用户名: 密码: 验证码:
多电压源型微源组网的微电网运行控制与能量管理策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,基于可再生能源的分布式发电技术在世界范围内得到了广泛的重视和发展。但同时,分布式发电的大规模接入也给电网尤其是配电网的运行控制、安全保护、调度管理等各方面带来了深刻的影响。微电网概念的提出为分布式电源的利用提出了一种新的模式,微电网通过有效协调系统内部的能量分配,能够实现分布式发电系统与传统电力系统之间的融合以及优势互补,为分布式可再生能源的开发与利用提供了广阔的发展空间。
     目前,微电网还基本处于实验室研究和小规模示范应用阶段,已经建立的微电网示范工程中,大多是由单台储能单元或者常规发电机组起平衡作用的小规模主从控制型微电网。随着经济和社会的发展,微电网组建的需求不断增加,微电网系统的规模不断扩大,尤其是偏远地区独立型微电网所需的供电容量己达兆瓦级,资源与电源种类也多种多样。由于组网单元的容量限制等因素,主从控制应用于规模较大的多能互补型微电网中具有一定的局限性,因此,微电网亟需解决多台微源的并联组网问题。
     本文对多电压源型微源组网的微电网的运行控制和能量管理技术进行了研究,包括基于混合储能的可调度型微源的控制策略、适用于微电网多种运行模式的微源换流器的模式自适应改进下垂控制、微电网的分层控制及独立型微电网的能量管理技术等。主要研究成果如下:
     (1)针对由蓄电池/超级电容器混合储能系统和可再生能源发电系统组成的共直流母线结构的可调度型分布式电源,制定了综合考虑各储能元件荷电状态(State of Charge, SOC)和蓄电池使用寿命的分布式电源控制策略。根据储能元件的SOC是否越限,分别提出了带滤波补偿系数的低通滤波算法与基于不同直流母线电压运行区间的多模式切换控制;为了预防系统控制模式频繁切换带来的暂态冲击以及对蓄电池使用寿命的影响,提出了超级电容端电压预控制法。通过上述控制,优化了分布式电源的运行性能。
     (2)提出了微源换流器基于虚拟阻抗的模式自适应改进下垂控制。分析了虚拟阻抗法改变线路阻抗特性的控制原理,提出了一种dq旋转坐标系中复合虚拟阻抗的设计方法;提出了微源换流器基于复合虚拟阻抗的模式自适应改进下垂控制,实现了微电网在孤岛和并网运行状态下的稳定运行以及并离网运行状态的平滑切换。
     (3)针对微源换流器采用下垂控制的微电网难以实现无功功率的准确分配及电压质量难以保证等问题,提出了一种基于不同时间尺度的微电网分层控制策略。利用较短时间尺度内增大下垂系数法的一级控制提高系统功率分配精度,利用较长时间尺度内的二级控制调整下垂特性曲线的空载频率和电压,保证系统的电能质量。搭建了基于NI-PXI (PCI Extensions for Instrumentation, PXI,面向仪器系统的PCI扩展)的微电网数字物理混合仿真实验平台,依托该平台对微电网的分层控制技术进行了验证。
     (4)针对多电压源型微源组网的风光柴储结构的独立型微电网,提出了一种多时间尺度协调控制的能量管理策略。将微电网的能量管理划分为三个阶段,在日前机组优化启停阶段,综合考虑了储能元件的全生命周期折算费用、储能组网单元的功率调节裕度、需求响应或需求侧管理等因素,合理安排各元件的开停机计划;在日内经济优化调度阶段,提出了基于模型预测控制的在线滚动式能量管理策略,对日前调度结果进行修正;在调度计划实时调整阶段,采取一定的措施保证储能组网单元时刻保持足够的调节裕度。通过三个阶段的协调配合,最终能够实现微电网的安全经济运行。
At present, the distributed renewable energy generation has drawn more and more attention worldwide. However, the integration of large scale distributed generation will dramatically influence the operation, control, protection and dispatch of the power grid, especially the distribution network. The emergence of micro-grid provides new approach to utilize distributed generation. Micro-grid can effectively coordinate system energy allocation so as to achieve the integration and complementation of the distributed generation system and the traditional power system, which will provide a broad space for the development and utilization of distributed renewable energy.
     Currently, micro-grid is still in the stage of laboratory research and small-scale demonstration application. Most of the established micro-grid demonstration projects are master-slave controlled small scale micro-grids in which a single energy storage unit or conventional generator is the power balancing device. With the development of economy and society, the demand of micro-grid continues growing and the scale of micro-grid continues to expand especially the power supply capacity of islanded micro-grid in remote areas reaches the order of MW, in which the energy and power sources are various. Due to the restrictions such as the capacity of single micro-source converter, the application of master-slave control in large scale multi energy complementary micro-grid has some limitations. Therefore, the parallel operation of multi power balancing micro-sources in micro-grid should be studied and solved.
     The control and energy management technology of micro-grid composed of multi voltage source type micro-sources are studied in this dissertation, which includes the control strategy of dispatchable micro-source based on hybrid energy storage system, the improved mode adaptive droop control of micro-source converter adapting for multi operation modes of micro-grid, the hierarchical control of micro-grid and the energy management technology for islanded micro-grid. The main contents are as follows:
     (1) A control strategy of dispatchable distributed resources comprehensively considering the state of charge (SOC) of various energy storage devices and the lifespan of batteries is presented in which the battery/supercapacitor hybrid energy storage system and renewable energy generation system are connected in parallel using dc bus. According to whether the SOCs of energy storage devices are within the limits, low pass filtering algorithm with compensating coefficient and a novel mode switching control based on different voltage zones of dc bus are presented respectively. To avoid the transient shock brought by frequent switching between various control modes, the pre-control of supercapacitor terminal voltage is proposed to prevent the impact of frequent switching on the lifetime of batteries. Through above control strategy, the operation characteristics of distributed resource are improved.
     (2) An improved mode adaptive droop control of micro-source converter with virtual complex impedance is presented. The control principle of virtual impedance method to change line impedance characteristics is analyzed and a design method of virtual complex impedance in dq rotating coordinate system is proposed. Then, an improved mode adaptive droop control of micro-source converter with virtual complex impedance is presented, which can realize stable operation of micro-grid both in islanded and grid-connected modes and the smooth transition between two modes.
     (3) In order to solve the hard problem of reasonably sharing of reactive power and ensuring the power quality in a micro-grid composed of multi droop controlled micro-sources, a novel hierarchical control strategy of micro-grid is proposed according to different time scales. In short time scale, larger droop gains in primary control are adopted to improve power sharing accuracy. In larger time scale of secondary control, the no load frequency and voltage set points of droop characteristics are adjusted to improve power quality. A digital physical hybrid simulation platform for micro-grid based on NI-PXI (PCI Extensions for Instrumentation, PXI) is established and the hierarchical control technology of micro-grid is verified on the platform.
     (4) In the islanded micro-grid with wind, solar, diesel, and energy storage generation systems composed of multi voltage source type micro-sources, a multi time scale coordinated controlled energy management strategy is proposed which includes three stages. In day-ahead unit commitment optimization stage, the whole life cycle convert cost, power regulating margin of energy storage devices and demand response (or demand side management) model are taken into consideration to reasonably plan the unit commitment of every components. In with-in day economic dispatch stage, an online rolling energy management strategy based on model predictive control (MPC) is proposed to revise day-ahead optimal dispatching results. In real-time scheduling adjustment stage, some measures are taken to ensure the power regulating margin of energy storage devices. Through the cooperation of three stages, the safe and economic operation of micro-grid is realized.
引文
[1]中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[R].北京:中华人民共和国国家发展和改革委员会,2007.
    [2]中华人民共和国国家发展和改革委员会.可再生能源发展“十二五”规划[R].北京:中华人民共和国国家发展和改革委员会,2011.
    [3]Global Wind Energy Council. Global wind report anuual market update 2011[R]. Brussels:Global Wind Energy Council,2012.
    [4]European Photovoltaic Industry Association. Global market outlook for photovoltaics until 2015[R]. Brussels.-European Photovoltaic Industry Association,2011.
    [5]Lasseter R. Distributed generation[R]. PSERC,2003.
    [6]胡学浩,韩奕,李蓓,赵岩.第20篇“分布式能源电力系统”,第8卷“电力系统工程”,中国电气工程大典[M].中国电力出版社.
    [7]赵岩,胡学浩.分布式发电对配电网电压暂降的影响[J].电网技术,2008,32(14):5-9.
    [8]王成山,高菲,李鹏等.可再生能源与分布式发电接入技术欧盟研究项目述评[J].南方电网技术,2008,2(6):1-6
    [9]胡学浩.分布式发电(电源)技术及其并网问题[J].电工技术杂志,2004,10: 1-5.
    [10]Q/GDW 480-2010分布式电源接入电网技术规定[S].
    [11]IEEE Std 1547-2003 IEEE standard for interconnecting distributed resources with electric power systems[S].
    [12]CAN/CSN-C 22.2 No.257-06 Interconnecting inverter-based micro-distributed resources to distribution systems [S].
    [13]VDE-AR-N 4105:2011-08 Power generation systems connected to the low voltage distribution network[S].
    [14]Lasseter H. Micro-grids[C]. IEEE Power Engineering Society Winter Meeting, USA, New York,2002:305-308.
    [15]王瑞琪.分布式发电与微电网系统多目标优化设计与协调控制研究[D].山东大学,2013.
    [16]黄杏.微电网系统并/离网特性与控制策略研究[D].北京交通大学,2013.
    [17]肖朝霞.微电网控制及运行特性分析[D].天津大学,2008.
    [18]Brabandere K, Vanthournout K, Driesen J. Control of micro-grids [C]. IEEE Power Engineering Society General Meeting, USA,2007.
    [19]Chandorkar M, Divan D, Adapa R. Control of parallel connected inverters in standalone ac supply systems[J]. IEEE Trans on Industry Applications,1993, 29(1):136-141.
    [20]Hauck M, Spath H. Control of a three phase inverter feeding an unbalanced load and operating in parallel with other power sources [C]. International Power Electronics and Motion Control Conference, Croatia,2002:1-10.
    [21]Katiraei F, Iravani M, Lehn P. Small-signal dynamic model of a micro-grid includingconventional and electronically interfaced distributed resources [J]. IET Generation, Transmission & Distribution,2007,1(3):369-378.
    [22]Hernandez C, Green T. Fuel consumption minimisation of a micro-grid[J]. IEEE Transactions on Industry Applications,2005,41(3): 673-681.
    [23]Pogaku N, Prodanovic M, Green T. Modelling, analysis and testing of autonomous operation of an inverter-based micro-grid[J]. IEEE Transactions on power electronics,2007,22(2):613-625.
    [24]鞠洪新.分布式微电网电力系统中多逆变电源的并网控制研究[D].合肥工业大学,2006.
    [25]Josep G, Juan V, Jose M. Control strategy for flexible micro-grid based on parallel line-interactive UPS systems[J]. IEEE Transaction on Industrial Electronics,2009,56(3):726-735.
    [26]Josep G, Mukul C, Tzunglin L. Advanced control architectures for intelligent micro-grid-part I:decentralized and hierarchical control[J]. IEEE Transaction on Power Electronics,2013,60(4):1254-1262.
    [27]Josep G, Jose M, Luis G. Decentralized control for parallel operation of distributed generation inverters using resistive output impedance [J]. IEEE Transaction on Industrial Electronics,2007,54(2).994-1004.
    [28]Wei Y, Min C, Jose M. Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing[J]. IEEE Transaction on Industrial Electronics,2011,58(2): 576-587.
    [29]Chandorkar C, Divan D, Hu Y. Novel architectures and control for distributed UPS systems[C]. Applied Power Electronics Conference and Exposition, 1994(2):683-689.
    [30]王成山,肖朝霞,王守相.微电网中分布式电源逆变器的多换反馈控制策略[J].电工技术学报,2009,24(2):100-107.
    [31]Li Y, Vilathgamuwa M, Poh L. Design, analysis and real-time testing of a controller for multibus micro-grid system[J]. IEEE Transactions on Power Electronics,2004,19(5):1195-1204.
    [32]Guerrero M, Berbel N, Matas J. Droop control method with virtual output impedance for parallel operation of uninterruptible power supply systems in a micro-grid[C]. Twenty Second Annual IEEE Applied Power Electronics Conference,2007.
    [33]程军照,李澍森,吴在军等.微电网下垂控制中虚拟电抗的功率解耦机理分析[J].电力系统自动化,2012(7):27-32.
    [34]吴云亚,阚加荣,谢少军.适用于低压微电网的逆变器控制策略设计[J].电力系统自动化,2012(6):39-44.
    [35]张庆海,彭楚武,陈燕东等.一种微电网多逆变器并联运行控制策略[J].中国电机工程学报,2012,32(25):126-132.
    [36]张承慧,王瑞琪,陈阿莲.基于旋转坐标虚拟阻抗的孤岛微电网控制及优化方法[P].中国专利:CN201210107053.4.
    [37]于玮,徐德鸿.基于虚拟阻抗的不间断电源并联系统均流控制[J].中国电机工程学报,2009,29(24):32-39.
    [38]Li Y, Kao C. An accurate power control strategy for power electronics interfaced distributed generation units operating in a low voltage mutibus micro-grid[J]. IEEE Trans on Power Electronics,2009,24(12):2977-2988.
    [39]Majumder R, Chaudhuri B, Ghosh A. Improvement of stability and load sharing in autonomous micro-grid using supplementary droop control loop[J]. IEEE Trans on Power System,2010,25(2):796-808.
    [40]He J, Li Y. An enhanced micro-grid load demand sharing strategy [J]. IEEE Tans on Power Electronics,2012,27(9):3984-3995.
    [41]Tuladhar A, Jin H, Unger T. Control of parallel inverters in distributed ac power system with consideration of line impedance effect[J]. IEEE Trans on Industrial Application,2000,36(1):131-138.
    [42]Haddadi A, Joos G. Load sharing of autonomous distribution level micro-grids [J]. Power and Energy Society General Meeting, San Diego,2011.
    [43]Lee C, Chu C, Cheng P. A new droop control method for the autonomous operation of distributed energy resource inverters[C].2010 IEEE Energy Conversion Congress and Exposition(ECCE), Atlanta, GA,2010:702-709.
    [44]Chandorkar M, Divan D and Adapa R. Control of parallel connected inverters in standalone ac supply systems[J]. IEEE Trans.on Industrial Application,1993, 29(1):136-143.
    [45]Ahn J, Park W, Chung Y. Power-sharing method of multiple distributed generators considering control modes and configurations of a micro-grid[J]. IEEE Trans on Power Delivery,2010,25(30):2007-2016.
    [46]Liu T, Liu J, Zhang X. A novel droop control strategy to share power equally and limit voltage deviation[J].8th International Conference on Power Electronics-ECCE Asia,2011.
    [47]Zhong Q. Robust droop controller for accurate proportional load sharing among inverters operated in parallel[J]. IEEE Trans on Industrial Electronics,2013, 60(4):1281-1290.
    [48]吕志鹏,罗安.不同容量微源逆变器并联功率鲁棒控制[J].中国电机工程学报,2012,32(12):35-42.
    [49]杨向真.微电网逆变器及其协调控制策略研究[D].合肥工业大学,2011.
    [50]张兴,朱德斌,徐海珍.分布式发电中的虚拟同步发电机技术[J].电源学报,2012(3):1-6.
    [51]朱德斌,刘芳,徐海珍等.微电网双运行模式下分布式逆变器的控制策略[J].电力电子技术,2012(10):9-16.
    [52]杜威,姜齐荣,陈蛟瑞.微电网电源的虚拟惯性频率控制策略[J].电力系统自动化,2011(23):26-31.
    [53]Zhong Q, Weiss G. Static synchronous generators for distributed generation and renewable energy[C]. IEEE/PES Power Systems Conference and Exposition, 2009:1-6.
    [54]Zhong Q, Weiss G. Synchronverters:Inverters that mimic synchronous generators[J]. IEEE Trans on Industrial Electronics,2011,58(4):1259-1267.
    [55]Blaabjerg F, Chen Z. Power electronics as efficient interface in dispersed power generation systems[J]. IEEE Trans on Power Electronics,2004,19(5): 1084-1094.
    [56]Holtz J, Lotzkat W, Werner H. A high-power multitransistor-inverter uninterruptable power supply system[J]. IEEE Trans on Power Electronics, 1988,3(3):278-285.
    [57]Holtz J, Werner H. Multi-inverter UPS system with redundant load sharing control[J]. IEEE Trans on Industrial Electronics,1990,37(6):506-513.
    [58]Jiann C, Ching C. Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation[J]. IEEE Transactions on Power Electronics, 1995,10(5):547-558.
    [59]Broeck H, Boeke U. A simple method for parallel operation of inverters[C]. Twentieth International Telecommunications Energy Conference, 1998.
    [60]Yunqing P, Guibin J, Xu Y, et al. Auto-master-slave control technique of parallel inverters in distributed AC power systems and UPS[C]. Power Electronics Specialists Conference,2004.
    [61]Yeong C, Sng K. A novel communication strategy for decentralized control of paralleled multi-inverter systems [J]. IEEE Trans on Power Electronics,2006, 21(1):148-156.
    [62]Guerrero M, Hang L, Uceda J. Control of Distributed Uninterruptible Power Supply Systems[J]. IEEE Trans on Industrial Electronics,2008,55(8): 2845-2859.
    [63]Oshima H, Miyazaya Y, Hirata A. Parallel redundant UPS with instantaneous PWM control[C].13th International Telecommunications Energy Conference, 1991.
    [64]Duan S, Meng Y, Xiong J, et al. Parallel operation control technique of voltage source inverters in UPS[C]. Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems,1999.
    [65]Xiao S, Yim-Shu L, Dehong X. Modeling, analysis and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme[J]. IEEE Trans on Power Electronics,2003,18(3):844-856.
    [66]Yu C, Yu W, Tsai W, et al. ACSS for paralleled multi-inverter systems with DSP-based robust controls[J]. IEEE Trans on Aerospace and Electronic Systems, 2003,39(3):1002-1015.
    [67]Zhong H, Yan X, Yuwen H. Low cost compound current sharing control for inverters in parallel operation[C]. IEEE 35th Annual Power Electronics Specialists Conference,2004.
    [68]Hsieh M, Wu F, Wu E. A compensation strategy for parallel inverters to achieve precise weighting current distribution[C]. Industry Applications Conference, 2005.
    [69]Xiao S, Lik W, Yim-Shu L, et al. Design and analysis of an optimal controller for parallel multi-inverter systems[J]. IEEE Trans on Circuits and Systems II: Express Briefs,2006,53(1):56-61.
    [70]Tsai W, Yu C, Yong H.3C strategy for inverters in parallel operation achieving an equal current distribution[J]. IEEE Trans on Industrial Electronics,2000, 47(2):273-281.
    [71]Chiang J, Lin H, Yen Y. Current limitation control for multi-module parallel operation of UPS inverters[J]. IEEE Proceedings-Electric Power Applications, 2004,151(6):752-757.
    [72]章健,艾芊,王新刚.多代理系统在微电网中的应用[J].电力系统自动化,2008,32(24):80-88.
    [73]Dimeas L, Hatziargyriou D. Operation of a multiagent system for micro-grid Control[J]. IEEE Trans on Power Systems,2005,20(3):1447-1455.
    [74]Katiraei F, Iravani R, Hatziargyriou N, et al. Micro-grids management[J]. Power and Energy Magazine, IEEE,2008,6(3):54-65.
    [75]Guerrero M, Vasquez C, Matas J, et al. Hierarchical control of droop-controlled AC and DC micro-grids:a general approach toward standardization[J]. IEEE Transactions on Industrial Electronics,2011,58(1):158-172.
    [76]Josep G, Mukul C, Tzunglin L, et al. Advanced control architectures for intelligent micro-grid-part I:decentralized and hierarchical control[J]. IEEE Transaction on Power Electronics,2013,60(4):1254-1262.
    [77]IEEE Std 1547.4-2011 IEEE guide for design, operation and integration of distributed resource island systems with electric power systems[S].
    [78]吴铁洲,毛晓坡,向剑锋.太阳能微电网发电系统的孤岛检测方法研究[J].湖北工业大学学报,2010(1):19-21.
    [79]任伟,周艺环,张竞文.基于孤岛检测的微电网并离网切换控制技术[J].陕西电力,2012(1):71-74.
    [80]刘纯,李光辉,何国庆等.一种微电网并网与孤网自动无缝切换的控制方法[P].中国专利:201210011880,2012.
    [81]Lasseter H. Certs Micro-grid[C]. IEEE International Conference on System of Systems Engineering,2007.
    [82]Balaguer J, Qin L, Shuitao Y, et al. Control for Grid-Connected and Intentional Islanding Operations of Distributed Power Generation[J]. IEEE Trans on Industrial Electronics,2011,58(1):147-157.
    [83]王成山,高菲,李鹏等.低压微电网控制策略研究[J].中国电机工程学报,2012,32(25):2-9.
    [84]Hristiyan K, Lu D, Colas F. Energy management and operational planning of a micro-grid with a PV-based active generator for smart grid applications[J]. IEEE Trans on Industrial Electronics,2011,58(10):4583-4592.
    [85]Lu D, Francois B. Strategic framwork of an energy management of a micro-grid with a phorvoltaic-based active generator[C]. Electromotion 2009-EPE Chapter'Electric Drives'Joint Symposium, Lille, France,2009.
    [86]Fabbri G, Boccaletti C, Marques A. A hybrid stand alone power system for telecom applications in minor islands [C]. International Conference on Electrical Machines-ICEM 2010, Rome.
    [87]Aymen C, Rashad K, Ridha A. Multiobjective intelligent energy management for a micro-grid[J]. IEEE Trans on Industrial Electronics,2013,60(4): 1688-1675.
    [88]刘梦璇.微电网能量管理与优化设计研究[D].天津大学,2012.
    [89]Colson M, Nehrir H. A review of challenges to real-time power management of micro-grids[C]. IEEE Power & Energy Society General Meeting, Alberta, Canada,2009:1-8.
    [90]Hernandez A, Green C, Mugniot N. Fuel consumption minimization of a micro-grid[J]. IEEE Trans on Industry Applications,2005,41(3):673-681.
    [91]Basu K, Chowdhury S, Chowdhury P. Strategic deployment of CHP-based distributed energy resources inmicro-grid[C]. Proceedings of IEEE Power and Energy Society General Meeting, Calgary, Canada,2009.
    [92]王锐,顾伟,吴志.含可再生能源的热电联供型微电网经济运行优化[J].电力系统自动化,2011,35(8):22-27.
    [93]王新刚,艾芊,徐伟华,等.含分布式发电的微电网能量管理多目标优化[J].电力系统保护与控制,2009,37(20):79-83.
    [94]Mohamed A, Koivo N. System modeling and online optimal management of micro-grid using multi objective optimization[C]. Proeeedings of Intemational Conference on Clean Electrical power, Capri, Italy,2007.
    [95]Seon A, Seung M. Economical scheduling of distributed generators in a micro-grid considering various constrains [C]. Proeeedings of Power & Energy society Gneral Meeting, Seoul, Korea,2009.
    [96]陈达威,朱桂萍.微电网负荷优化分配[J].电力系统自动化,2010,34(20):45-49.
    [97]Mohamed A, Koivo N. Online management of micro-grid with battery storage using multi objective optimization[C]. Proeeedings of International Conference on Power Engineering, Energy and Eleetrical Drives,2007:231-236.
    [98]Hatziargyriou D, Dimeas A, Tsikalakis G, et al. Management of micro-grids in market environment[C]. International Conference on Future Power Systems, 2005.
    [99]Toyoda J, Saitoh H, Minazawa K, et al. Security enhancement of multiple distributed generations by the harmonized grouping[C]. Transmission and Distribution Conference and Exhibition,2005.
    [100]Alibhai Z, Lum R, Huster A, et al. Coordination of distributed energy resources [C]. IEEE Annual Meeting of Fuzzy Information,2004:913-918.
    [101]Hawkes D, Leach A. Modelling high level system design and unit commitment for a micro-grid[J]. Applied Energy,2008:1-13.
    [102]Handschin E, Neise F, Neumann H. Optimal operation of dispersed generation under uncertainty using mathematical programming[J]. International Journal of Electrical Power & Energy Systems.2006,28(9):618-626.
    [103]丁明,张颖媛,茆美琴等.集中控制式微电网系统的稳态建模与运行优化[J].电力系统自动化,2009,33(24):78-82.
    [104]丁明,张颖媛,茆美琴等.包含钠硫电池储能的微电网系统经济运行优化[J].中国电机工程学报,2011,31(4):7-14.
    [105]陈昌松,段善旭,蔡涛等.基于改进遗传算法的微电网能量管理模型[J].电工技术学报,2013,28(4):196-201.
    [106]杨琦,张建华,刘自发等.风光互补混合供电系统多目标优化设计[J].电力系统自动化,2009,33(17):86-90.
    [107]郑漳华,艾芊,徐伟华等.智能电网经济运行的多目标调度优化策略[J].电网技术,2010,34(2):7-13.
    [108]朱博,陈民铀,徐瑞林等.孤岛模式下的微电网优化运行策略[J].电力系统保护与控制,2012,40(17):35-40.
    [109]金鹏,艾欣,许佳佳.基于序列运算理论的孤立微电网经济运行模型[J].中国电机工程学报,2012,32(25):52-59.
    [110]徐立中.微电网能量优化管理若干问题研究[D].浙江大学,2011.
    [111]石庆均,耿光超,江全元.独立运行模式下的微电网实时能量优化调度[J].中国电机工程学报,2012,32(16):26-35.
    [112]石庆均,江全元.独立运行方式下的微电网能量优化管理[J].机电工程,2012,29(4):428-433.
    [113]王成山,李鹏.分布式发电、微电网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14.
    [114]余贻鑫.面向21世纪的智能配电网[J].南方电网技术研究,2006,2(6):14-16.
    [115]周孝信,陈树勇,鲁宗相.电网和电网技术发展的回顾与展望—试论三代电网[J].中国电机工程学报,2013,33(22):1-11.
    [116]Collier E. Ten steps to a smarter grid[J]. Industry Applications Magazine,2010, 16(2):16-18.
    [117]Gungor C, Sahin D, Kocak T, et al. Smart grid technologies:vommunication technologies and standards[J]. Industry Informatics,2011,7(4):529-539.
    [118]李振杰,袁越.智能微电网-未来智能配电网新的组织形式[J].电力系统自动化,2009,33(17):42-48.
    [119]鲁宗相,王彩霞,阂勇等.微电网研究综述[J].电力系统自动化,2007,31(19):100-107.
    [120]王成山,肖朝霞,王守相.综合控制与分析[J].电力系统自动化,2008,32(7):8-103.
    [121]丁明,张颖媛,茆美琴.微电网研究中的关键技术[J].电网技术,2009,33(11):6-11.
    [122]Smith A, Mars P, Turner A. Using supercapacitors to improve battery performance[C]. Power Electronics Specialists Conference, Cairns, Australia, IEEE,2002:124-128.
    [123]Spyker L, Nelms M. Optimization of double-layer capacitorarrays[J]. IEEE Trans on Industry Applications,2000,36(1):194-198.
    [124]王振浩,张延奇,李国庆等.基于超级电容器的直流系统混合储能研究[J].电网技术,2010,34(04):158-162.
    [125]于芃,周玮,孙辉等.用于风电功率平抑的混合储能系统及其控制系统设计[J].中国电机工程学报,2011,31(17):127-133.
    [126]丁明,林根德,陈自年等.一种适用于混合储能系统的控制策略[J].中国电机工程学报,2012,32(07):1-6.
    [127]李逢兵,谢开贵,张雪松等.基于锂电池充放电状态的混合储能系统控制策略设计[J].电力系统自动化,2013,37(01):70-75.
    [128]谢石骁,王乔来.混合储能系统在分布式发电系统中的应用[J].华东电力,2011,39(07):1179-1182.
    [129]张野,郭力,贾宏杰等.基于平滑控制的混合储能系统能量管理方法[J].电力系统自动化,2012,36(16):36-41.
    [130]杨惠,孙向东,钟彦儒等.基于双向DC-DC变换器的超级电容器储能系统研究[J].西安理工大学学报,2011,27(04):456-460.
    [131]张国驹,唐西胜,周龙等.基于互补PWM控制的Buck/Boost双向变换器在超级电容器储能中的应用[J].中国电机工程学报,2011,31(06):15-21.
    [132]Lasseter H, Paolo P. Control and Design of Micro-grid Components [R]. University of Wisconsin-Madison,2006.
    [133]陈昭宇,张建文,蔡旭.基于PXI技术的全功率风电变流器监测系统[J].电网与清洁能源,2012,28(11):77-81.
    [134]付超,王丹,王毅等.基于NI-PXI的分布式发电数模混合仿真系统[J].电力电子技术,2012,46(2):57-59.
    [135]Ma J,Yang F,Li Z,et al.A renewable energy integration application in amicro-grid based on model predictive control[C]. IEEE Power and Energy Society General Meeting,2012.
    [136]石庆均,江全元.包含蓄电池储能的微电网实时能量优化调度[J].电力自动化设备,2013,33(5):76-82.
    [137]陈健,王成山,赵波等.考虑储能系统特性的微电网系统经济优化运行[J].电力系统自动化,2012,36(20):25-31.
    [138]Bindner H, Cronin T, Lundsager P, et al. Life time modelling of lead acid batteries[R]. Ris(?) National Laboratory,2005.
    [139]Piyasak P, Ward T. Analysis of the cost per kilowatt hour to store electricity[J]. IEEE Trans on Energy Conversion,2008,23(2):529-534.
    [140]郭小鹏,沙云东,张军.基于雨流计数法的随机声疲劳寿命估算方法研究[J].沈阳航空工业学院学报,2009,26(3):10-14.
    [141]冯双磊,王伟胜,刘纯等.风电场功率预测物理方法研究[J].中国电机工程学报,2010,30(2):1-6.
    [142]卢静,翟海清,冯双磊等.光伏发电功率预测方法的探索[J].华东电力,2013,41(2):380-384.
    [143]牛东晓,谷志红,邢棉等.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700