing water pollution and eutrophication problem seriously hindered the economic development and the health of local residents. Estimating the content of water components and monitoring water quality in Taihu lake using the remote sensing technology is of great convenience and significance. Chlorophyll-a is the main indicator of water eutrophication, also one of the most important parameters for water quality monitoring.
     In order to improve the performance and validation accuracy of existing estimation models, this study take the temporal and spatial variation of water quality into account and promote a new method to estimate chlorophyll a concentration (Chla) in Taihu lake. Based on19field experiments from2004-2012in Taihu lake,18typical Chla estimation models were validated and model residuals'variation with time and position was analyzed. This study proposed a rule for water quality division using the input of month and lake region, and constructed a new Chla estimation model that considers temporal and spatial variation, which can improve the accuracy of Chla estimation when validated by other datasets. The main contents and conclusions are as follows:
     (1) Validation of typical Chla estimation models using data in Taihu lake and analysis of the model residuals.
     Based on several different datasets,18existing Chla estimation models was validated and model residuals' variation with month/season and lake district, as well as its influencing factors were analyzed. The results show that:the applicability of R-NIR algorithms in Taihu lake is better than the fluorescence algorithms, and the accuracy of model validation can be greatly improved after reparameterization of model parameters (RMSE is less than20mg/m3) or tuning of band position. Model accuracy validated by different datasets varies a lot, and the model residuals change with the sampling time and space, indicating that the accuracy of inversion model is correlated with the spatial and temporal variation of water body.
     (2) Estimation of Chla considering seasonal variation and model improvement.
     This paper studied the data transformation method for improving the accuracy of model application based on adjacent monthly data, and constructed a new Chla index in water based on data in summer and autumn. Then the Chla estimation model considering the seasonal variation was constructed. The results show that:logarithmic transformation and spectral kernel regression smoothing can be used to improve the homogeneity of model residual and the accuracy of model validation, for example, when a model built by data in July2004was validation by data in August2004, the RMSE reduced from33.56mg/m3before smoothing to25.60mg/m3after smoothing. A new chlorophyll index (NCI=(R690/R550-R675/R700)/(R690/R550+R675/R700)) was built based on data in summer and autumn, which presented better accuracy when validated by multiple datasets than the existing three band and four-band model. The accuracy and residual distribution can be partially improved by constructing Chla estimation model using data after seasonal devision.
     (3) Analysis of spatial and temporal difference of water quality and its division rule.
     Based on the spatial and temporal difference of water quality of Taihu lake and the spatial and temporal distribution of water quality parameters, this study promoted a division rule of water quality using the input of month and lake district and the method of CRT and C5.0decision tree. The investigated water was divided into three types according to the Chla level, and the division rule is as follows:
     (Dlf the month∈(3,5)|(month∈(4,8,9,11)®ion∈(centeral lake)), then it was divided into type Ⅰ;
     ②If the month(6,7,10)|(month∈(4,11)®ion∈(Meiliang Bay, Zhushan Bay)), then it was divided into type Ⅱ;
     ③If the month∈(8,9)®ion∈(Meiliang Bay, Zhushan Bay), then it was divided into type Ⅲ.
     The remote sensing reflectance and optical properties of these three types of water bodies are able to distinguish from each other, representing the water that suspended sediment dominated, both suspended sediment and phytoplankton dominated, and phytoplankton dominated, respectively. The distinguishability of optical characteristics among the three types divided by the new rule, as well as its correlation with Chla is better than those divided by Chla grade or spectral classification.
     (4) Construction of Chla estimation model in Taihu lake considering the spatial and temporal difference.
     The modeling and validation datasets were divided based on the constructed rule. Construct the band ratio, three-band, four-band and NCI model using the modeling dataset, and determine the best model expression and parameters for each type in the new model by comparing model precision and residual distribution. The expression of the new model is Chla=exp(ax2+bx+c), and x is R701/R677、(1/R686-1/R695)×R710、 NCI for type Ⅰ、Ⅱ、Ⅲ. The validation accuracy of the new model (R2=0.75, RMSE=11.54mg/m3) is better than the model after seasonal division (R2=0.56, RMSE=17.63mg/m3) and the reparameterized bands ratio, three-band, four-band and NCI (R2<0.61; RMSE>16.79mg/m3). Model application based on HJ1/HSI data show that the temporal and spatial distribution of Chla calculated by the proposed model is comparable to existing investigation. The Chla estimation model that considering the spatial and temporal variation built in this study can improve the accuracy of model application, thus can be applied to estimate chlorophyll a concentration in Taihu Lake.
引文
[1]秦伯强,杨柳燕,陈非洲,等.湖泊富营养化发生机制与控制技术及其应用[J].科学通报,2006,5l(16):1857-1866.
    [2]孔繁翔,胡维平,范成新,等.太湖流域水污染控制与生态修复的研究与战略思考[J].湖泊科学,2006,18(3):193-198.
    [3]秦伯强,胡维平,陈伟民.太湖水环境演化过程与机理[M].北京:科学出版社,2004
    [4]金相灿.中国湖泊水库环境调查研究[M].北京:中国环境科学出版社,1990
    [5]Yang, M., Yu, J., Li, Z., et al. Taihu Lake not to blame for Wuxi's woes:American Association for the Advancement of SciencefJ],2008.
    [6]Lucie, G. Doing Battle with the green monster of Taihu Lake[J]. Science,2007,8 (317): 1166.
    [7]Qin, B.Q., Xu, P.Z., Wu, Q.L., et al. Environmental issues of Lake Taihu, China.2007, 581(1):3-14.
    [8]Ma, R.H., Tang, J.W., Dai, J.F. Bio-optical model with optimal parameter suitable for Taihu Lake in water colour remote sensing. International Journal of Remote Sensing[J],2006,27 (19):4305-4328.
    [9]Strombeck, N., Pierson, D.C. The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters[J]. Science of the Total Environment,2001,268 (1):123-137.
    [10]Kallioa, K., Kutser, T., Hannonena, T. Retrieval of Water Quality from Airborne Imaging Spectrometry of Various Lake Types in Different Seasons[J]. The Science of the Total Environment,2001,268:59-77.
    [11]Gordon, H.R., Andre, Y., Morel, A. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery:A review[M]. American Geophysical Union,1983
    [12]O'Reilly, J.E., Maritorena, S., Mitchell, B.G., et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. J Geophys Res 1998,103:24937-24953.
    [13]Carder, K., Chen, F., Lee, Z., et al. MODIS Ocean Science Team:Algorithm Theoretical Basis Document ATBD 19, Case 2, Chlorophyll a, Version 7. College of Marine Science University of South Florida,2003
    [14]Dierssen, H.M. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate[C]. Proceedings of the National Academy of Sciences,2010,107 (40):17073-17078.
    [15]McClain, C.R. A decade of satellite ocean color observations[J]. Annual Review of Marine Science,2009,1:19-42.
    [16]Morel, A., Prieur, L. Analysis of variations in ocean color[J]. Limnology and Oceanography,1977,22 (4):709-722.
    [17]Sathyendranath, S. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters.In:Reports of the International Ocean-Colour Coordinating Group.IOCCG report Number 3 Dartmouth, Canada,2000.
    [18]Dowell, M., Platt, T. Partition of the Ocean into Ecological Provinces Role of Ocean-Colour Radiometry. In:Reports of the International Ocean Colour Coordinating Group:IOCCG Report Number 9 Dartmouth, Canada,2009.
    [19]ZhongPing, L. Remote sensing of inherent optical properties:Fundamentals,tests of algorithms,and applications. In:Reports of the International Ocean-Colour Coordinating Group.IOCCG report Number 5 Dartmouth, Canada,2006.
    [20]Mueller, J.L., Fargion, G.S., McClain, C.R., et al. NASA/TM-2003-Ocean optics protocols for satellite ocean color sensor validation. Revision 4, Volume III: Radiometric measurements and data analysis protocols,2003.
    [21]Carpenter, D.J., Carpenter, S.M. Modeling inland water quality using Landsat data[J]. Remote Sensing of Environment,1983,13 (4):345-352.
    [22]Dekker, A., Peters, S. The use of the Thematic Mapper for the analysis of eutrophic lakes:a case study in the Netherlands[J]. International Journal of Remote Sensing, 1993,14(5):799-821.
    [23]Komick, N.M., Costa, M.P.F., Gower, J. Bio-optical algorithm evaluation for MODIS for western Canada coastal waters:An exploratory approach using in situ reflectance[J]. Remote Sensing of Environment,2009,113 (4):794-804.
    [24]Salama, M., Dekker, A., Su, Z., et al. Deriving inherent optical properties and associated inversion-uncertainties in the Dutch Lakes[J]. Hydrology & Earth System Sciences, 2009,13 (7).
    [25]Gitelson, A.A., Schalles, J.F., Hladik, CM. Remote chlorophyll-a retrieval in turbid, productive estuaries:Chesapeake Bay case study[J]. Remote Sensing of Environment, 2007,109 (4):464-472.
    [26]Dall'Olmo, G., Gitelson, A.A. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters:modeling results[J]. Applied Optics,2006, 45 (15):3577-3592.
    [27]Dall'Olmo, G., Gitelson, A.A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters:experimental resultsfJ]. Applied Optics,2005,44 (3):412-422.
    [28]Gons, H.J., Auer, M.T., Effler, S.W. MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes[J]. Remote Sensing of Environment,2008,112 (11):4098-4106.
    [29]Doerffer, R., Schiller, H. The MERIS Case 2 water algorithm[J]. International Journal of Remote Sensing,2007,28 (3-4):517-535.
    [30]Dall'Olmo, G., Gitelson, A.A., Rundquist, D.C. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters[J]. Geophysical Research Letters,2003,30 (18).
    [31]Schalles, J.F., Schiebe, F.R., Starks, P.J., et al. Estimation of algal and suspended sediment loads(singly and combined) using hyperspectral sensors and integrated mesocosm experiments[C]. In:International Conference on Remote Sensing for Marine and Coastal Environments,4 th, Orlando, FL,1997.
    [32]Gitelson, A. A. The peak near 700 run on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration[J]. International Journal of Remote Sensing,1992,13:3367-3373.
    [33]Carder, K.L., Chen, F.R., Lee, Z.P., et al. Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures[J]. Journal of Geophysical Research:Oceans (1978-2012),1999,104 (C3):5403-5421.
    [34]Verdin, J.P. Monitoring water quality conditions in a large western reservoir with Landsat imagery[J]. Photogrammetric Engineering and Remote Sensing,1985,51 (3):343-353.
    [35]Kevin, G.R., Herman, J.G., Machteld, R., et al. Optical remote sensing of chlorophyll a in case 2 waters by sue of an adaptive two-band algorithm with optimal error properties[J]. Applied Optics,2001,40 (21):3575-3585.
    [36]Fraser, R.N. Hyperspectral remote sensing of turbidity and chlorophyll a among Nebraska Sand Hills lakes[J]. International Journal of Remote Sensing,1998,19 (8): 1579-1589.
    [37]Brando, V.E., Dekker, A.G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality[J]. Geoscience and Remote Sensing, IEEE Transactions on,2003,41 (6):1378-1387.
    [38]Pierson, D.C., Strombeck, N. Estimation of radiance reflectance and the concentrations of optically active substances in Lake MSlaren, Sweden, based on direct and inverse solutions of a simple model[J]. Science of the Total Environment,2001,268 (1):171-188.
    [39]Hoogenboom, H.J., Dekker, A.G., Dehaan, J.F. Retrieval of chlorophyll and suspended matter in inland waters from CASI data by matrix inversion[J]. Canadian Journal of Remote Sensing,1998,24 (2):144-152.
    [40]Kutser, T., Herlevi, A., Kallio, K., et al. A hyperspectral model for interpretation of passive optical remote sensing data from turbid lakes [J]. Science of the Total Environment,2001,268 (1):47-58.
    [41]Lahet, F., Ouillon, S., Forget, P. A three-component model of ocean color and its application in the Ebro River mouth area[J]. Remote Sensing of Environment,2000, 72 (2):181-190.
    [42]Doerffer, R. Estimation of primary production by observation of solar-stimulated fluorescence[C]. In:ICES marine science symposia.,1993
    [43]Gower, J.F.R., Borstad, G.A. Mapping of phytoplankton by solar-stimulated fluorescence using an imaging spectrometer[J]. International Journal of Remote Sensing,1990,11 (2):313-320.
    [44]Carder, K.L., Steward, R.G. A remote-sensing reflectance model of a red-tide dinoflagellate off west Florida[J]. Limnology and Oceanography,1985:286-298.
    [45]Butler, W.L. Spectral characteristics of chlorophyll in green plants[J]. The Chlorophylls Academic Press,1966:343-380.
    [46]Babin, M., Morel, A., Gentili, B. Remote sensing of sea surface sun-induced chlorophyll fluorescence:consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence[J]. International Journal of Remote Sensing,1996,17 (12):2417-2448.
    [47]Gower, J.F.R., Doerffer, R., Borstad, G.A. Interpretation of the 685nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS[J]. International Journal of Remote Sensing,1999,20 (9): 1771-1786.
    [48]Vos, W.L., Donze, M., Bueteveld, H. On the reflectance spectrum of algae in water:the nature of the peak at 700nm and its shift with varying concentration. Communications on sanitary engineering and water management, Delft, The Netherlands,1986
    [49]Gitelson, A., Mayo, M., Yacobi, Y.Z., et al. The use of high-spectral-resolution radiometer data for detection of low chlorophyll concentrations in Lake Kinneret[J]. Journal of Plankton Research,1994,16 (8):993-1002.
    [50]Gower, J.F.R. Observations of in situ fluorescence of chlorophyll-a in Saanich Inlet[J]. Boundary-Layer Meteorology,1980,18 (3):235-245.
    [51]Kishino, M., Sugihara, S., Okami, N. Theoretical analysis of the in-situ fluorescence of chlorophyll-a on the underwater spectral irradiance[J]. Bulletin de la Societe franco-Japonaise d'oceanographie,1986,24:130-138.
    [52]Lorenzen, C.J. A method for the continuous measurement of in-vivo chlorophyll concentration. In:Deep Sea Research and Oceanographic Abstracts:Elsevier,1966: 223-227.
    [53]Glardino, C., Candianl, G., Zilioli, E. Detecting chlorophyll-a in Lake Garda using TOA MERIS radiances[J]. Photogrammetric Engineering and Remote Sensing,2005,71 (9):1045.
    [54]Dierberg, F.E., Carriker, N.E. Field testing two instruments for remotely sensing water quality in the Tennessee Valley[J]. Environmental science & technology,1994,28 (1):16-25.
    [55]Schalles, J.F., Gitelson, A.A., Yacobi, Y.Z., et al. Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake[J]. Journal of Phycology,1998,34 (2):383-390.
    [56]Yacobi, Y.Z., Gitelson, A., Mayo, M. Remote sensing of chlorophyll in Lake Kinneret using highspectral-resolution radiometer and Landsat TM:spectral features of reflectance and algorithm development[J]. Journal of Plankton Research,1995,17 (11):2155-2173.
    [57]Gower, J., King, S., Borstad, G., et al. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer[J]. International Journal of Remote Sensing,2005,26 (9):2005-2012.
    [58]Binding, C.E., Greenberg, T.A., Jerome, J.H., et al. An assessment of MERIS algal products during an intense bloom in Lake of the Woods[J]. Journal of Plankton Research,2011,33 (5):793-806.
    [59]Matthews, M. W., Bernard, S., Winter, K. Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS[J]. Remote Sensing of Environment,2010,114 (9):2070-2087.
    [60]Gons, H.J. Optical teledetection of chlorophyll a in turbid inland waters[J]. Environmental science & technology,1999,33 (7):1127-1132.
    [6l]焦红波.基于水面实测光谱的太湖水体叶绿素a遥感最佳波段选择与模型研究[D]:南京师范大学.2006.
    [62]段洪涛,张柏,刘殿伟等.查干湖水体光谱荧光峰特征与叶绿素a响应关系研究[J].红外与毫米波学报,2006,25(5):355-359.
    [63]马荣华,戴锦芳.应用实测光谱估测太湖梅梁湾附近水体叶绿素浓度[J].遥感学报,2005,9(1):78-86.
    [64]李素菊,吴倩,王学军等.巢湖浮游植物叶绿素含量与反射光谱特征的关系[J].湖泊科学,2002,14(3):228-234.
    [65]徐京萍,张柏,宋开山,等.基于半分析模型的新庙泡叶绿素a浓度反演研究[J].红外与毫米波学报,2008,27(3):197-201.
    [66]周冠华,柳钦火,马荣华,等.基于半分析模型的波段最优化组合反演浑浊太湖水体叶绿素[J].湖泊科学,2008,20(2):153-159.
    [67]Le, C., Li, Y., Zha, Y., et al. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes:The case of Taihu Lake, China[J], Remote Sensing of Environment,2009,113 (6):1175-1182.
    [68]Gilerson, A.A., Gitelson, A.A., Zhou, J., et al. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands[J]. Optics Express,2010,18 (23):24109-24125.
    [69]Mishra, S., Mishra, D.R. Normalized difference chlorophyll index:A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters[J]. Remote Sensing of Environment,2012,117:394-406.
    [70]Odermatt, D., Gitelson, A., Brando, V.E., et al. Review of constituent retrieval in optically deep and complex waters from satellite imagery [J]. Remote Sensing of Environment,2012,118:116-126.
    [71]Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters[J]. International Journal of Remote Sensing, 2011,32 (21):6855-6899.
    [72]Gitelson, A.A., Dall'Olmo, G., Moses, W., et al. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters:Validation[J]. Remote Sensing of Environment,2008,112 (9):3582-3593.
    [73]Bricaud, A., Babin, M., Morel, A., et al. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton:Analysis and parameterization[J]. Journal of Geophysical Research:Oceans (1978-2012),1995,100 (C7):13321-13332.
    [74]Pepe, M., Giardino, C., Borsani, G., et al. Relationship between apparent optical properties and photosynthetic pigments in the sub-alpine Lake Iseo[J]. Science of the total environment,2001,268 (1):31-45.
    [75]Suzuki, K., Kishino, M., Sasaoka, K., et al. Chlorophyll-specific absorption coefficients and pigments of phytoplankton off Sanriku, Northwestern North Pacific[J]. Journal of Oceanography,1998,54 (5):517-526.
    [76]马荣华,唐军武.湖泊水色遥感参数获取与算法分析[J].水科学进展,2006,17(5):720-726.
    [77]陈楚群,施平,毛庆文.应用TM数据估算沿岸海水表面叶绿素浓度模型研究[J].环境遥感,1996,11(3):168-177.
    [78]李铜基,陈清莲,朱建华.我国近岸Ⅱ类海水光谱特性的测量与研究[J].海洋通报,2002,21(6):9-15.
    [79]陈清莲,唐军武,王项南等.东海试验区水体光谱特性现场测量与数据分析[J].海洋技术,1999,18(3):25-37.
    [80]唐军武,陈清莲,谭世祥等.海洋光谱测量与数据分析处理方法[J].海洋通报,1998,17(1):71-79.
    [81]张兵,申茜,李俊生等.太湖水体3种典型水质参数的高光谱遥感反演[J].湖泊科学,2009,2l(2):182-192.
    [82]赵巧华,秦伯强.藻类的光谱吸收特征及其混合藻吸收系数的分离[J].环境科学学报,2008,28(2):313-318.
    [83]吴传庆,王桥,刘晓曼.水体中泥沙对藻类光谱特征位置的影响分析[J].中国环境监测,2008,24(2):35-38.
    [84]韩震,恽才兴,蒋雪中.悬浮泥沙反射光谱特性实验研究[J].水力学报,2003,12:118-122.
    [85]Moberg, L., Karlberg, B., Srensen, K., et al. Assessment of phytoplankton class abundance using absorption spectra and chemometrics[J]. Talanta,2002,56 (1):153-160.
    [86]李云梅,王桥,黄家柱等.太湖水体光学特性及水色遥感[M].科学出版社,2010
    [87]刘显傅,李铜基,陈清莲.水体主要成分对表观光学量的影响[J].海洋技术,2004,23(1):85-89.
    [88]疏小舟,尹球.内陆水体藻类叶绿素浓度与反射光谱特征的关系[J].遥感学报,2000,4(1):41-45.
    [89]李云梅,黄家柱,韦玉春,等.用分析模型方法反演水体叶绿素的浓度[J].遥感学报,2006,10(2):169-175.
    [90]唐军武,田国良.水色光谱分析与多成分反演算法[J].遥感学报,1997,1(4):252-256.
    [91]张亭禄,贺明霞.基于人工神经网络的一类水域叶绿素a浓度反演方法[J].遥感学报,2002,6(1):40-44.
    [92]Sun, D.Y., Li, Y.M., Wang, Q. A unified model for remotely estimating chlorophyll a in Lake Taihu, China, based on SVM and in situ hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47 (8):2957-2965.
    [93]詹海刚,施平,陈楚群.基于遗传算法的二类水体水色遥感反演[J].遥感学报,2004,8(1):31-36.
    [94]Xu, J.P., Li, F., Zhang, B., et al. Remote chlorophyll-a retrieval in Case-Ⅱ waters using an improved model and IRS-P6 satellite data[J]. International Journal of Remote Sensing,2010,31 (17-18):4609-4623.
    [95]Yang, W., Matsushita, B., Chen, J., et al. An enhanced three-band index for estimating chlorophyll-a in turbid case-Ⅱ waters:case studies of Lake Kasumigaura, Japan, and Lake Dianchi, China[J]. Geoscience and Remote Sensing Letters, IEEE,2010,7 (4): 655-659.
    [96]Shen, F., Zhou, Y.-X., Li, D.-J., et al. Medium resolution imaging spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) Estuary[J]. International Journal of Remote Sensing,2010,31 (17-18):4635-4650.
    [97]张运林.太湖水体生物—光学特性及其生态学意义[D].中国科学院.2005.
    [98]潘德炉,马荣华.湖泊水质遥感的几个关键问题[J].湖泊科学,2008,20(2):139-144.
    [99]马荣华,唐军武,段洪涛,等.湖泊水色遥感研究进展[J].湖泊科学,2009,21(2):143-158.
    [100]马金峰,詹海刚,陈楚群.珠江河口混浊高产水域叶绿素a浓度的遥感估算模型[J].热带海洋学报,2009(1):15-20.
    [101]李云亮,张运林,李俊生,等.不同方法估算太湖叶绿素a浓度对比研究[J].环境科学,2009,30(3):680-686.
    [102]杜聪,王世新,周艺,等.利用Hyperion高光谱数据的三波段法反演太湖叶绿素a浓度[J].环境科学,2009,30(10):2904-2910.
    [103]Le, C., Li, Y., Zha, Y., et al. Remote estimation of chlorophyll a in optically complex waters based on optical classification[J]. Remote Sensing of Environment,2011,115 (2):725-737.
    [104]乐成峰,李云梅,孙德勇,等.基于季节分异的太湖叶绿素浓度反演模型研究[J].遥感学报,2007,11(4):473-480.
    [105]李方,徐京萍,马荣华,等.内陆水体叶绿素a浓度反演的区域化三波段模型研究[J].遥感学报,2011,15(6):1156-1170.
    [106]王艳红,马荣华,邓正栋.基于分区的太湖叶绿素5遥感估测模型[J].河海大学学报(自然科学版),2007,35(1):86-91.
    [107]唐军武,田国良,汪小勇,等.水体光谱测量与分析Ⅰ:水面以上测量法[J].遥感学报,2004,8(1):37-44.
    [108]Nelson, D.J. Improved chlorophyll extraction method[J]. Science,1960,132 (3423): 351-351.
    [109]Apha, A. Standard methods for the examination of water and wastewater(18th edition)[J]. Presented at the American Public Health Association, American Water Works Association, Washington, DC,1992:11.
    [110]Downes, M.T., Hrstich, L., Vincent, W.F. Extraction of chlorophyll and carotenoid pigments from Antarctic benthic mats for analysis by HPLC[J]. Journal of applied phycology,1993,5 (6):623-628.
    [111]Holden, J., Morell, J., LeBoutillier, F. Nesting insulated hot-or-cold food tray[P]: Google Patents,1976
    [112]Holm-Hansen, O., Riemann, B. Chlorophyll a determination:improvements in methodology[J]. Oikos,1978:438-447.
    [113]Riemann, B. Studies on the biomass of the phytoplankton 1976.
    [114]Marker, A.F.H. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin[J]. Freshwater Biology,1972,2 (4):361-385.
    [115]Nielsen, E.S. CHLOROPHYLL CONCENTRATION AND RATE OF PHOTOSYNTHESIS IN CHLORELLA-VULGARIS[J]. Physiologia Plantarum, 1961,14 (7):868.
    [116]王建,王骥.浮游植物叶绿素与脱镁叶绿素的测定方法[J].武汉植物学研究,1984,2:321-328.
    [117]陈宇炜,陈开宁,胡耀辉.浮游植物叶绿素a测定的热乙醇法及其测量误差的探讨[J].湖泊科学,2006,18(5):550-552.
    [118]中华人民共和国行业标准.SL88-1994.叶绿素的测定(分光光度法),1994.
    [119]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [120]赵辛.叶绿素a测定方法改进的探讨[J].福建分析测试,2007,16(1):31-32.
    [121]林少君,贺立静,黄沛生,等.浮游植物中叶绿素a提取方法的比较与改进[J].生态科学,2005,24(1):9-11.
    [122]吴志旭,张雅燕.叶绿素a测定方法的改进及最优提取时间探讨[J].甘肃环境研究与监测,2003(2):150-152.
    [123]Scor-Unesco, W. Determination of photosynthetic pigments. UNESCO Monogr. Oceanogr. Methodol,1966,1 (17):9-18.
    [124]Welschmeyer, N.A. Fluorometric analysis of chlorophyll a in the presence of cholophyll b and pheopigments[J]. Limnology and Oceanography,1994,39 (8): 1985-1992.
    [125]Mitchell, B.G. Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique[C]. In:Orlando'90,16-20 April: International Society for Optics and Photonics,1990:137-148.
    [126]Pegau, S., Zaneveld, J., Ronald, V., et al. Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Volume IV:Inherent optical properties: instruments, characterizations, field measurements and data analysis protocols. NASA Tech. Memo,2003,211621
    [127]王利珍.水体组分及环境因素对遥感反射率的影响研究[D].南京:南京师范大学.2009.
    [128]冯菁,李艳波,朱擎,等.浮游植物叶绿素a测定方法比较[J].生态环境,2008,17(2):524-527.
    [129]李振国,卢军,王国祥,等.分光光度法测定浮游植物叶绿素a的比较研究[J].中国环境监测,2006,22(2):21-23.
    [130]Galat, D.L., Verdin, J.P. Patchiness, collapse and succession of a cyanobacterial bloom evaluated by synoptic sampling and remote sensing[J]. Journal of Plankton Research, 1989,11 (5):925-948.
    [131]Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing[J]. Limnology and Oceanography,2004,49 (6):2179-2189.
    [132]怀红燕,张锦平,汤琳.基于MODIS数据的淀山湖蓝藻“水华”监测[J].科技信息,2009(26):293,295.
    [133]杨煜,李云梅,王桥,等.富营养化的太湖水体叶绿素a浓度模型反演[J].地球信息科学学报,2009,11(5):597-603.
    [134]闻建光,肖青,杨一鹏,等.基于HYPERION数据的太湖水体叶绿素浓度遥感估算[J].湖泊科学,2006,18(4):327-336.
    [135]李月娥,宋瑜,宋晓东.水面实测遥感光谱数据的叶绿素a反演模型构建—以太湖为例[J].四川环境,2009,28(3):19-22.
    [136]宋瑜,宋晓东,郭照冰,等.利用MERIS产品数据反演太湖叶绿素a浓度研究[J].遥感信息,2009(8):19-24.
    [137]杨婷,张慧,王桥,等.基于实测高光谱数据的太湖悬浮物浓度与透明度分区[J].生态与农村环境学报,2011,27(4):21-26.
    [138]王世新,焦云清,周艺,等.应用MODIS监测太湖水体叶绿素a浓度季节变化研究[J].遥感应用,2008,14(1):47-53.
    [139]张运林,秦伯强,陈伟民,等.太湖水体中悬浮物研究[J].长江流域资源与环境,2004,13(3):266-271.
    [140]樊辉,黄海军,唐军武.黄河口水体光谱特性及悬沙浓度遥感估测[J].武汉大学学报,2007,32(7):601-604.
    [141]Han, J., Kamber, M., Pei, J. Data mining:concepts and techniques[M]. San Francisco: Morgan kaufmann,2006.232-233.
    [142]Witten, I.H., Frank, E. Data mining:Practical machine learning tools and techniques[M].San Francisco:Morgan Kaumfmann Publishers,2005.99-100.
    [143]Han, L.H., Rundquist, D.C. Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration:a case study in a turbid reservoir[J]. Remote Sensing of Environment,1997 (62):253-261.
    [144]Mittenzwey, K.H., GITELSON, A., ULLRICH, S., et al. Determination of chlorophyll a of inland waters on the basis of spectral reflectance[J]. Limnology and Oceanography,1992,37 (1):147-149.
    [145]Gitelson, A., Garbuzov, G., Szilagyi, F., et al. Quantitative remote sensing methods for real-time monitoring of inland waters quality[J]. International Journal of Remote Sensing,1993,14 (7):1269-1295.
    [146]Menken, K.D., Brezonik, P.L., Bauer, M.E. Influence of chlorophyll and colored dissolved organic matter (CDOM) on lake reflectance spectra:Implications for measuring lake properties by remote sensing[J]. Lake and Reservoir Management, 2006,22 (3):179-190.
    [147]Gons, H.J., Rijkeboer, M., Ruddick, K.G. A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters[J]. Journal of Plankton Research,2002,24 (9):947-951.
    [148]Zimba, P.V., Gitelson, A. Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems:Model tuning and accuracy optimization[J]. Aquaculture, 2006,256(1):272-286.
    [149]Guanter, L., Ruiz-Verdu, A., Odermatt, D., et al. Atmospheric correction of ENVISAT/MERIS data over inland waters:Validation for European lakes[J]. Remote Sensing of Environment,2010,114 (3):467-480.
    [150]李莉,尹球,巩彩兰,等.太湖不同叶绿素a浓度水体荧光特征分析[J].光谱学与光谱分析,2011,31(1):136-140.
    [15l]邢小罡,赵冬至,刘玉光,等.叶绿素a荧光遥感研究进展[J].遥感学报,2007,11(1):137-144.
    [152]Schalles, J.F. Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentrations in coastal waters with varying suspended matter and CDOM concentrations. In:Remote sensing of aquatic coastal ecosystem processes. Netherlands:Springer,2006:p.27-79.
    [153]Garcia, C.A.E., Garcia, V.M.T., McClain, C.R. Evaluation of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans[J]. Remote Sensing of Environment,2005,95 (1):125-137.
    [154]Devred, E., Fuentes-Yaco, C., Sathyendranath, S., et al. A semi-analytic seasonal algorithm to retrieve chlorophyll-a concentration in the Northwest Atlantic Ocean from SeaWiFS data[J]. Indian Journal of Marine Sciences,2005,34 (4):356-367.
    [155]Murphy, R.J., Pinkerton, M.H., Richardson, K.M., et al. Phytoplankton distributions around New Zealand derived from SeaWiFS remotely-sensed ocean colour data[J]. New Zealand Journal of Marine and Freshwater Research,2001,35 (2):343-362.
    [156]Feldman, G.C., Part, F.S. Introduction to 4th SeaWiFS reprocessing. In:SeaWiFS Postlaunch Technical Report Series,Vo122,Algorithm updates for the fourth SeaWiFS data reprocessing. NASA Technical Memorandum 2003-206892--S.B. Hooker, E.R. Firestone, eds.,2003:4-11.
    [157]Stramska, M., Stramski, D., Hapter, R., et al. Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic[J]. Journal of Geophysical Research:Oceans (1978-2012),2003,108 (C5)
    [158]Cota, G.F., Harrison, W.G., Platt, T., et al. Bio-optical properties of the Labrador Sea[J]. Journal of Geophysical Research:Oceans (1978-2012),2003,108 (C7)
    [159]Yayla, K., M., Pierre, L. An empirical approach to the remote sensing of the chlorophyll in the optically complex waters of the Estuary and Gulf of Saint-Lawrence [D]. Universite de Sherbrooke.2009.
    [160]任黎,董增川,李少华.人工神经网络模型在太湖富营养化评价中的应用[J].河海大学学报(自然科学版),2004,32(2):147-150.
    [161]龚绍琦,黄家柱,李云梅,等.基于GIS下的太湖水质富营养化模糊综合评价[J].环境科学,2005,26(5):34-37.
    [162]韦玉春,王国祥,孙华芸.使用线性回归方法构建水体叶绿素a浓度高光谱估算模型的一个逻辑问题[J].数学的实践与认识,2010(18):100-110.
    [163]周玉虎.平滑对导数测定结果的影响[EB/OL].http://bbs.instrument.com.cn/shtml/20070820/949401/,2007/2010-10-20.
    [164]郑咏梅,张铁强,张军等.平滑、导数、基线校正对近红外光谱PLS定量分析的影响研究[J].光谱学与光谱分析,2004,24(12):1546-1548.
    [165]褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展,2004,16(4):528-542.
    [166]梁逸曾,俞汝勤.分析化学手册(10),化学计量学[M].北京:化工出版社,2001
    [167]郭波涛,易东,王文昌.核平滑半参数回归模型在重复测量资料中的应用[J].中国卫生统计,2007,24(5):456-458.
    [168]Bowman, A.W., Azzalini, A. Applied Smoothing Techniques for Data Analysis[M]. New York:Oxford University Press,1997
    [169]韦玉春,王国祥,程春梅.水面光谱数据的核回归平滑去干扰效果分析[J].南京师范大学学报(自然科学版),2010,33(3):97-102.
    [170]Yi, C. Kernel Smoothing Regression[EB/OL]. http://www.mathworks.com/matlabcentral/fileexchange/19195-kernel-smoothing-regression.2008.
    [171]Kuchinke, C.P., Gordon, H.R., Harding, L.W., et al. Spectral optimization for constituent retrieval in Case 2 waters Ⅱ:Validation study in the Chesapeake Bay[J]. Remote Sensing of Environment,2009,113:610-621.
    [172]Magnuson, A., Harding, J.L.W., Mallonee, M.E., et al. Bio-optical model for Chesapeake Bay and the middle Atlantic bight. Estuarine[J]. Coastal and Shelf Science,2004,61:403-424.
    [173]Moses, W.J., Gitelson, A.A., Berdnikov, S., et al. Estimation of chlorophyll-a concentration in case Ⅱ waters using MODIS and MERIS data-successes and challenges[J]. Environ Res Lett 2009,4:045005.
    [174]Gitelson, A.A., Gritz, Y., Merzlyak, M. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. J Plant Physiol 2003,160:271-282.
    [175]Yoder, B.J., Pettigrew-Crosby, R.E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales[J]. Remote Sensing of Environment,1995,53:199-211.
    [176]McMurtey Ⅲ, J.E., Chappelle, E.W., Kim, M.S., et al. Distinguish nitrogen fertilization levels in field corns (Zea mays L.) with actively induced fluorescence and passive reflectance measurements[J]. Remote Sensing of Environment,1994,47:36-44.
    [177]Pearson, R.L., Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie[J]. Remote Sensing of Environment,1972, 1:1355.
    [178]Rouse, J.W., Haas, R.H., Schell, J.A., et al. Monitoring vegetation systems in the Great Plains with ERTS. Washington, DC:Third ERTS symposium 1973,1:309-317.
    [179]Wei, Y.C., Wang, G.X., Huang, J.Z. Validation of the three-band chlorophyll-a inversion model in turbid water:the case of Taihu Lake, China. Presented at the SPIE Defense, Security, and Sensing, International Society for Optics and Photonics,2010: 767809-767811.
    [180]吴喜之,田茂再.现代回归模型诊断[M].北京:中国统计出版社,2003
    [181]Wei, Y., Cheng, C., Wang, L., et al. Precision improvement of Chlorophyll-a remote sensing inversion by data transformation in turbidity water under low concentration-a case of Taihu Lake, China[C]. In:Proc. of SPIE,2010:7858051-7858059.
    [182]Chappelle, E.W., Kim, M.S., McMurtrey Ⅲ, J.E. Ratio analysis of reflectance spectra (RARS):An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b and carotenoids in soybean leaves[J]. Remote Sensing of Environment,1992,39:239-247.
    [183]Zarco-Tejada, P.J., Berj6n, A., Lopez-Lozano, R., et al. Assessing vineyard condition with hyperspectral indices:Leaf and canopy reflectance simulation in a row-structured discontinuous canopy[J]. Remote Sensing of Environment,2005,99:271-287.
    [184]龚绍琦,黄家柱,李云梅,等.应用时间序列分析法对太湖叶绿素a含量的动态研究[J].海洋与湖泊,2008,39(6):591-598.
    [185]李一平,严莹,韩广毅.太湖水质时空相关性分析[J].河海大学学报:自然科学版,2005,33(5):505-508.
    [186]刘瑞民,王学军,王翠红等.应用地统计学方法研究湖泊中叶绿素a的空间分布[J].农业环境保护,2001,20(5):308-310.
    [187]周保华,郑丙辉.基于GIS的太湖水质及营养状态分区评价研究[J].环境保护,2008(10):34-38.
    [188]黄漪平.太湖水环境及其污染控制[M].北京:科学出版社,2001
    [189]黄漪平.动态聚类分析与太湖水质分区[J].湖泊科学,1992,4(2):73-78.
    [190]乐成峰,李云梅,孙德勇,等.太湖叶绿素a浓度时空分异及其定量反演[J].环境科学,2008,29(3):619-626.
    [191]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准[J].中国环境监测,2002,18(5):47-49.
    [192]顾万花,马蔚纯,周立国,等.基于RVl分区的淀山湖蓝藻暴发期叶绿素a的遥感估测[J].环境科学研究,2011,24(6):666-672.
    [193]Moore, T.S., Campbell, J.W. A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39 (8):1764-1776.
    [194]Shi, K., Li, Y., Li, L., et al. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification[J]. Science of the Total Environment,2013,444:1-15.
    [195]Vantrepotte, V., Loisel, H., Dessailly, D., et al. Optical classification of contrasted coastal waters[J]. Remote Sensing of Environment,2012,123:306-323.
    [196]Lubac, B., Loisel, H. Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea[J]. Remote Sensing of Environment,2005,110:45-58.
    [197]Feng, H., Campbell, J.W., Dowell, M., et al. Modeling spectral reflectance of optically complex waters using bio-optical measurements from Tokyo Bay[J]. Remote Sensing of Environment,2005,99:232-243.
    [198]Pulliainen, J., Kallio, K., Eloheimo, K., et al. A semi-operative approach to lake water quality retrieval from remote sensing data[J]. Science of the Total Environment, 2001,268 (1):79-93.
    [199]Sun, D.Y., Li, Y.M., Wang, Q., et al. Development of optical criteria to discriminate various types of highly turbid lake waters[J]. Hydrobiologia,2011,669 (1):83-104.
    [200]刘晓峰,段洪涛,马荣华.太湖水体遥感反演参数的空间异质性[J].湖泊科学,2010,22(3):367-374.
    [201]张军毅,陆敏,叶凉,等.夏季梅梁湖蓝绿藻密度和叶绿素的时空分布特征[J].长江流域资源与环境,2010,19(Z1):97-100.
    [202]Baret, F., Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessmentfJ]. Remote Sensing of Environment,1991,35:161-173.
    [203]Zarco-Tejada, P.J., Miller, J.R., Noland, T.L., et al. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data[J]. Remote Sensing,2001,39:1491-1507.
    [204]Buschman, C., Nagel, E. In vivo spectroscopy and internal optics of leaves as a basis for remote sensing of vegetationfJ]. International Journal of Remote Sensing,1993, 14:711-722.
    [205]Kim, M.S., Daughtry, C.S.T., Chappelle, E.W., et al. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par) [J]. Physical Measurements and Signatures in Remote Sensing,1994:299-306.
    [206]Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., et al. Chlorophyll fluorescence effects on vegetation apparent reflectance:Ⅰ. Leaf-level measurements and simulation of reflectance and transmittance spectra[J]. Remote Sensing of Environment,2000, 74:582-595.
    [207]Carter, G.A., Dell, T.R., Cibula, W.G. Spectral reflectance characteristics and digital imagery of a pine needle blight in the southeastern United States[J]. Can J For Res, 1996,26:402-407.
    [208]Carter, G.A. Ratios of leaf reflectance in narrow wavebands as indicators of plant stress. Int J Remote Sens[J]. International Journal of Remote Sensing,1994,15:697-704.
    [209]Maire, G.L., Francois, C., Dufrene, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements[J]. Remote Sensing of Environment,2004,89:1-28.
    [210]Jordan, C.F. Derivation of leaf area index from quality of light on the forest floor[J]. Ecology,1969,50:663-666.
    [211]Datt, B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b and total carotenoid content in eucalyptus leaves[J]. Remote Sensing of Environment,1998, 66:111-121.
    [212]Daughtry, C.S.T., Walthall, C.L., Kim, M.S., et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000,74:229-239.
    [213]Gitelson, A. A., Kaufman, Y., Merzlyak, M. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment,1996,58: 289-298.
    [214]Lichtenthaler, H.K., Lang, M., Sowinska, M, et al. Detection of vegetation stress via a new high resolution fluorescence imaging system[J]. Plant Physiol 1996,148:599-612.
    [215]Maccioni, A., Agati, G., Mazzinghi, P. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra[J]. J Photoch Photobio B, 2001,61:52-61.
    [216]Haboudane, D., Miller, J.R., Pattey, E., et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment,2004,90: 337-352.
    [217]Sims, D.A., Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment,2002,81:337-354.
    [218]Qi, J., Chehbouni, A., Huete, A.R., et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment,1994,48:119-126.
    [219]Chen, J.M. Evaluation of vegetation indices and modified simple ratio for boreal applications[J]. Can J Remote Sens 1996,22:229-242.
    [220]Penuelas, J., Gamon, J.A., Fredeen, A.L. Reflectance indices associated with physiological changes in nitrogen and water limited sunflower leaves[J]. Remote Sensing of Environment,1994,48:135-146.
    [221]Barnes, J.D., Balaguer, L., Manrique, E., et al. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants[J]. Environ Exp Bot 1992,32:85-100.
    [222]Rondeaux, G., Steven, M., Baret, F. Optimization of soil adjusted vegetation indices[J]. Remote Sensing of Environment,1996,55:95-107.
    [223]Rao, N.R., Garg, P.K., Ghosh, S.K., et al. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery[J]. J Agr Sci 2008: 146:165.
    [224]Blackburn, G.A. Quantifying chlorophylls and carotenoids at leaf and canopy scales; an evaluation of some hyperspectral approaches[J]. Remote Sensing of Environment, 1998,66:273-285.
    [225]Gamon, J.A., Penuelas, J., Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency [J]. Remote Sensing of Environment, 1992,41:35-44.
    [226]Gitelson, A.A., Buschmann, C., Lichtenthaler, H. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants[J]. Remote Sensing of Environment,1999,69:296-302.
    [227]Merton, R.N. Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index California, USA. Proceedings of the seventh annual JPL airborne earth science workshop,1998
    [228]Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI) [J]. Remote Sensing of Environment,1988,25:295-309.
    [229]Penuelas, J., Filella, I., Lloret, P., et al. Reflectance assessment of mite effects on apple trees[J]. International Journal of Remote Sensing,1995,16:2727-2733.
    [230]Elvidge, CD., Zhikang, C. Comparison of broad-band and narrow-band red and near-infrared vegetation indices[J]. Remote Sensing of Environment,1995,54:38-48.
    [231]Filella, I., Penuelas, J. Red edge position and shapes as indicators of plant chlorophyll content, biomass and hydric status[J]. International Journal of Remote Sensing,1994, 15:1459-1470.
    [232]Broge, N.H., Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment,2001,76:156-172.
    [233]Haboudane, D., Miller, J.R., Tremblay, N., et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment,2002,81:416-426.
    [234]Vogelmann, J.E., Rock, B.N., Moss, D.M. Red edge spectral measurements from sugar maple leaves[J]. International Journal of Remote Sensing,1993,14:1563-1575.
    [235]Gitelson, A.A., Keydan, G., Merzlyak, M. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves[J]. Geophys Res Lett 2006,33:1-5.
    [236]Huete, A., Didan, K., Miura, T., et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002,83:195-213.
    [237]Roujean, J.L., Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment,1995,51:375-384.
    [238]Gitelson, A.A., Zur, Y., Chivkunova, O.B., et al. Assessing carotenoid content in plant leaves with reflectance spectroscopy[J]. Photochem Photobiol 2002,75:272-281.
    [239]Gitelson, A.A. Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation[J]. Plant Physiol 2004,161:165-173.
    [240]赵冬至,张丰收,杨建洪,等.表征赤潮水体太阳激发的叶绿素荧光高度的波段优化-归一化荧光高度法[J].海洋学报,2006,27(6):146-153.
    [241]Miller, J.R., Hare, E.W. Quantitative characterization of the vegetation red edge reflectance.1. An inverted Gaussian reflectance model[J]. International Journal of Remote Sensing,1990,11:1775-1795.
    [242]Thiemann, S., Berger, M., Kaufmann, H. Feasibility study for lake water quality assessment using MIDORI AVNIR data[C]. Proceedings of the IGARSS, Seattle, WA, USA,1998:p.936-938.
    [243]Gong, P., Pu, R.L., Heald, R.C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia[J]. International Journal of Remote Sensing,2002,23: 1827-1850.
    [244]童庆禧,张兵,郑兰芬.高光谱遥感:原理,技术与应用[M].高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700