用户名: 密码: 验证码:
内置LED光源的新型平板式光生物反应器用于微藻高效固定CO_2
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对严峻的全球变暖和能源危机形势,利用微藻高效固定CO2并耦合生物柴油生产因具有明显的应用价值和环保效益,受到研究者的广泛关注。目前,该技术的瓶颈之一是开发高效节能的封闭式光生物反应器(PBR)。本论文以封闭式PBR中微藻高效固定CO2为研究目标,从前期获得的四种微藻中选定普通小球藻(Chlorella vulgaris)作为CO2固定与转化的高效传递载体,基于平板式PBR占地面积小、气液传质效果好、易于放大、结构简单等优势,在其中内置LED光源以提高能量产出率,历经两次结构改进,研制了新型的竖直放置气升式内环流平板光生物反应器(ILA-PBR),用于固定高浓度CO2(15%CO2)。
     (1)适于微藻生长的光源选择。以前期筛选的具有耐高温、耐高浓度CO2和耐酸性环境特性的普通小球藻(Chl. vulgaris)、盐生杜氏藻(D. salina)、纤细角毛藻(Cha. gracilis)和温泉6#藻(Cy. aponinum)为研究对象,用摇瓶培养方法进行了适宜4种微藻生长的人工光源及光质比选。在柔性红光LED灯带(LED-R)、柔性蓝光LED灯带(LED-B)、柔性白光LED灯带(LED-W)和荧光灯(FL)四种人工光源提供的不同光质照射下,以LED-W最适于普通小球藻、盐生杜氏藻和温泉6#藻生长,而LED-B最适宜纤细角毛藻生长。微藻生长所需的光质条件存在种质差异性,4种微藻的最适光质条件是普通小球藻LED白光(LW)或LED白光+LED蓝光(LW+LB),纤细角毛藻LED蓝光(LB)或FL白光+LB(FW+LB),温泉6#藻LED白光+LED红光(LW+LR);而盐生杜氏藻的生长受光质调控不明显。由此认为柔性LED灯带比FL具有更大的应用优势。
     (2)反应器中4种微藻的固碳产油潜力比较及人工光源确定。构建了第一代ILA-PBR,在通气条件下进行4种微藻的批次培养,微藻对不同浓度CO2有不同的生长响应。微藻生长的最适CO2浓度分别是:普通小球藻(1%~2.5%)、盐生杜氏藻(1%~2.5%)、纤细角毛藻(1%~5%)和温泉6#藻(0.04%)。以最大固碳速率(FD)、基于总脂的能量产出率(ERoil)、油脂产率(LP)为评价指标对4种微藻进行比选,确定普通小球藻固碳产油潜力最大,FD最大值出现在通入1%浓度CO2条件下,为1.18gCO2L-1d-1;最大ERoil和LP分别是盐生杜氏藻、纤细角毛藻、温泉6#藻的4.5倍、4.6倍和21倍。对适于普通小球藻生长的两种光照条件(LED-W和LED-W+LED-B)进行实用性检验发现,藻细胞在两种光源下生长情况接近,但在LED-B的灯管上微藻附着生长现象严重,因此,以LED-W作为普通小球藻的内置光源较为合适。
     (3)反应器构筑参数优化及光强、CO2浓度对固碳效果的影响。以普通小球藻作为受试藻种,对第一代ILA-PBR进行构筑参数优化。正交试验表明,在采用导流管并进行内部双侧光照条件下,当高径比(H/D)为6:1,降流区与升流区的面积比(Ad/Ar)为3:1,表观气速(SGV)为0.3vvm时,ILA-PBR中的普通小球藻对CO2有最大固定速率。按SGV=0.3vvm通入体积浓度1%的CO2利于普通小球藻快速增殖。在增大初始接种光密度至OD680=0.5的同时提高入射光强至240μmol m2s1,可显著提高微藻对高浓度CO2的固定能力。1%CO2中微藻的FD为1.97gCO2L-1d-1。同样条件下,通入浓度15%的CO2后,FD可达1.00gCO2L-1d-1。
     (4)降低进气中O2浓度和改变培养模式对微藻固碳效果的影响。向ILA-PBR中通入含低氧的CO2气体,微藻FD能继续提高。配制1%CO2并降低进气中O2含量低于2%(v/v),最大FD由1.97gCO2L-1d-1提升至2.27gCO2L-1d-1;通入低氧的5%CO2,最大FD由1.41gCO2L-1d-1提升至2.12gCO2L-1d-1,低氧进气方法对微藻固定CO2的促进效果明显。低氧进气条件下开展的微藻培养模式研究表明,半连续培养模式利于维持ILA-PBR中普通小球藻生物固碳的持续高效性。运行期间,除了第1d的FD为1.41gCO2L-1d-1外,其它时间的FD均能保持较高水平(1.77~2.42gCO2L-1d-1)。
     (5)改变通气方式的新型反应器固碳效果及能量产出分析。采用“数目放大”方法,与通气方式转变相结合,对ILA-PBR进行再改进,构建了第三代ILA-PBR。通入模拟烟气(15%CO2),混合曝气方法比间歇通气方法所需的工程设备更为简洁,空气+15%CO2通入条件下,FD为1.46gCO2L-1d-1,进行低氧处理后(N2+15%CO2),FD更高,稳定在1.79gCO2L-1d-1左右,分别比直接通入15%CO2提高了46%和79%,固碳性能优于现有报道中绝大多数封闭式PBR。从节能角度,在ILA-PBR中采用内置LED-W光照模式,与传统的FL外置光源模式相比可节能73.6%。前一光照模式下普通小球藻的ERoil为0.011,而后者仅为0.002,LED-W具有明显的节能优势。利用第三代ILA-PBR培养普通小球藻,在半连续培养模式下通入模拟烟气,基于微藻生物质的能量产出率(ERbiomass)和ERoil分别为0.0219~0.0249,0.0091~0.0104,亦高于大多数其他类型的PBR。结合FD的比较结果,认为本研究提出的第三代ILA-PBR具有高效节能特性,有望成为微藻固定工业烟气CO2的理想设备。
Fossil fuel combustion is also the major source of greenhouse gases responsiblefor global warming. Renewable, carbon neutral, economically viable alternatives tofossil fuels are urgently needed to avert the impending oil crisis and the dramaticconsequences of climate change. At present, the potential value of microbial, andparticularly microalga, photosynthesis to fix CO2in industrial flue-gas and productbiofuel is widely recognized. Photobioreactors (PBR) are the critical equipment in thebiofuels from microalgae process, and are one of technical bottlenecks. Actually,studies have shown that well-designed cultivation systems may lead to significantincrease of CO2fixation efficiency. In this work, Chlorella vulgris was selected fromfour microalgae strains which has the characteristic of resistance for high temperature,high concentrations and low pH value as the CO2fixation and transformation carrier.Based on the advantages of Flat-plate photobioreactors in small occupied area, highmass transfer efficiency, simple structure and easy to scale-up, an innovative closedPBR called internal loop airlift flat plate photobioreactor equipped with interior LEDilluminant (ILA-PBR) was developed. Twice improvements were carried to increasedaily CO2fixation (FD) of Chl. vulgris with low energy consumption from simulatedflue-gas.
     The first step in developing an algal process is to choose the algal species. Fourstrains of microalgae mentioned in the former part, namely, Chlorella. vulgaris,Dunaliella salina, Chaetoceros gracilis and Cyanobacterium aponinum were studiedin batch mode. Artificial light sources were fluorescence lamp (FL), andflexchromatic light-emitting diode strips of red (LED-R), white (LED-W), and blue(LED-B). Nine light qualities, respectively, LED red light (LR), LED blue light (LB),LED red plus LED blue light (LR+LB), LED white light (LW), fluorescent white light (FW), and the proportions of red or blue light are increased in LW and FW (FW+LR,FW+LB, LW+LR, LW+LB) were provided. Results revealed that LED-W increasedthe maximum photosynthetic action rate of Chl. vulgaris, D. salina, and Cy. aponinum,homoplastically, LED-B played the same role in the growth of Cha. gracilis. In termsof the light qualities, the present data showed species-specific photoacclimationresponses for four species. At the irradiance of60μmol m2s1, the growth rate ofChl. vulgaris was significantly higher under LW and LW+LB than under the otherlight treatments. The highest growth rate of Cha. gracilis appeared under the lightqualities LB or FW+LB. LW+LR was the most favorable for the growth of Cy.aponinum. Be different than other strains, the growth rate of D. salina did not changedistinctly with light qualities. Whatever the light resource and the light quality, theflexible LED strips have more advantages than FL for microalgae growth.
     To investigate the suitable conditions of CO2supply, the first generationILA-PBR with3.2L of working volume was built. In the microalgal cultures aeratedwith0.04%,1%,2.5%,5%and10%CO2, the maximal FD in fed-batch mode of C.vulgaris was1.18g CO2L-1d-1with1%CO2aeration. The optimum CO2concentration for microalgae growth was, respectively, Chl. vulgaris1~2.5%, D.salina1~2.5%, Cha. gracilis1~5%, and Cy. aponinum0.04%. Uniformly, thelipid-based energy ratio (ERoil) and lipid productivity of Chl. vulgaris was3.5timeshigher than that of D. salina,3.6times higher than Cha. gracilis, and20times higherthan Cy. aponinum. Combined with the previous results, the practicability test of twokinds of light condition (LED-W, LED-W+LED-B) was carried out to explore thefeasibility of application. By comparing with the results obtained under the LED-Wlight, microalgae had similar growth pattern under the LED-W+LED-B light, however,Chl. vulgaris cells attached on the surface of LED-B seriously which might have anegative effect on biomass harvest. On the basis of that, the LED-W was suggested tocultivate C. vulgaris as an interior LED illuminant in ILA-PBR.
     Secondary, the growth and FD datas from Chl. vulgaris cultivated in theILA-PBR carried by orthogonal experiment were used to evaluate the effects of threemain design parameters including superficial gas velocity (SGV), the ratio of height to diameter (H/D), and the ratio between downcomer and riser cross sectional area(Ad/Ar) on FD. The design parameters were optimized as follows: SGV=0.3vvm,Ad/Ar=3:1and H/D=6:1. It was also demonstrated that SGV played an active role forFD by increasing average gas holdup (g) of microalgae suspensions. Microalgaegrowth was influenced by multiple factors, and only considering reactor performanceascension through volumetric mass transfer coefficient (kLa) was not comprehensive;increasinggcould play a more important role. Aeration was supplemented with1%CO2, and a SGV of0.3vvm was the most beneficial condition for the rapid growth ofC. vulgaris in ILA-PBR. Increasing the initial inoculation optical density (OD680) to0.5, synchronously, improving the incident light intensity to240μmol m2s1couldsignificantly enhance the microalgal resistance to high concentrations of CO2andeffectively improve FD to1.97g CO2L-1d-1in the microalgal cultures aerated with1%CO2at SGV=0.3vvm. Under the same initial OD680and incident light intensity, themaximum FD of1.00g CO2L-1d-1occurred in the first generation ILA-PBR whenSGV was0.3vvm, CO2concentration was15%.
     In addition, SGV was maintained at0.3vvm. CO2was continuously added to theN2stream to decrease the O2content in the flow agitation. Through this method, FDcould be improved sequentially. In the microalgal cultures aerated with1%and5%CO2with low O2concentration, the maximal FD were increased to2.27g CO2L-1d-1from1.97g CO2L-1d-1,2.12g CO2L-1d-1from1.41g CO2L-1d-1, respectively. Asemi-continuous process was operated under these conditions. The FD was highest incomparison with those in the batch and fed-batch cultivation modes. The results ofFD obtained from semi-continuous mode were1.41g CO2L-1d-1on the first day, andmaintained at the level of1.77-2.42g CO2L-1d-1. Consequently, semi-continuouscultivation mode is conducive to maintaining the high CO2fixtation efficiency of Chl.vulgaris in the ILA-PBR.
     Finally, the number amplification method was adopted to realize the enlargementof ILA-PBR based on the improved ventilation modes. Mixing aeration mode was putforward to account for it. The third generation ILA-PBR with8.0L of workingvolume was built and simulated flue-gas (15%CO2) was bubbled into microalgae suspension. The FD of this method was1.46g CO2L-1d-1and1.79g CO2L-1d-1when air or N2mixed with15%CO2in ILA-PBR, respectively. Above all, these FDvalues are considerably higher than reported in the published literature for mostclosed photobioreactors. From the perspective of energy conservation, taking LED-Was internal illuminant could saving73.6percent energy than the traditional FLexternal light pattern. It is important to re-iterate that the ERoilof C. vulgaris underformer light pattern is0.011, which is also considerably larger than the latter one(0.002). In the third generation ILA-PBR, the biomass-based energy ratio (ERbiomass)and ERoilof was0.0219-0.0249and0.0091-0.0104, also higher than most PBR.Taking all the evaluation indexes (FD, ERbiomassand ERoil) into consideration, as amore efficient and energy saving CO2fixation system, the ILA-PBR could bepotentially applied in the area of microalgae culturing for industrial flue-gas CO2removal.
引文
[1] Earth System Research Laboratory, Global Monitoring Division. Recent Mauna Loa CO2[EB/OL].(2014-01-17). http://www.esrl.noaa.gov/gmd/ccgg/trends/.
    [2] IPCC. Climate Change2007, the Fourth Assessment Report (AR4) of the United NationsIntergovernmental Panel on Climate Change[R]. IPCC, Switzerland, Geneva:104。
    [3] Gutiérrez R, Gutierrez-Sanchez R, Nafidi A. Trend analysis using nonhomogeneous stochasticdiffusion processes. Emission of CO2; Kyoto protocol in Spain[J]. Stochastic EnvironmentalResearch and Risk Assessment,2008,22(1):57-66.
    [4]朱永斌.到2020年中国单位国内生产总值二氧化碳排放比2005年下降40%-45%[EB/OL].(2009-11-26). http://news.xinmin.cn/rollnews/2009/11/26/2984457.html
    [5]孙欣.燃煤电厂二氧化碳捕集与储存技术[J].中国煤炭,2008,34(4):96-99.
    [6] Aresta M, Dibenedetto A. Utilisation of CO2as a Chemical Feedstock: Opportunities andChallenges[J]. Dalton Transactions,2007,(28):2975-2992.
    [7]郭薇. CCU与CCS有望将成为节能减排关键技术[N].中国环境报.2010-01-12.
    [8]韩志国,李爱芬,龙敏南,等.微藻光合作用制氢——能源危机的最终出路?[J].生态科学,2003,22(2):104-108.
    [9]刘广清,董仁杰,李秀金.生物质能源转化技术[M].北京:化学工业出版社,2009.
    [10]宋东辉,侯李君,施定基.生物柴油原料资源高油脂微藻的开发利用[J].生物工程学报,2008,24(3):341-348.
    [11]王伟.全国性碳排放交易市场建设步入关键期[EB/OL].(2014-1-13).http://www.tanpaifang.com/tanjiaoyi/2014/0113/28031.html
    [12]王长海.微藻与微藻生物技术[J].渔业现代化,2006(1):20-22.
    [13] Berbero lu H, Pilon L. Maximizing the solar to H2energy conversion efficiency of outdoorphotobioreactors using mixed cultures[J]. International Journal of Hydrogen Energy,2010,35(2):500-510.
    [14] Chisti Y. Biodiesel from microalgae[J]. Biotechnology advances,2007,25(3):294-306.
    [15] Wang B, Li Y, Wu N, et al. CO2bio-mitigation using microalgae[J]. Applied Microbiologyand Biotechnology,2008,79(5):707-718.
    [16]李元广,谭天伟,黄英明.微藻生物柴油产业化技术中的若干科学问题及其分析[J].中国基础科学,2009(5):64~70.
    [17] Hu B, Min M, Zhou W, et al. Influence of exogenous CO2on biomass and lipid accumulationof microalgae Auxenochlorella protothecoides cultivated in concentrated municipalwastewater[J].Applied Biochemistry and Biotechnology,2012,166(7):1661-1673.
    [18] Milledge J. Commercial application of microalgae other than as biofuels: A brief review [J].Reviews in Environmental Science and Biotechnology,2010,10(1):1–11.
    [19]李健,张学成,胡鸿钧,等.微藻生物技术产业前景和研发策略分析[J].科学通报,2012,57(1):23~31.
    [20] Zhu J Y, Rong J F, Zong B N. Factors in mass cultivation of microalgae for biodiesel[J].Chinese Journal of Catalysis,2013,34(1):80-100.
    [21] Van den Hoek C. Algae: an introduction to phycology[M]. Cambridge University Press,1995.
    [22] Graham L E, Wilcox L W. Algae[M].Prentice Hall, NJ: Upper Saddle River,2000.
    [23]钱树本,刘东艳,孙军.海藻学[M].青岛:中国海洋大学出版社.2005.
    [24]胡鸿钧,魏印心.中国淡水藻类—系统、分类与生态[M].北京:科学出版社.2006.
    [25] Apt K E, Behrens P W. Commercial developments in microalgal biotechnology[J]. Journal ofPhycology,1999,35(2):215-226.
    [26] Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae[J].Journal of Bioscience and Bioengineering,2006,101(2):87-96.
    [27]宋成军,董保成,赵立欣,等.纯二氧化碳条件下小球藻固定CO2[J].环境工程学报,2012,6(12):4566-4572.
    [28]于贵瑞,王秋凤.植物光合、蒸腾与水分利用的生理生态学[M].北京:科学出版社,2010.
    [29] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics[J]. AnnualReview of Plant Biology,1991,42(1):313-349.
    [30]周云龙.植物生物学(第二版)[M].北京:高等教育出版社,2004.
    [31] Packer M. Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gasmitigation with reference to New Zealand energy strategy and policy[J]. Energy Policy,2009,37(9):3428-3437.
    [32] Kroth P G, Chiovitti A, Gruber A, et al. A model for carbohydrate metabolism in the diatomPhaeodactylum tricornutum deduced from comparative whole genome analysis[J]. PloS one,2008,3(e1426):1-14.
    [33]王镜岩,朱圣庚,徐长法.生物化学(第三版)[M].北京:高等教育出版社,2002.
    [34]韩博平,韩志国,付翔.藻类光合作用机理与模型[M].北京:科学出版社,2003.
    [35] Wang X, Hao C, Zhang F, et al. Inhibition of the growth of two blue-green algae speciesMicrosystis aruginosa and Anabaena spiroides by acidification treatments using carbondioxide[J]. Bioresource Technology,2011,102(10):5742-5748.
    [36] Van Den Hende S, Vervaeren H, Boon N. Flue gas compounds and microalgae:(Bio-)chemical interactions leading to biotechnological opportunities[J]. Biotechnology Advances,2012,30(6):1405-1424.
    [37] Iwasaki I, Hu Q, Kurano N, et al. Effect of extremely high-CO2stress on energy distributionbetween photosystem I and photosystem II in a‘high-CO2’ tolerant green alga, Chlorococcumlittorale and the intolerant green alga Stichococcus bacillaris [J]. Journal of Photochemistryand Photobiology B: Biology,1998,44(3):184-190.
    [38] Miyachi S, Iwasaki I, Shiraiwa Y. Historical perspective on microalgal and cyanobacterialacclimation to low-and extremely high-CO2conditions[J]. Photosynthesis Research,2003,77(2-3):139-153.
    [39] Chiu S Y, Kao C Y, Tsai M T, et al. Lipid accumulation and CO2utilization ofNannochloropsis oculata in response to CO2aeration[J]. Bioresource Technology,2009,100(2):833-838.
    [40] Wu Y, Gao K S. CO2-induced seawater acidification affects physiological performance of themarine diatom Phaeodactylum tricornutum[J]. Biogeosciences,2010,7(9):2915-2923.
    [41]鲍亦璐.微藻培养过程的营养优化与控制研究[D].广州:华南理工大学,2012.
    [42]邱保胜,高坤山.蓝藻浓缩二氧化碳的机制[J].植物生理学通讯,2001,37(5):385-392.
    [43]夏建荣,高坤山.绿藻CO2浓缩机制的研究进展[J].应用生态学报,2002,13(11):1507-1510.
    [44] Larkum A W D, Ross I L, Kruse O, et al. Selection, breeding and engineering of microalgaefor bioenergy and biofuel production[J]. Trends in Biotechnology,2012,30(4):198-205.
    [45]孟春晓,高政权,叶乃好.微藻制氢的研究进展[J].海洋湖沼通报,2008,4:153-160.
    [46] Sung K D, Lee J S, Shin C S, et al. Isolation of a new highly CO2tolerant fresh waterMicroalga Chlorella sp. KR-1[J]. Korean Journal of Chemical Engineering,1998,15(4):449-450.
    [47] Chang E H, Yang S S. Some characteristics of microalgae isolated in Taiwan for biofixationof carbon dioxide[J]. Botanical Bulletin of Academia Sinica,2003,44:43-52.
    [48] De Morais M G, Costa J A V. Isolation and selection of microalgae from coal firedthermoelectric power plant for biofixation of carbon dioxide[J]. Energy conversion andManagement,2007,48(7):2169-2173.
    [49] De Morais M G, Costa J A V. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmusobliquus cultivated in a three-stage serial tubular photobioreactor[J]. Journal ofBiotechnology,2007,129(3):439-445.
    [50] Chae S R, Hwang E J, Shin H S. Single cell protein production of Euglena gracilis andcarbon dioxide fixation in an innovative photo-bioreactor[J]. Bioresource Technology,2006,97(2):322-329.
    [51]岳丽宏,陈宝智,王黎,等.利用微藻固定烟道气中CO2的实验研究[J].应用生态学报,2002,13(2):156-158.
    [52] Lee J S, Kim D K, Lee J P, et al. Effects of SO2and NO on growth of Chlorella sp. KR-1[J].Bioresource Technology,2002,82(1):1-4.
    [53] Doucha J, Lívansky K. Outdoor open thin-layer microalgal photobioreactor: potentialproductivity[J]. Journal of Applied Phycology,2009,21(1):111-117.
    [54]岳丽宏,陈为公,李建国,等.烟气环境条件下小球藻的生长及其CO2固定[J].青岛理工大学学报ISTIC,2005,26(6).
    [55] Yoo C, Jun S Y, Lee J Y, et al. Selection of microalgae for lipid production under high levelscarbon dioxide[J]. Bioresource Technology,2010,101(1): S71-S74.
    [56] Negoro M, Hamasaki A, Ikuta Y, et al. Carbon dioxide fixation by microalgae photosynthesisusing actual flue gas discharged from a boiler[J]. Applied Biochemistry and Biotechnology,1993,39(1):643-653.
    [57] De Morais M G, Costa J A V. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris,Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubularphotobioreactors[J]. Biotechnology Letters,2007,29(9):1349-1352.
    [58]刘明升,魏群,蔡元妃,等.六种微藻固定CO2实验研究[J].广西大学学报(自然科学版),2012,37(3):544-547.
    [59]张学成,时艳侠,孟振.小球藻紫外线突变及高产菌株筛选[J].中国海洋大学学报,2007,37:749-753.
    [60]陈明明,杨忠华,吴高明,等.利用微藻技术减排CO2的研究[J].武汉科技大学学报,2009,32(4):436-440.
    [61] Radakovits R, Jinkerson R E, Darzins A, et al. Genetic engineering of algae for enhancedbiofuel production[J]. Eukaryotic Cell,2010,9(4):486-501.
    [62] Beuf L, Kurano N, Miyachi S. Rubisco activase transcript (rca) abundance increases when themarine unicellular green alga Chlorococcum littorale is grown under high-CO2stress[J].Plant Molecular Biology,1999,41(5):627-635.
    [63] Kang R J, Shi D J, Cong W, et al. Effects of co-expression of two higher plants genes ALDand TPI in Anabaena sp. PCC7120on photosynthetic CO2fixation[J]. Enzyme and MicrobialTechnology,2005,36(4):600-604.
    [64]王水成,李中新.电光源的种类及特点[J].现代商贸工业,2007,19(2):280-281.
    [65]梁铨廷,刘翠红.物理光学简明教程[M].北京:电子工业出版社,2010.
    [67] Miyake J, Wakayama T, Schnackenberg J, et al. Simulation of the daily sunlight illuminationpattern for bacterial photo-hydrogen production[J]. Journal of Bioscience and Bioengineering,1999,88(6):659-663.
    [68] Chen C Y, Yeh K L, Aisyah R, et al. Cultivation, photobioreactor design and harvesting ofmicroalgae for biodiesel production: A critical review[J]. Bioresource Technology,2011,102(1):71-81.
    [69]毛安君. LED光源促进微藻生长的研究[D].青岛:中国海洋大学,2006.
    [70] Han B P. A mechanistic model of algal photoinhibition induced by photodamage tophotosystem-II[J]. Journal of Theoretical Biology,2002,214(4):519-527.
    [71] Hill R, Schreiber U, Gademann R, et al. Spatial heterogeneity of photosynthesis and the effectof temperature-induced bleaching conditions in three species of corals[J]. Marine Biology,2004,144(4):633-640.
    [72] Hill R, Frankart C, Ralph P J. Impact of bleaching conditions on the components ofnon-photochemical quenching in the zooxanthellae of a coral[J]. Journal of ExperimentalMarine Biology and Ecology,2005,322(1):83-92.
    [73]张曼,曾波,王明书,等.温度升高对高光强环境下蛋白核小球藻(Chlolorellapyrenoidosa)光能利用和生长的阻抑效应[J].生态学报,2007,27(2):662-667.
    [74]缪锦来,王波,阚光锋,等.环境因子对2种南极绿藻脂肪含量和脂肪酸组成的影响[J].海洋科学,2005,29(1):4-11.
    [75]游文朗,陈必链,王娟.平板式光生物反应器中紫球藻培养条件的优化[J].植物资源与环境学报,2006,15(1):30-33.
    [76]赵素芬,何培民.光照强度和盐度对长心卡帕藻生长的影响[J].热带海洋学报,2009,28(1):74-79.
    [77]顾林娣,王清,蔡霞,等.不同光照度对3种藻生长的影响(简报)[J].植物生理学通讯,2001,37(5):416~418.
    [78]石娟,潘克厚.不同光照条件对小新月菱形藻和等鞭金藻8701生长及生化成分的影响[J].中国水产科学,2004,11(2):121-128.
    [79]马若欣,王学魁,曹春晖.氮浓度和光照强度对小新月菱形藻生长和总脂含量的影响[J].天津科技大学学报,2009,24(3):31-34.
    [80]成永旭.生物饵料培养学[M].北京:中国农业出版社,第二版,2007.
    [81]严佳琦,黄旭雄,陶妍,等.五种淡水微藻的适宜培养温度和光照强度[J].生态学杂志,2012,31(5):1104-1110.
    [82]李卓佳,梁伟峰,陈素文,等.虾池常见微藻的光照强度、温度和盐度适应性[J].生态学杂志,2008,27(3):397-400.
    [83] Ruangsomboon S. Effect of light, nutrient, cultivation time and salinity on lipid production ofnewly isolated strain of the green microalga, Botryococcus braunii KMITL2[J]. BioresourceTechnology,2012,109:261-265.
    [84]殷大聪,耿亚红,梅洪,等.几种主要环境因子对布朗葡萄藻(Botryococcus braunii)光合作用的影响[J].武汉植物学研究,2008,26(1):64-69.
    [85] Solettoa D, Binaghia L, Ferrari L, et al. Effects of carbondioxide feeding rate and lightintensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helicalphotobioreactor[J]. Biochemical Engineering Journal,2008,3(2):369-375.
    [86] Jeon Y C, Cho C W, Yun Y S. Combined effects of light intensity and acetate concentrationon the growth of unicellular microalga Haematococcus pluvialis[J]. Enzyme and MicrobialTechnology,2006,39(3):490-495.
    [87] Fan L, Vonshak A, Boussiba S. Effect of temperature and irradiance on growth ofHaematococcus pluvialis (Chlorophyceae)[J]. Journal of Phycology,1994,30(5):829-833.
    [88]毛安君,王晶,林学政,等.光谱对小球藻和等鞭金藻生长的影响[J].光谱学与光谱分析,2008,28(5):991-994.
    [89]苗洪利,周晓光,刘逢学,等. LED光谱对纤细角毛藻和亚心形扁藻生长的影响[J].光学学报,2010,30(4):1101-1105.
    [90]徐明芳.光生物反应器内设LED光源的特性研究[J].食品与发酵工业,2001,27(4):7-12.
    [91]徐明芳,李贻玲.钝顶螺旋藻在LED光电板式光生物反应器中的培养研究[J].海洋科学,2001,25(2):42-45.
    [92] Yan C, Luo X, Zheng Z. Effects of various LED light qualities and light intensity supplystrategies on purification of slurry from anaerobic digestion process by Chlorella vulgaris [J].International Biodeterioration&Biodegradation,2013,79:81-87.
    [93] Baba M, Kikuta F, Suzuki I, et al. Wavelength specificity of growth, photosynthesis, andhydrocarbon production in the oil-producing green alga Botryococcus braunii [J].Bioresource Technology,2012,109:266-270.
    [94] Yen U C, Huang T C, Yen T C. Observation of the circadian photosynthetic rhythm incyanobacteria with a dissolved-oxygen meter[J]. Plant Science,2004,166(4):949~952.
    [95]徐虹,王靖,赵振坤,等.铜绿微囊藻光合作用的昼夜节律变化[J].高技术通讯,2007,l7(2):201~204.
    [96]李师翁,李虎乾.玻璃管道光合生物反应器中小球藻大规模培养的研究[J].生物工程学报,1997,13(1):93~97.
    [97]曲慧,孙利芹.纤细角毛藻平板反应器培养条件的优化[J].烟台大学学报(自然科学与工程版),2009,22(2):122-126.
    [98] Jacob-Lopes E, Scoparo G H C, Lacerda L M C F, et al. Effect of light cycles (night/day) onCO2fixation and biomass production by microalgae in photobioreactors[J]. ChemicalEngineering and Processing: Process Intensification,2009,48(1):306~310.
    [99]都基峻,曾萍,石应杰,等.模拟烟气条件下野生混合微藻的培养[J].环境科学研究,2010,23(3):366~370.
    [100]沈银武,朱运芝,刘永定.不同光质对中华植生藻的影响[J].水生生物学报,1999,23(3):285~287.
    [101]吴霞,康瑞娟,丛威,等.转光膜在雨生红球藻养殖上的应用[J].过程工程学报,2006,6(6):969~972.
    [102]李永富,孟范平.基于透光性能分析的微藻光生物反应器构筑板材选型[J].光学学报,2014,34(1):0123003
    [103] Ono E, Cuello J L. Design parameters of solar concentrating systems for CO2-mitigatingalgal photobioreactors[J]. Energy,2004,29(9~10):1651-1657.
    [104] Richmond A, Wu Z C. Optimization of a flat plate glass reactor for mass production ofNannochloropsis sp. Outdoors[J]. Journal of Biotechnology,2001,85(3):259-269.
    [105]展望,桑敏,李爱芬,等.不同光径对两株土壤绿藻生长及脂类积累的影响[J].可再生能源,2010(3):67-71.
    [106] Rodolfi L, Zittelli G C, Bassi N, et al. Microalgae for oil: strain selection, induction of lipidsynthesis and outdoor mass cultivation in a low-cost photobioreactor[J]. BiotechnologyBioengineer,2009,102(1):100–112.
    [107]王付冬,桑敏,李爱芬,等.光照对眼点拟微绿球藻和三角褐指藻生长及总脂的影响[J].中国油脂,2010,35(6):71-75.
    [108]陈雄文,高坤山. CO2浓度对中肋骨条藻的光合无机碳吸收和胞外碳酸醉酶活性的影响[J].科学通报,2003,48(21):2275-2279.
    [109]张其德,卢从明,冯丽洁,等. CO2加富对紫花苜蓿光合作用原初光能转换的影响[J].植物学报,1996,38(1):77-82.
    [110]吴红艳.钝顶螺旋藻的无机碳吸收及其碳酸酐酶作用[J].自然科学进展,2006,16(5):633-636.
    [111]胡晗华,高坤山. CO2对微拟球藻(Nannochloropsis sp.)利用有机碳和光合作用的影响[J].植物生理学通讯,2006,42(4):633-637.
    [112] McKee I F, Woodward F I. The effect of growth at elevated CO2concentrations onphotosynthesis in wheat[J]. Plant, Cell&Environment,1994,17(7):853-859.
    [113]于娟,唐学玺,张培玉,等. CO2加富对两种海洋微绿藻的生长、光合作用和抗氧化酶活性的影响[J].生态学报,2005,25(2):197-202.
    [114] Lee Y K, Tay H S. High CO2partial pressure depresses productivity and bioenergetic growthyield of Chlorella pyrenoidosa culture[J]. Journal of Applied Phycology,1991,3(2):95-101.
    [115] Kurano N, Ikemoto H, Miyashita H, et al. Fixation and utilization of carbon dioxide bymicroalgal photosynthesis[J]. Energy Conversion and Management,1995,36(6):689-692.
    [116]张一昕,赵兵涛,熊锴彬,等.微藻固定燃烧烟气中CO2的研究进展[J].生物工程学报,2011,27(2):164-171.
    [117]蒋银莉.利用模拟烟道气培养产油微藻的研究[D].北京:中国科学院研究生院,2012.
    [118]李志勇,郭祀远.采用鼓泡柱式光生物反应器培养螺旋藻的研究[J].食品工业科技,1998(5):18-21.
    [119] Seckbach J, Ikan R. Sterols and Chloroplast structure of Cyanidium caldarium [J]. PlantPhysiology,1972,49(3):457-459.
    [120] Hanagata N, Takeuchi T, Fukuju Y, Barnes D J, et al., Tolerance of microalgae to high CO2and high temperature [J]. Phytochemistry,1992,31(10):3345-3348.
    [121] Miyairi S. CO2assimilation in a thermophilic cyanobacterium [J]. Energy Conversion andManagement,1995,36(6-9):763-766.
    [122] Yoshihara K, Nagase H, Eguchi K, et al., Biological elimination of nitric oxide and carbondioxide from flue gas by marine microalga NOA-113cultivation in a long tubularphotobioreactor [J]. Journal of Fermentation and Bioengineering,1996,82(4):351-354.
    [123] Masaki O, Yoshitaka K, Hiromoto W, et al., Effect of inorganic carbon on photoautotrophicgrowth of microalga Chlorococcum littorale [J]. Biotechnology Progress,2009,25(2):492-498.
    [124] Nakano Y, Miyatake K, Okuno H, et al. Growth of photosynthetic algae Euglena in highCO2conditions and its photosynthetic characteristics[C]//International Symposium on PlantProduction in Closed Ecosystems440.1996:49-54.
    [125] Chiang C L, Lee C M, Chen P C. Utilization of the cyanobacteria Anabaena sp. CH1inbiological carbon dioxide mitigation processes[J]. Bioresource Technology,2011,102(9):5400-5405.
    [126] Mark E H, Donald G R. CO2mitigation and renewable oil from photosynthetic microbes: anew appraisal [J]. Mitigation and Adaptation Strategies for Global Change,2007,12(4):573-608.
    [127] Nagase H, Eguchi K, Yoshihara K. Improvement of microalgal NOx removal in bubblecolumn and airlift reactors [J]. Journal of Fermentation and Bioengineering,1998,86(4):421-423.
    [128] Yanagi M, Watanabe Y, Saiki H. CO2fixation by Chlorella sp. HA-1and its utilization [J].Energy Conversion and Management,1995,36(6-9):713-716.
    [129]陈智杰,姜泽毅,张欣欣,等.微藻培养光生物反应器内传递现象的研究进展[J].化工进展,2012,31(7):.1407-1418.
    [130] Suh I S, Lee C G. Photobioreactor engineering: design and performance[J]. Biotechnologyand Bioprocess Engineering,2003,8(6):313-321.
    [131]张元兴,许学书.生物反应器工程[M].上海:华东理工大学出版社,2001.
    [132]许海,刘兆普,袁兰,等. pH对几种淡水藻类生长的影响[J].环境科学与技术,2009,32(1):32-35.
    [133] Sakai N, Sakamoto Y, Kishimoto N, et al. Chlorella strains from hot springs tolerant to hightemperature and high CO2[J]. Energy Conversion and Management,1995,36(6):693-696.
    [134] Maeda K, Owada M, Kimura N, et al. CO2fixation from the flue gas on coal-fired thermalpower plant by microalgae[J]. Energy Conversion and Management,1995,36(6):717-720.
    [135]李祥蕾.微藻在高温、低pH值、高浓度CO2条件下的生长及产油性能研究[D].青岛:中国海洋大学,2013.
    [136] Walter. Physiological Plant Ecology[M]. Springer,1997.
    [137] Chen M, Tang H, Ma H, et al. Effect of nutrients on growth and lipid accumulation in thegreen algae Dunaliella tertiolecta [J]. Bioresource Technology,2011,102(2):1649-1655.
    [138]万晶晶.产油微藻的高密度培养工艺研究[D].北京:北京化工大学,2013.
    [139] Illman A M, Scragg A H, Shales S W. Increase in Chlorella strains calorific values whengrown in low nitrogen medium[J]. Enzyme and Microbial Technology,2000,27(8):631-635.
    [140]尚常花,朱顺妮,袁振宏,等.产油微藻油脂代谢调控[J].农业机械,2011(4):57-61.
    [141] Certik M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acidproduction[J]. Journal of Bioscience and Bioengineering,1999,87(1):1-14.
    [142] Tredici M R, Carlozzi P, Chini Zittelli G, et al. A vertical alveolar panel (VAP) for outdoormass cultivation of microalgae and cyanobacteria[J]. Bioresource Technology,1991,38(2):153-159.
    [143] Molina E, Fernández J, Acién F G, et al. Tubular photobioreactor design for algal cultures[J].Journal of Biotechnology,2001,92(2):113-131.
    [144] Lee Y H, Yeh Y L, Lin K H, et al. Using fluorochemical as oxygen carrier to enhance thegrowth of marine microalga Nannochloropsis oculata[J]. Bioprocess and BiosystemsEngineering,2013,36(8):1071-1078.
    [145]刘福强.螺旋藻高密度培养中的条件控制[J].食品与发酵科技,2009,45(3):26-29.
    [146]蒋礼玲,张亚杰,范晓蕾.不同培养模式对能源微藻生物质产率的影响[J].可再生能源,2010,28(2):83-86.
    [147] Hsieh C H, Wu W T. Cultivation of microalgae for oil production with a cultivation strategyof urea limitation[J]. Bioresource Technology,2009,100(17):3921-3926.
    [148] Scragg A H, Illman A M, Carden A, et al. Growth of microalgae with increased calorificvalues in a tubular bioreactor[J]. Biomass and Bioenergy,2002,23(1):67-73.
    [149] Cheng Y, Zhou W, Gao C, et al. Biodiesel production from Jerusalem artichoke (HelianthusTuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides[J]. Journal ofChemical Technology and Biotechnology,2009,84(5):777-781.
    [150] Xiong W, Li X, Xiang J, et al. High-density fermentation of microalga Chlorellaprotothecoides in bioreactor for microbio-diesel production[J]. Applied Microbiology andBiotechnology,2008,78(1):29-36.
    [151] Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorellaprotothecoides by heterotrophic growth in fermenters[J]. Journal of Biotechnology,2006,126(4):499-507.
    [152] Li X, Xu H, Wu Q. Large‐scale biodiesel production from microalga Chlorellaprotothecoides through heterotrophic cultivation in bioreactors[J]. Biotechnology andBioengineering,2007,98(4):764-771.
    [153] Chiu S Y, Kao C Y, Chen C H, et al. Reduction of CO2by a high-density culture of Chlorellasp. in a semicontinuous photobioreactor[J]. Bioresource Technology,2008,99(9):3389-3396.
    [154] Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris underautotrophic, heterotrophic and mixotrophic growth conditions[J]. Biotechnology Letters,2009,31(7):1043-1049.
    [155] Gouveia L, Oliveira A C. Microalgae as a raw material for biofuels production[J]. Journal ofIndustrial Microbiology&Biotechnology,2009,36(2):269-274.
    [156]李兴武,李元广,沈国敏,等.普通小球藻异养-光自养串联培养的培养基[J].过程工程学报,2006,6(2):277-280.
    [157] Hu B, Zhou W, Min M, et al. Development of an effective acidogenically digested swinemanure-based algal system for improved wastewater treatment and biofuel and feedproduction[J]. Applied Energy,2013,107:255-263.
    [158] Ramos de Ortega A, Roux J C. Production of Chlorella biomass in different types of flatbioreactors in temperate zones[J]. Biomass,1986,10(2):141–156.
    [159] Wu Z C, Zmora O, Kopel R, et al. An industrial-size flat plate glass reactor for massproduction of Nannochloropsis sp.[J]. Aquaculture,2001,195(1-2):35–49.
    [160]许波,王长海.微藻的平板式光生物反应器高密度培养[J].食品与发酵工业,2003,29(1):36-40.
    [161]林晨,李元广,王伟良,等.一种新型多节隔板-平板式光生物反应器的数值和实验研究[J].高校化学工程学报,2009,23(2):263~269.
    [162]李昱喆,齐祥明,刘天中,等.带波纹隔板的平板式光生物反应器流动特性[J].过程工程学报,2010,10(5):849-855.
    [163] Kaewpintong K, Shotipruk A, Powtongsook S, et al. Photoautotrophic high-densitycultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor[J]. BioresourceTechnology,2007,98(2):288-295.
    [164] Ge Y, Liu J, Tian G. Growth characteristics of Botryococcus braunii765under high CO2concentration in photobioreactor[J]. Bioresource Technology,2011,102(1):130–134.
    [165] Feng Y J, Li C, Zhang D W. Lipid production of Chlorella vulgaris cultured in artificialwastewater medium[J]. Bioresource Technology,2011,102(1):101–105.
    [166]陈必链,梁世中,王娟,等.搅拌式光生物反应器培养紫球藻的条件优化[J].福建师范大学学报(自然科学版),2004,20(2):91~96.
    [167]陈必链,江贤章,王娟,等.光生物反应器中螺旋藻培养条件的优化[J].植物资源与环境学,2005,4(2):19-22.
    [168]张小葵,张法忠,张英珊,等.浮式塑料薄膜袋培养海洋微藻的研究[J].海洋科学,2004,28(12):8-10.
    [169]索利克斯生物燃料公司.由藻类生产生物柴油的方法、设备和系统[P].中国专利:200680039890.0,2009-01-07.
    [170] Wiley P, Harris L, Reinsch S, et al. Microalgae Cultivation Using Offshore MembraneEnclosures for Growing Algae (OMEGA)[J]. Journal of Sustainable Bioenergy Systems,2013,3:18-32.
    [171] Li Z Y, Guo S Y, Li L, et al. Effects of electromagnetic field on the batch cultivation andnutritional composition of Spirulina platensis in an air-lift photobioreactor[J]. BioresourceTechnology,2007,98(3):700–705.
    [172] Cheng L H, Zhang L, Chen H L, et al. Carbon dioxide removal from air by microalgaecultured in a membrane-photobioreactor[J]. Separation and Purification Technology,2006,50(3):324-329.
    [173]马冬冬.基于微藻的光—膜组合式生物反应器处理海水养殖业废水[D].青岛:中国海洋大学,2005.
    [174] Singh J, Gu S. Commercialization potential of microalgae for biofuels production[J].Renewable and Sustainable Energy Reviews,2010,14(9):2596-2610.
    [175]孙利芹,王长海,史磊.2种光生物反应器在微藻培养中的性能比较[J].烟台大学学报(自然科学与工程版),2010,23(1):32–37.
    [176] Sierra E, Acien F G, Fernandez J M, et al. Characterization of a flat plate photobioreactorfor the production of microalgae[J]. Chemical Engineering Journal,2008,138(1):136-147.
    [177]苗洪利,孙丽娜,田庆震,等. LED单色光谱及复合光谱对赤潮优势种中肋骨条藻生长的作用[J].中国海洋大学学报,2011,41(10):107~110.
    [178]王伟.光质对中华盒形藻生长及生化组成的影响[J].武汉植物学研究,1999,17(3):197-200.
    [179] Moro I, Rascio N, La R N, Di B M, et al. Cyanobacterium aponinum, a newCyanoprokaryote from the microbial mat of Euganean thermal springs (Padua, Italy)[J].Algological Studies,2007,123(1):1-15.
    [180] Sükran D, Günes T, Sivaci R. Spectrophotometric determination of chlorophyll-A, B andtotal carotenoid contents of some algae species using different solvents[J]. Turkish Journal ofBotany,1998,22:13-17.
    [181] Ritchie R J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d andtotal chlorophylls in natural assemblages of photosynthetic organisms using acetone,methanol, or ethanol solvents[J]. Photosynthetica,2008,46(1):115-126.
    [182] Jensen A, Carotenoids H. Handbook of phycologicalmethods[M]. London: CambridgeUniversity Press,1978.
    [183]许博,周斌,鞠青,等.海洋微藻光合作用对CO2加富的响应特征[J].海洋环境科学,2010,29(006):790-793.
    [184] Yan C, Zhang L, Luo X, et al. Effects of various LED light wavelengths and intensities onthe performance of purifying synthetic domestic sewage by microalgae at different influentC/N ratios[J]. Ecological Engineering,2013,51:24-32.
    [185]李鑫,胡洪营,杨佳. LED红光/蓝光对栅藻LX1生长及产油特性的影响[J].环境科学,2010,31(2):244-250.
    [186] Damerval T, Guglielmi G, Houmard J, et al. Hormogonium differentiation in thecyanobacterium Calothrix: a photoregulated developmental process[J]. The Plant Cell Online,1991,3(2):191-201.
    [187] Mohsenpour S F, Richards B, Willoughby N. Spectral conversion of light for enhancedmicroalgae growth rates and photosynthetic pigment production[J]. Bioresource Technology,2012,125:75-81.
    [188] Wallen D G, Geen G H. Light quality in relation to growth, photosynthetic rates and carbonmetabolism in two species of marine plankton algae[J]. Marine Biology,1971,10(1):34-43.
    [189] Geider R J, Platt T, Raven J A. Size dependence of growth and photosynthesis in diatom: Asynthesis[J]. Marine Ecology Progress Series,1986,30,93–104.
    [190]钟泽璞,施定基.丝状体蓝藻藻殖段的分化及其调节机制[J].植物学通报,2000,17(3):204-21.
    [191]You T, Barnett S M. Effect of light quality on production of extracellular polysaccharides andgrowth rate of Porphyridium cruentum[J]. Biochemical Engineering Journal,2004,19(3):251-258.
    [192] Lee E, Heng R L, Pilon L. Spectral optical properties of selected photosynthetic microalgaeproducing biofuels[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2013,114:122-135.
    [193] Nagao R, Tomo T, Noguchi E, et al. Purification and characterization of a stableoxygen-evolving Photosystem II complex from a marine centric diatom, Chaetoceros gracilis[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2010,1797(2):160-166.
    [194] Zhekisheva M, Boussiba S, Khozin‐Goldberg I, et al. Accumulation of oleic acid inHaematococcus pluvialis (chlorophyceae) under nitrogen starvation or high light is correlatedwith that of astaxanthin esters1[J]. Journal of Phycology,2002,38(2):325-331.
    [195] S b A, Krekling T, Appelgren M. Light quality affects photosynthesis and leaf anatomy ofbirch plantlets in vitro[J]. Plant Cell, Tissue and Organ Culture,1995,41(2):177-185.
    [196] Sánchez-Saavedra M P, Jiménez C, Figueroa F L. Variable fluorescence of chlorophyll a inDunaliella bardawil with different-carotene content[J]. Scientia Marina,1996,60(1):227-231.
    [197] Mouget J L, Rosa P, Tremblin G. Acclimation of Haslea ostrearia to light of differentspectral qualities–confirmation of ‘chromatic adaptation’ in diatoms[J]. Journal ofPhotochemistry and Photobiology B: Biology,2004,75(1):1-11.
    [198] Moberg L, Karlberg B, S rensen K, et al. Assessment of phytoplankton class abundanceusing absorption spectra and chemometrics[J]. Talanta,2002,56(1):153-160.
    [199]刘春朝,刘瑞,王锋.微藻培养过程的光特性研究进展[J].生物加工工程,2011,9(6):69~76.
    [200]刘晶璘,张嗣良.光生物反应器微藻生长与比消光系数的关系[J].化学反应工程与工艺,1999,15(4):407-415.
    [201] Campbell D, Houmard J, De Marsac N T. Electron transport regulates cellular differentiationin the filamentous cyanobacterium Calothrix[J]. The Plant Cell Online,1993,5(4):451-463.
    [202] Rorrer G L, Cheney D P. Bioprocess engineering of cell and tissue cultures for marineseaweeds[J]. Aquacultural Engineering,2004,32(1):11-41.
    [203]梁世中.生物工程设备(第二版)[M].北京:中国轻工业出版社,2011.
    [204]吕效平,杨世花.新型气升式内环流反应器气含率的研究[J].天然气化工: C1化学与化工,1997,22(4):23-26.
    [205] Ho S H, Chen C Y, Chang J S. Effect of light intensity and nitrogen starvation on CO2fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquusCNW-N[J]. Bioresource Technology,2012,113:244-252.
    [206]唐江伟,吴振强.新型生物反应器结构研究进展[J].中国生物工程杂志,2007,27(5):146-152.
    [207] Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification [J]. CanadianJournal of physiology and Biochemistry,1957,37(8):911-917.
    [208]闵恩泽,姚志龙.近年生物柴油产业的发展—特色、困境和对策[J].化学进展,2007,19:1050-1059.
    [209]姚国欣,王建明.第二代和第三代生物燃料发展现状及启示[J].中外能源,2010,15:23-37.
    [210] Pegallapati A K, Nirmalakhandan N, Dungan B, et al. Evaluation of internally illuminatedphotobioreactor for improving energy ratio[J]. Journal of Bioscience and Bioengineering,2014,117(1):92-98.
    [211] Feinberg D A. Fuel options from microalgae with representative chemical compositions[R].Solar Energy Research Inst., Golden, CO (USA),1984.
    [212] Miyachi S, Iwasaki I, Shiraiwa Y. Historical perspective on microalgal and cyanobacterialacclimation to low-and extremely high-CO2conditions[J]. Photosynthesis Research,2003,77(2-3):139-153.
    [213]滕怀丽,黄旭雄,周洪琪,等.充气方式对盐藻生长,细胞营养成分及氮磷营养盐利用的影响[J].水'产'学'报,2010,123(031):420.
    [214]郝建欣,丛威,康瑞娟,等.盐藻在气升式光生物反应器中的光自养培养[J].过程工程学报,2002,2(5):443-447.
    [215]杨晓玲,郭金耀. CO2对盐藻生长及物质积累的影响[J].江苏农业科学,2012,40(5):211-212.
    [216]田治立,王长海.纤细角毛藻的光生物反应器培养[J].海洋通报,2005,24(1):35-40.
    [217]孙利芹,史磊,王长海.平板式光生物反应器在饵料微藻培养中的应用[J].烟台大学学报:自然科学与工程版,2007,20(2):112-115.
    [218]胡涛,吕春茂,王新现,等.植物细胞培养生物反应器研究进展[J].安徽农业科学,2010(4):1702-1703.
    [219] Gross W. Ecophysiology of Algae Living in Highly Acidic Environments [J]. Hydrobiologia,2000,433(1-3):31-37.
    [220] Satoh A, Kurano N, Miyachi S. Inhibition of photosynthesis by intracellular carbonicanhydrase in microalgae under excess concentrations of CO2[J]. Photosynthesis Research,2001,68(3):215-224.
    [221]赫冬梅,段舜山.代谢调控在微藻油脂积累中的作用[J].生态科学,2009(1):85-89.
    [222]刘贤德,沈允钢.光合作用各部分反应间的动态衔接与协调[J].生命科学,2005,17(4):341-345.
    [223] Riebesell U, Revill A T, Holdsworth D G, et al. The effects of varying CO2concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi [J].Geochimica et Cosmochimica Acta,2000,64(24):4179-4192.
    [224] Muradyan E A, Klyachko-Gurvich G L, Tsoglin L N, et al. Changes in lipid metabolismduring adaptation of the Dunaliella salina photosynthetic apparatus to high CO2concentration[J]. Russian Journal of Plant Physiology,2004,51(1):53-62.
    [225] Hsueh H T, Li W J, Chen H H, et al. Carbon bio-fixation by photosynthesis ofThermosynechococcus sp. CL-1and Nannochloropsis oculta [J]. Journal of Photochemistryand Photobiology B: Biology,2009,95(1):33-39.
    [226] Mitz M A. CO2biodynamics: A new concept of cellular control [J]. Journal ofTheoretical Biology,1979,80(4):537-551.
    [227] Tsuzuki M, Ohnuma E, Sato N, et al. Effects of CO2concentration during growth on fattyacid composition in microalgae[J]. Plant Physiology,1990,93(3):851-856.
    [228]刘小澄,刘永平.封闭式光生物反应器工业设计选型思考[J].可再生能源,2010(2):130-136.
    [229] Liu T, Wang J, Hu Q, et al. Attached cultivation technology of microalgae forefficient biomass feedstock production[J]. Bioresource Technology,2013,127:216-222.
    [230]汪洋,张晓芳,徐春明,等.气升式环流反应器的研究进展[J].扬子石油化工,2005,20(1):53-56.
    [231]聂大仕,崔莹莹,张强,等.气升式环流反应器的特性及应用[J].化学工业与工程技术,2005,25(6):6-9.
    [232]伍沅,刘华彦.气升式反应器及其在生物技术中的应用[J].化工装备技术,1998,19(6):1-11.
    [233]黄艳,赵德修.利用生物反应器培养植物细胞的研究进展(II)[J].植物学通报,2001,18(6):665-671.
    [234]白凤武,冯朴荪.气升式生物反应器中培养液-絮凝细胞颗粒-空气三相系统气含率的研究[J].化工学报,1992,43(3):304-309.
    [235]郑裕国,陈小龙,汪钊,等.利用稻谷壳水解液在气升式生物反应器中发酵生产单细胞蛋白[J].环境科学,2000,21(3):85-88.
    [236]章学钦,夏杰.环隙气升式反应器的开发: Ⅰ.流体力学研究和体积..[J].华东化工学院学报,1992,18(5):601-605.
    [237]熊艳,魏宏斌,陈良才.气升式环流反应器在水处理中的应用及研究进展[J].中国给水排水,2010(10):9-12.
    [238]张文晖,李鑫钢.气升式内环流反应器内局部气含率径向分布[J].化工学报,2010(5):1118-1122.
    [239]何广湘,杨索和,靳海波.气升式环流反应器的研究进展[J].化学工业与工程,2008,25(1):65-71.
    [240] Bla ej M, Ki a M, Marko J. Scale influence on the hydrodynamics of an internal loopairlift reactor[J]. Chemical Engineering and Processing: Process Intensification,2004,43(12):1519-1527.
    [241]黄文,何开岩,钟水库,等.加V形导流槽的跑道式藻池CFD模拟[J].化工进展,2013,32(8):1759.
    [242]蔡龙.气升式内环流生物反应器动力学参数研究[D].大连:大连理工大学,2002:14-15.
    [243]周长吉,丁小明.温室用聚碳酸酯中空板透光性能研究[A].北京:中国农业工程学会,2005:109~112.
    [244]周长吉,丁小明,杜孝明.温室用聚碳酸酯中空板辐射透过特性初步研究[J].农业工程学报,2006,22(11):192~196.
    [245]鲁大学.光伏玻璃透光性能检测标准的探讨[J].太阳能,2011(5):34-37.
    [246]曹小华,虞奇波,钟伟民等.汽车贴膜透光率的测定和实用性分析[J].光谱实验室,2012,29(2):887-889.
    [247] Keffer J E, Kleinheinz G T. Use of Chlorella vulgaris for CO2mitigation in aphotobioreactor[J]. Journal of Industrial Microbiology&Biotechnology,2002,29(5):275~280.
    [248] Sandnesa J M, Ringstadb T, Wenner D, et al. Real-time monitoring and automatic densitycontrol of large-scale microalgal cultures using near infrared (NIR) optical density sensors[J].Journal of Biotechnology,2006,122(2):209–215.
    [249]刘小澄,刘永平.两步法光生物反应器海藻生长系统设计思考[J].可再生能源,2010,28(1):127~133.
    [250] Chisti M Y. Airlift Bioreactors[M]. London: Elsevier Applied Science,1989.
    [251] Loewen M R, Melville W K. A model of the sound generated by breaking waves[J]. TheJournal of the Acoustical Society of America,1991,90:2075.
    [252] Moustiri S, Hebrard G, Thakre S S, et al. A unified correlation for predicting liquid axialdispersion coefficient in bubble columns[J]. Chemical Engineering Science,2001,56(3):1041-1047.
    [253]王燕,尹侠,薛胜伟.表观气速对气升式环流反应器性能的影响[J].化学反应工程与工艺,2007,23(2):104-108.
    [254]田小峰,张建成,刘献玲,等. CFD在气升式环流反应器结构优化上的应用[J].现代化工,2013(7):121-124.
    [255]李志军,汪苹,由雪峰,等.高径比和底隙高度对内循环反应器性能的影响[J].环境污染与防治,2008,30(4):005.
    [256]朱慧红,刘永民,于大秋.气液固三相环流反应器的研究进展[J].化工科技,2003,11(4):48-52.
    [257]李昱喆.微藻培养平板式反应器流动与传质的数值模拟[D].中国海洋大学,2011:6-27.
    [258] Tung H L, Tu C C, Chang Y Y, et al. Bubble characteristics and mass transfer in an airliftreactor with multiple net draft tubes[J]. Bioprocess Engineering,1998,18(5):323-328.
    [259] Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and otherapplications: a review[J]. Renewable and Sustainable Energy Reviews,2010,14(1):217–232.
    [260]田向伟,马立,靳俊杰. LED灯与荧光灯的照明效果对比及经济性分析[J].山西建筑,2012,38(32):139~141.
    [261]蒋爱华,时章明,梅炽,等.“电力当量折标煤”统计制度对节能减排的负面影响[J].节能与环保,2008(12):18~20.
    [262]高飞,郑炳松.照明与CO2的减排[J].照明工程学报,2011,22(3):100-103.
    [263] GB/T2410-1980.透明塑料光率和雾度试验方法[S].
    [264] GB/T2680-1994.建筑玻璃可见光透射比、太阳直接能总紫外线及有关窗玻璃参数的测定[S].
    [265]李永富,孟范平,李祥蕾,等.光照对光生物反应器中微藻高密度光自养培养的影响[J].中国生物工程杂志,2013,33(2):103-110.
    [266]田继远,唐学玺,于娟等.海洋微藻对UV-B辐射的生理生化响应[J].海洋科学,2006,30(4):54~58.
    [267] Herrmann H, H der D P, K fferlein M et al. Effects of UV radiation on photosynthesis ofphytoplankton exposed to solar simulator light[J]. Journal of Photochemistry andPhotobiology B: Biology,1996,34(1):21-28.
    [268]孙丽,李守淳. UV-B辐射增强对藻类产生的损害及其适应机制[J].畜牧与饲料科学,2010,31(004):17~20.
    [269]刘振强,陆向红,晏荣军,等.高密度高含油率微藻培养研究进展[J].农业工程学报,2011,27(S):210-217.
    [270] GB/T2918-1998.塑料试样状态调节和试验的标准环境[S].
    [271] GB/T3978-2008.标准照明体和几何条件[S].
    [272] GB/T7922-2003.照明光源颜色的测量方法[S].
    [273]陈健,刘志杰.高寒地区大型日光温室的采光设计[J].东北林业大学学报,2002,30(3):69~72.
    [274]李锋,葛长字,方建光,等.不同温度和接种密度下亚心形扁藻增殖的初步研究[J].海洋水产研究.2007,28(6):61–66.
    [275]朱艺峰,郭小强.不同氮磷硅含量和接种密度对三角褐指藻生长的影响[J].中国水产科学,2000,7(4):47-51.
    [276]温文,黄旭雄,乔玮.接种密度对产油微绿球藻和三角褐指藻生长及油脂性能的影响[J].渔业现代化,2012(6):26-32.
    [277]刘春朝,刘瑞,王锋.微藻培养过程的光特性研究进展[J].生物加工工程,2011,9(6):69~76.
    [278] Cai Z P, Duan S S, Zhu H H. Optical density method and cell count method for determiningthe growth of three energy microalgae and their correlation and verification[J]. Journal ofSouthern Agriculture,2012,43(10):1480-1484.
    [279]郝聚敏,郑江,黎中宝,等.3种微藻在特定波长下的光密度与其单位干重细胞浓度间的关系研究[J].安徽农业科学,2011,39(28):17399-17401.
    [280]曾玲,龙丽娟,龙超.光照周期,温度和起始密度对利玛原甲藻(三亚株)生长的影响[J].热带海洋学报,2010,29(6):137-142.
    [281]张坤,戴习林.5种微藻及其密度对铜绿微囊藻生长的影响[J].广东农业科学,2012,39(10):166-169.
    [282]蔡恒江,唐学玺,张培玉,等.不同起始密度对3种赤潮微藻种群增长的影响[J].海洋环境科学,2005,24(3):37-39.
    [283]张展,刘建国.微藻高密度培养中的生长指标和适应机制[J].海洋水产研究,2003,24(4):36-43.
    [284]张桂艳,温小斌,梁芳,等.重要理化因子对小球藻生长和油脂产量的影响[J].生态学报,2011,31(8):2076-2085.
    [285] Sukenik A, Carmeli Y, Berner T. Regulation of fatty acid composition by irradiance level inthe eustigmatophyte Nannochloropsis sp.1[J]. Journal of Phycology,1989,25(4):686-692.
    [286] Orcutt D M, Patterson G W. Effect of light intensity upon lipid composition of Nitzschiaclosterium (Cylindrotheca fusiformis)[J]. Lipids,1974,9(12):1000-1003.
    [287] Wynn J P, Ratledge C. The biochemistry and molecular biology of lipid accumulation inoleaginous microorganisms[J]. Advances in Applied Microbiology,2002,51:1-51.
    [288] Spoehr H A, Milner H W. The chemical composition of Chlorella; effect of environmentalconditions[J]. Plant Physiology,1949,24(1):120.
    [289] Widjaja A, Chien C C, Ju Y H. Study of increasing lipid production from fresh watermicroalgae Chlorella vulgaris [J]. Journal of the Taiwan Institute of Chemical Engineers,2009,40(1):13-20.
    [290]江怀真,张维,刘天中,等.氮,磷浓度对小球藻生长及油脂积累的影响[J].食品工业科技,2011(6):204-207.
    [291]孙利芹,郭尽力,江涛,等.环境因子对紫球藻细胞脂肪酸组成的影响[J].中国油脂,2004,29(9):55-58.
    [292]王付冬.营养及环境因子对三株微藻生长及脂类积累的影响[D].暨南大学,2010.
    [293]徐年军,张学成.温度,光照, pH值对后棘藻生长及脂肪酸含量的影响[J].青岛海洋大学学报:自然科学版,2001,31(4):541-547.
    [294]孙传范,赵耕毛,唐运来.环境因子对微藻油脂积累的影响[J].安徽农业科学,2011,39(19):11723-11724.
    [295] Metting Jr F B. Biodiversity and application of microalgae[J]. Journal of IndustrialMicrobiology,1996,17(5-6):477-489.
    [296] Arudchelvam Y, Nirmalakhandan N. Optimizing net energy gain in algal cultivation forbiodiesel production[J]. Bioresource Technology,2012,114:294-302.
    [297]陆贻超,王丽丽,刘双,等. CO2浓度对小球藻生长和生化组成的影响[J].可再生能源,2013,31(007):64-69.
    [298]刘佳佳,曹福祥.生物技术原理与方法[M].北京:化学工业出版社,2004.
    [299]刘伟娜,吴垠,徐哲,等.气升式光生物反应器培养微藻溶氧和pH值变化规律研究[J].渔业现代化,2008,35(2):6-10.
    [300]伦世仪.生化工程[M].北京:中国轻工业出版社,2008.
    [301]赵云,陈家城,沈英,等.利用微藻同步实现CO2生物固定与养殖废水脱氮除磷[J].环境工程学报,2014(In press).
    [302]任夫健,凌永社,王庆志.化工放大技术方法的研究[J].现代化工,2011,31(S):1-5.
    [303]辛明秀,赵颖,周军,等.反硝化细菌在污水脱氮中的作用[J].微生物学通报,2007,34(4):773-776.
    [304]张龙,肖文德,李伟,等. SBR系统中同时硝化反硝化生物脱氮研究[J].环境工程,2006,23(4):29-32.
    [305]徐春保,刘敏胜,吴洪,等.一种治理原生动物并实现稳定高产的藻类养殖工艺[P].中国专利: WO2013097786A1.
    [306] Zhao B, Zhang Y, Xiong K, et al. Effect of cultivation mode on microalgal growth and CO2fixation[J]. Chemical Engineering Research and Design,2011,89(9):1758-1762.
    [307]蒋礼玲,张亚杰,李潇萍,等.微藻培养模式研究进展[J].可再生能源,2010(001):56-62.
    [308]刘晶,张嗣良.封闭式光生物反应器研究进展[J].生物工程学报,2000,16(2):119-123.
    [309]马克兹洛卡尼克.王涛,朴香兰,赵毅红,译.化学工程放大技术[M].第二版,北京:化学工业出版社,2007.
    [310]杨玉娟,任洪艳,缪恒锋,等.影响钝顶螺旋藻固碳的环境因子优化[J].环境工程学报,2013,7(7):2795-2800.
    [311]李兴武,李元广,杨东.普通小球藻高密度高品质培养技术及其放大研究[A].第三节海洋生物高技术论坛论文集,2005.
    [312]徐强.藻类吸收和固定烟气中的CO2的研究[D].太原:太原理工大学,2010.
    [313]王翠,李环,王钦琪,等. pH值对沼液培养的普通小球藻生长及油含量积累的影响[J].生物工程学报,2010,26(8):1074-1079.
    [314]季祥,张智慧,张雪艳,等.小球藻培养条件的优化[J].安徽农业科学,2009,37(34):16763-16764.
    [315] Hulatt C J, Thomas D N. Productivity, carbon dioxide uptake and net energy return ofmicroalgal bubble column photobioreactors[J]. Bioresource Technology,2011,102(10):5775-5787.
    [316] Pegallapati A K, Nirmalakhandan N. Energetic evaluation of an internally illuminatedphotobioreactor for algal cultivation[J]. Biotechnology Letters,2011,33(11):2161-2167.
    [317] Arudchelvam Y, Nirmalakhandan N. Optimizing net energy gain in algal cultivation forbiodiesel production[J]. Bioresource Technology,2012,114:294-302.
    [318]薛升长.基于微藻闪光效应的光生物反应器设计方法[D].中国科学院研究生院.2011.
    [319] Matsunaga T, Matsumoto M, Maeda Y, et al. Characterization of marine microalga,Scenedesmus sp. strain JPCC GA0024toward biofuel production[J]. Biotechnology Letters,2009,31(9):1367-1372.
    [320] G ksan T, Durmaz Y, G kp nar. Effects of light path lengths and initial culture density onthe cultivation of Chaetoceros muelleri (Lemmermann,1898)[J]. Aquaculture,2003,217(1):431-436.
    [321] Arudchelvam Y, Nirmalakhandan N. Energetic optimization of microalgal cultivation inphotobioreactors for biodiesel production[J]. Renewable Energy,2013,56:77-84.
    [322] Fan L H, Zhang Y T, Cheng L H, et al. Optimization of Carbon Dioxide Fixation byChlorella vulgaris Cultivated in a Membrane‐Photobioreactor[J]. Chemical Engineering&Technology,2007,30(8):1094-1099.
    [323] Zhao B, Su Y. Process effect of microalgal-carbon dioxide fixation and biomass production:A review[J]. Renewable and Sustainable Energy Reviews,2014,31:121-132.
    [324] Jacob-Lopes E, Revah S, Hernández S, et al. Development of operational strategies toremove carbon dioxide in photobioreactors[J]. Chemical Engineering Journal,2009,153(1):120-126.
    [325] Jacob-Lopes E, Gimenes Scoparo C H, Queiroz M I, et al. Biotransformations of carbondioxide in photobioreactors[J]. Energy Conversion and Management,2010,51(5):894-900.
    [326] Ryu H J, Oh K K, Kim Y S. Optimization of the influential factors for the improvement ofCO2utilization efficiency and CO2mass transfer rate[J]. Journal of Industrial and engineeringchemistry,2009,15(4):471-475.
    [327] Jin H F, Lim B R, Lee K. Influence of nitrate feeding on carbon dioxide fixation bymicroalgae[J]. Journal of Environmental Science and Health Part A,2006,41(12):2813-2824.
    [328] Van Den Hende S, Vervaeren H, Desmet S, et al. Bioflocculation of microalgae and bacteriacombined with flue gas to improve sewage treatment[J]. New Biotechnology,2011,29(1):23-31.
    [329] Tang D, Han W, Li P, et al. CO2biofixation and fatty acid composition of Scenedesmusobliquus and Chlorella pyrenoidosa in response to different CO2levels[J]. BioresourceTechnology,2011,102(3):3071-3076.
    [330] Doucha J, Straka F, Lívansky K. Utilization of flue gas for cultivation of microalgaeChlorella sp.) in an outdoor open thin-layer photobioreactor[J]. Journal of Applied Phycology,2005,17(5):403-412.
    [331] Sydney E B, Sturm W, de Carvalho J C, et al. Potential carbon dioxide fixation byindustrially important microalgae[J]. Bioresource Technology,2010,101(15):5892-5896.
    [332] Feng P, Deng Z, Fan L, et al. Lipid accumulation and growth characteristics of Chlorellazofingiensis under different nitrate and phosphate concentrations[J]. Journal of Bioscienceand Bioengineering,2012,114(4):405-410.
    [333] Su C H, Chien L J, Gomes J, et al. Factors affecting lipid accumulation by Nannochloropsisoculata in a two-stage cultivation process[J]. Journal of Applied Phycology,2011,23(5):903-908.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700