用户名: 密码: 验证码:
小麦玉米周年氮水耦合对麦季氮素流向和利用效率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北地区,超量施用氮肥和不合理灌溉导致土壤剖面中和地下水的硝态氮大量积累,降低了氮肥和水分利用效率,限制了经济效益、社会效益和生态效益的提高。为促进该农业生产的可持续发展,亟需建立高产、稳产、优质、低耗、无污染的水氮管理措施。本试验利用大型防雨棚-渗漏池设施,选用不同氮素利用率冬小麦品种(氮高效型品种石麦15和氮低效型品种济麦19),从氮素平衡和水分平衡入手,定量研究了氮水耦合效应(设置不同灌溉量、氮肥类型和施氮量)对小麦玉米周年轮作条件下冬小麦季的氮素流向和利用特性的影响,以期为高产冬小麦氮肥和水分的高效合理利用提供思路和借鉴。主要研究结果如下:
     1氮水耦合对冬小麦产量的影响
     两个冬小麦品种石麦15和济麦19的产量和干物质均随氮肥和灌溉投入量的增加而增加。灌溉和氮肥之间存在显著的交互作用,施氮量为180kg N hm-2和90kg N hm-2的产量和干物质之间的差异在胁迫灌溉条件下(W2)显著低于正常灌溉条件下(W1)。相同施氮量条件下,第1年有机肥处理的产量和干物质显著低于尿素处理,随有机肥处理土壤肥力的提高,第3年有机肥处理的产量高于尿素处理。W1条件下,石麦15的产量和干物质均显著高于济麦19,在W2条件下石麦15的干物质高于济麦19,但济麦19的产量高于石麦15。石麦15和济麦19的产量在W1条件下分别比W2条件下高77.2%和41.0%,说明济麦19在水分胁迫条件下减产幅度低于石麦15,其耐旱性比石麦15强。
     从产量构成因素上分析,增加灌溉量,两品种冬小麦的公顷穗数、穗粒数和千粒重均显著提高,且180kg N hm-2施氮量处理的千粒重和穗粒数均显著高于90kg N hm-2。施氮量相同时,第3年的有机肥处理的千粒重高于尿素处理。品种间的公顷穗数差异明显,石麦15的公顷穗数显著高于济麦19。品种、灌溉量、氮肥类型和施氮量的交互作用显著影响千粒重和产量。
     2氮水耦合对冬小麦氮素流向的影响
     植株吸收、氨挥发损失和淋洗损失是土壤氮素的主要流向,2011年分别占投入氮的62.6~195.5%、2.5~25.7%和2.7~25.7,2012年分别占投入氮量54.1~199.9%、5.3~12.6%和5.9~36.5%。增加灌溉量和施肥量,植株吸收氮素和籽粒氮素含量均显著增加。在本试验条件下,施氮量从90kg N hm-2增加到180kg N hm-2,或从灌溉水平从W2提高到W1,植株吸收氮素均显著增加。相同施氮量条件下,尿素处理植株氮素积累量高于有机肥处理,干旱和氮素胁迫促进了氮素向籽粒中的分配。
     施氮量从90kg N hm-2增加到180kg N hm-2,尿素处理的氨挥发损失量从34.5kg Nhm-2增加到38.3kg N hm-2,增幅11.1%,但氨挥发损失率从41.5%下降到23.0%,降幅44.5%。W2处理的氨挥发速率峰值和累积氨挥发量分别比W1处理的高18.5%和15.4%。尿素处理的氨挥发损失量是有机肥的2.8~3.1倍。不同处理中,W2U1处理的氨挥发损失量最高,达43.8~45.6kg N hm-2,占肥料氮的24.4~25.4%;W2U2处理的氨挥发损失率最高,占肥料氮的40.6~42.5%。逐步回归分析结果表明土壤表层的铵态氮含量和日平均气温与氨挥发速率密切相关,其他因素如氮肥类型、施氮量、土壤pH和灌溉量影响土壤铵态氮含量而间接影响氨挥发速率。
     W2条件下3年中均无淋洗。W1条件下,第1年无淋洗;第2、3年的淋洗主要发生在生育前期,开花期和灌浆期无淋洗发生,播种期硝态氮淋洗量分别占全年淋洗量的91.1%和56.1%。W1条件下不同施肥处理的硝态氮淋洗在第2、3年分别为3.4~9.1和4.9~12.6kg N hm-2,分别占投入氮量的2.5~7.6%和4.9~12.6%。随施氮量增加,土壤水溶液和淋洗液中的硝态氮浓度增加,但淋洗氮量占投入氮比例降低。淋洗液中硝态氮含量占矿质氮的95.3~97.9%,是主要的淋洗形式。在W1条件下,施肥后土壤增加的硝态氮随着灌溉水的下渗而向下移动,从播种到拔节期,表层硝态氮可以淋洗到200cm处,从开花期到灌溉期可淋洗到100cm处。与尿素相比,尽管有机肥降低了第1、2年硝态氮向下迁移量,但依然会导致硝态氮淋洗。
     3氮水耦合对冬小麦氮素平衡和氮素利用效率的影响
     三年后,不同处理之间的有机质含量变化因不同的种植品种、灌溉量、施肥类型和施氮量而异。多数尿素处理的土壤有机质含量呈降低趋势,U1处理的降低量(降低率)高于U2处理;有机肥处理的有机质含量增加,M1与M2土壤有机质增加量(增加率)分别为0.56~2.43g kg-1(5.13~22.35%)和0.06~0.96g kg-1(0.52~8.70%),且在W1条件下有机质的增加量和增加率高于W2条件下。
     忽略氮肥激发效应和硝化反硝化作用,假定施肥处理的土壤氮矿化量完全等于不施氮处理的氮素输出和投入的差值,有机肥处理表现出氮素盈余,M1的盈余量最高,达109.0~107.7kg N hm-2,占投入氮的30.1~30.2%;而石麦15的尿素处理表现为氮素亏损。三年中,除W1M1、W2M1和W2U1处理的土壤剖面矿质氮含量呈增加趋势外,其他处理的均呈降低趋势。
     氮水耦合显著影响氮素利用率(Nit-UE)、氮素吸收效率(NUpE)、氮素利用效率(NUtE)和氮素收获指数(NHI)。与W2灌溉相比,W1显著提高了小麦的Nit-UE、NUpE和NUtE,降低了NHI。施氮量从90kg N hm-2增加到180kg N hm-2,小麦的Nit-UE、NUpE、NUtE和NHI降低。相同施氮量时,尿素处理的Nit-UE、NUpE高于有机肥处理,但其NUtE较低。尽管济麦19的Nit-UE显著高于石麦15,但石麦15的植株吸氮量、NUpE和Nit-UE高于济麦19。
     选用氮高效小麦品种、改施尿素为有机肥、减少播种期的施肥量和灌溉量,可以显著地减少土壤氮素的淋洗和氨挥发损失,增加作物氮素吸收,协同提高小麦的产量和氮素利用率。
     4氮水耦合对冬小麦水分利用特性的影响
     W1灌溉条件下0~105cm土层(尤其0~75cm),而W2灌溉条件下0~75cm(尤其0~35cm)土壤含量水量变化最大。W2条件下的水分淋洗量、抽出水量、土壤水分消耗(SWD)和蒸发蒸腾总量(ET)显著地低于W1处理。W2处理的产量水分利用效率(WUEg)和干物质水分利用效率(WUEd)在第1年高于W1处理,但在第3年低于W1处理。冬小麦的水分利用效率随施氮量的增加而增加,但不同施氮量之间WUEg和WUEd的差异在W1条件下显著高于W2处理。水分胁迫降低了氮肥对WUEg和WUEd的促进作用,,施氮可以缓解水分胁迫的产量和水分利用效率负面影响。
     5氮水耦合对冬小麦叶片光合和衰老特性的影响
     与尿素相比,施用有机肥可以维持生育后期较高的旗叶抗衰老酶活性和可溶性蛋白含量,延缓叶片衰老进程。增施氮肥可以减轻生育后期旗叶的膜脂过氧化程度,增加光合速率和光合同化物生产,提高冬小麦籽粒产量。胁迫灌溉限制了肥效的发挥,显著降低了冬小麦叶面积指数、光合速率和衰老相关酶活性,导致叶片早衰,产量显著降低。
On the North China Plain (NCP), excessive application of nitrogen (N) fertilizer coupledwith unreasonable irrigation has produced high levels of nitrate concentration in surface andgroundwater in agricultural areas, which lowered nitrogen and water use efficiencies (NUEand WUE), and seriously confines the balancing increasement of its economic benefit, socialbenefit and ecological benefit. It is in need of establishing an effective irrigation and nitrogenfertilizer management system conducive to the sustainable development of agriculturalproduction. Based on the wheat-maize cropping system, a lysimeter-rain shelter researchfacility was used to quantitatively study the influence of the rate of N fertilization, type of Nfertilizer, and irrigation level on nitrogen and water use characterastics of different NUEgenetype winter wheat varieties (high NUE genetype variety, shimai15and low NUEgenetype variety, jimai19), water and nitrogen balance in winter wheat production system, toreference for the rational use of nitrogen fertilizer and irrigation. The main results of thisstudy are shown as follows:
     1Effects of nitrogen and irrigation coupling on grain yield
     The grain yield and dry matter of JM19and SM15were increased with the rate of Nfertilizer and level of irrigation. The interaction of irrigation and N fertilizer has significantlyimpact on grain yield and dry matter of winter wheat. The variance of grain yield and drymatter between high and low rate of N fertilizer under W2irrigation level was smaller thanthat under W1irrigation level. In terms of grain yield and dry matter, values for the manuretreatment were lower than for the urea treatment in season1yet were otherwise higher thanurea treatment in season3. Grain yield of SM15was significantly higher than JM19underW1irrigation, whereas opposite trend under W2irrigation. Dry matter of SM15under both W1and W2irrigation were higher than JM19. This indicates that harvest index of JM19washigher than SM15under W2irrigation. The grain yield of SM15and JM19under W1irrigation level were41.0%and77.2%higher than that under W2irrigation level, thus thenegative effect of water deficit on grain yield of SM15was stronger than JM19. From whichit can be indicated that the drought resistance of SM15was weaker than JM19.
     The spike number, kernel number and1000grain weight of JM19and SM15wereelevated when the level of irrigation amount increased, and kernel number and1000grainweight of JM19and SM15were elevated obviously when the rate of N fertilizer increased.1000grain weight of both winter wheat varieties of manure treatment was higher than ureatreatment with the same rate of N fertilizer. The effect of N fertilizer type N fertilizer rate onspike number was indistinct. The spike number of JM19was lower than than of SM15.
     2. EffectS of nitrogen and irrigation coupling on nitrogen flow in wheat field
     Crop uptake, ammonia volatilization, nitrate leaching loss, taking up to54.1~199.9%、2.7~36.5%and2.5~12.6%of imput N, are the main components of N flow after fertilizationapplication in wheat field. With the increasing of level of irrigation and rate of N fertilizer, Nuptake by crop and N accumulation in kernel were increased significantly. However, droughtand N fertilizer deficit promoted the N transportation from stem and leaf to grain.
     From90to180kg N ha-1urea N applied, the accumulation of AV loss was increasedfrom34.5to38.3kg N ha-1with11.1%improvement, but its proportion of fertilizer appliedwas declined from41.5%to23.0%with44.5%debase. The rate of AV and accumulation ofAV loss under W2irrigation level were18.5%and15.4%higher than that of W1irrigationlevel, respectively. The accumulation of AV loss for urea treatment is approximately2.8-3.1times higher than theat from manure treatment. Among the different treatments, theaccumulation of AV loss of W2U1treatement was the highest one, and reached to43.8~45.6kg N ha-1, taking up to24.4~25.4%of fertilizer N. The proportion of AV loss of W2U2treatement was the highest, and reached to24.4~25.4%of fertilizer N. Rate of AV is directlyrelated to surface soil NH4+-N concentration and average daily temperature. NH4+-Nconcentration in surface soil layer was influenced by type of N fertilizer, rate of N fertilizerand level of irrigation amount.
     No leaching was observed during three wheat seasons in the W2irrigation treatment, inseason1and after irrigation on anthesis and filling stages in seasons2and3. Most of leachatewas observed during the earlier wheat growth stage, which accounted for91.1and56.1%ofthe total leachate volume in seasons2and3, respectively. Under W1irrigation, the nitrate leaching for different treatments were3.4~9.1kg N ha–1in wheat season2and4.9~12.6kg Nha–1in wheat season3, taking up to2.5~7.6%and4.9~12.6%in season2and3, respectively.The nitrate concentration in soil solution and leachate was elevated with the increasing of rateof N fertilizer, otherwise for the ratio of leached nitrate in the input N. The NH4+-Nconcentration in leachate was very low, and NO3--N was the dominant form of N in leachate,which account from95.3~97.9%of the mineral N. Under W1irrigation, nitrate in soilsolution increased after fertilizer application. The depth of nitrate in surgace soil layer afterirrigation was related to wheat growth season. It could move to200cm during planting stageto jointing stage, and move to100cm during flowering stage to filling stage. Compared tourea, manure fertilization can cause nitrate to leach through2m of soil although the leachingnitrate amount for manure application was lower than that for urea fertilization.
     3Effect of nitrogen and irrigation coupling on nitrogen balance and useefficiencies of winter wheat
     After three winter wheat-summer maize growth seasons, the change of organic mattercontent of different treatments was varied from wheat variety, irrigation amount, type and rateof N fertilizer. Organic matter content in surface soil was declined for most urea fertilizationtreatments and the declining amount of U1treatment was higher than U2treatment. Organicmatter content in surface soil was improved for all manure fertilization, and the improvedamount and improved ratio for M1and M2treatments were0.56~2.43g kg-1and5.13~22.35%,0.06~0.96g kg-1and0.52~8.70%, respectively. Moreover, these were higherunder W1irrigation condition then W2irrigation. Compared to urea fertilization, manurefertilization increased organic matter content and soil fertility in surface soil. Sufficient watersupply promote the increased of organic matter content in surface soil.
     When priming effect of nitrogen fertilizer on soil nitrogen and denitrification wereirrespective, and soil mineralization amount was equal to the difference between N output andN input for no fertilizer application treatment, the N input was higher than N output for alltreatments except SW1U1and SW1U2. The imput N was109.0~107.7kg N ha-1higher thanthat output N of M1treatment, taking up to30.1~30.2%of input N. During the three wheatseasons, the mineral N content in2.0m soil profile was increased for treatments of W1M1,W2M1and W2U1. Among which, the increase of W2M1treatment was highest. The mineralN content in2.0m soil profile was decreased for other treatments during3wheat season.
     Nitrogen and water coupling have an significant impact on nitrogen use efficiency(Nit-UE), nitrogen uptake efficiency (NUpE), nitrogen utilization efficiency (NUtE) and nitrogen harvest index (NHI). Compared to stress irrigation, normal irrigation couldeffectively improve wheat Nit-UE, NUpE, NUtE, however stress irrigation enhanced NHI.Nit-UE, NUpE, NUtE and NHI were decreased when N application evalaved from90to180kg N ha-1. Nit-UE and NUpE of urea were higher than manure treatment, whereas NUtE ofmanure were higher than urea. Although Nit-UE of Jimai19was higher than Shimai15, thecrop nitrogen uptake, NUpE and Nit-UE of Shimai15were higher than Jimai19.
     Using high N use efficiency wheat variety, substitute urea for manure fertilizer, andreducing the fertilizer and irrigation input on planting stage, are the efficient ways to decreasesoil N losses through leaching and ammonia volatilization, increases crop N uptake, andsynchronously improve wheat yield and N use efficiency.
     4Effect of nitrogen and irrigation coupling on water use characteristic ofwinter wheat
     Soil water content changed actively in the surface soil layer, which were0–105cm forW1and0–75cm for W2. Higher variance occurred in the0–75cm layer for W1and in the0–35cm layer for W2. The leaching water amount, extracted soil solution amount, soil waterdepletion (SWD) and wheat evaportranspiration (ET) for W2irrigation treatment weresignificantly lower than W1irrigation treatment. The water use efficiency of grain yield(WUEg) and water use efficiency of dry matter (WUEd) under W2irrigation treatment washigher than W1in wheat season1, but otherwise in wheat seasons2and3. With theincreasing of rate of N fertilizer from90to180kg N ha-1, WUEgand WUEdwas increased.The variance of WUEgand WUEdbetween90and180kg N ha-1was higher under W1irrigation than under W2irrigation. Water deficit could inhibit the positive effect of higher Nfertilizer on grain yield and reduce N use efficiencies. Also, increasing rate of N fertilizercould mitigate the negative impact of water deficit on water use efficiency.
     5Effect of nitrogen and irrigation coupling on photosynthesis and agingproperties characteristic
     Compared to urea fertilization, the aging enzyme activity and soluble protein content offlag leaf could maintain at higher level on late winter growth stage for manure fertilization,thus manure fertilization could delay leaf senescence process. In this study, increasing rate ofN fertilizer from90to180kg N·ha-2could ease membrane lipid peroxidation in flag leafduring late wheat growth stage, increased photosynthetic rate, photosynthate and winter wheatgrain yield. Water deficit significantly declined leaf area index, photosynthetic rate, photosynthate and aging enzyme activity, which result in leaf premature aging, early maturityof wheat and obviously lower grain yield.
引文
蔡贵信,朱兆良,文启孝.氨挥发[J].朱兆良,文启孝.中国土壤氮素,南京:江苏科技出版社1992,171-185
    蔡祖聪,钦绳武.华北潮土长期试验中的作物产量、氮肥利用率及其环境效应[J].土壤学报,2006,43(6):885-890
    曹金留,田光明,任立涛,蔡祖聪,何任红.江苏南部地区稻麦两熟土壤中尿素的氨挥发损失[J].南京农业大学学报,2000,23(4):51-54
    曹靖,胡恒觉.不同肥料组合对冬小麦水分供需状况的研究[J].应用生态学报,2000,11(5):713-717
    陈建国,王龙.不同断水时间和穗肥施用方法对杂交稻防早衰的效果[J].耕作与栽培,1997(4):19-21
    陈磊,郝明德,张少民.黄土高原长期施肥对小麦产量及肥料利用率的影响[J].麦类作物学报,2006,26(5):101-105
    陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯.1991:27(2):84-90
    陈晓远,罗远培.开花期复水对受旱冬小麦的补偿效应研究[J].作物学报,2001,27(4):512-516.
    陈效民,邓建才,柯用春,张佳宝,朱安宁.硝态氮垂直运移过程中的影响因素研究[J].水土保持学报,2003,17(2):12-15
    陈志雄, Vauclin M.封丘地区土壤水分平衡研究I.田间突然湿度的空间变异.土壤学报,1989,26(4):309-315
    褚鹏飞,于振文,王小燕,武同华,王西芝.灌水量对小麦籽粒淀粉含量和相关酶活性及水分利用效率的影响[J].作物学报,2009,35(2):324-333
    崔振岭,陈新平,张福锁,徐久飞,石立委,李俊良.华北平原小麦施肥现状及影响小麦产量的因素分析[J].2008(S1):224-229
    崔振岭.华北平原冬小麦-夏玉米轮作系统优化氮肥管理-从田块到区域尺度[C],2005,北京:中国农业大学
    丁哲利,彭建伟,刘强,荣湘民,田昌,张玉平.不同地力水平下不同养分管理模式对早稻氮素利用效率及产量的影响[J].中国稻米,2010,16(2):30-33
    董文旭,胡春胜,张玉铭.华北农田土壤氨挥发原位测定研究[J].中国生态农业学报,2006,14(3):46-48
    杜伟,遆超普,姜小三,陈国岩.长三角地区典型稻作农业小流域氮素平衡及其污染潜势[J].生态与农村环境学报,2010,26(1):9-14
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学,2005,38(6):1132-1141
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响.植物生态学报,2004,28(5):680-685
    房全孝,陈雨海,李全起,于舜章,余松烈,董庆余,罗毅,于强,欧阳竹.灌溉对冬小麦灌浆期光合产物供应和转化及有关酶活性的影响[J].作物学报,2004,30(11):1113-1118
    冯波,刘延忠,孔令安,李升东,司纪升,王法宏.氮肥运筹对垄作小麦生育后期光合特性及产量的影响[J].麦类作物学报,2008,28(1):107-112
    冯跃华,邹应斌,敖和军,王淑红.不同施氮量对免耕/翻耕移栽稻生长及产量形成的影响[J].作物研究,2004,18(3):145-150
    高宗,刘杏兰,刘存寿,司立征.长期施肥对关中(娄土)土肥力和作物产量的影响[J].西北农业学报,1992,1(3):65-68
    郭天财,冯伟,赵会杰,朱云集,王晨阳,阎耀礼,罗毅.水分和氮素运筹对冬小麦生育后期光合特性及产量的影响[J].西北植物学报,2004,23(9),1512-1517
    郭天财,彭文博,王向阳,赵会杰,陈长海,崔金梅,朱云集.小麦灌浆后期青枯骤死原因分析及控制[J].作物学报,1997,23(4),474-481
    韩金玲,刘奇勇,杨晴,李彦生.不同类型小麦植株氮素同化、运转和分配比较分析[J].河北科技示范学院学报,2009,23(4):7-11
    韩娜娜,王仰仁,孙书洪,金建华,郭小英.灌水对冬小麦耗水量和产量影响的试验研究[J].节水灌溉,2010,4:4-7
    韩胜芳,李淑文,吴立强,文宏达,肖凯.不同小麦品种氮效率与氮吸收对氮素供应的响应及生理机制[J].应用生态学报,2007,18(4):807-812
    韩晓日,郭鹏程,陈恩凤,邹德乙.长期不同施肥对氮肥利用率的影响[J].土壤肥料,1997,(5):12-151
    何文寿,储燕宁,王彦才,杨发.不同基因型小麦氮营养效率的差异[J].农学院学报,1997,18(4):29-34
    胡延吉,杨永光,马元喜,石惠恩.小麦生态与生产技术.郑州:河南科学技术出版社,1986:19-23
    黄光荣,陆引罡,远红伟.不同施肥量对小麦生理特征及产量的影响[J].贵州农业科学,2009,37(5):35-37
    纪玉刚,孙静文,周卫,梁国庆,何萍,马献发,魏丹,吴英.东北黑土玉米氮唑体系氨挥发特征研究[J].植物营养与肥料学报.2009,15(5):1044-1050
    江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径[J].中国水稻科学,2002,16(3):261-264
    姜东,于振文,许玉敏,余松烈.有机无机肥料配合施用对冬小麦根系和旗时衰老的影响[J].土壤学报,1999,4,001
    姜东,谢祝捷,曹卫星,戴廷波,荆奇.花后干旱和渍水对冬小麦光合特性和物质运转的影响.作物学报,2004,30(2):175-182
    姜东燕,于振文,许振柱.灌溉量和施氮量对冬小麦产量和土壤硝态氮含量的影响[J].应用生态学报,2011,22(002):364-368.
    姜东燕,于振文,张玉芳.灌水量对小麦产量和水分利用率的影响[J].山东农业科学,2006,6:23-25
    蒋小芳,罗佳,黄启为.不同原料堆肥有机无机复混肥对辣椒产量和土壤生物性状的影响[J].植物影响与肥料学报,2008,14(4):766-773
    金欣欣,张喜英,陈素英,孙宏勇,王彦梅,邵立威,高丽娜.不同灌溉次数和灌溉量对冬小麦氮素吸收转移的影响[J].华北农学报,2009,24(4):112-118
    巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作体系中NO3--N在土壤剖面的累积及移动[J].土壤学报,2003a,40(4):538-546
    巨晓棠,刘学军,邹国元,王朝辉,张福锁.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学,2002a,35(12):1493-1499
    巨晓棠,潘家荣,刘学军,陈新平,张福锁,毛达如.高肥力土壤冬小麦生长季肥料氮的去向研究Ⅰ.冬小麦生长季肥料氮的去向[J].核农学报,2002b,16(6):397-402
    巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境,2003b,12(2),192-197
    巨晓棠,张福锁.中国北方土壤硝态氮的累积及其对环境的影响[J].生态环境,2003,12(1):24-28
    康绍忠,党育红.作物水分生产函数与经济用水灌溉制度的研究[J].西北水利科学,1987,1:1-11
    康绍忠.西北地区农业节水与水资源持续利用[M].北京:中国农业出版社,1999
    兰涛,姜东,谢祝捷,曹卫星,戴廷波,荆奇.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响.水土保持学报,2004,18(1):193-196
    李贵桐,李保国,陈德立.大面积冬小麦夏玉米农田土壤的氨挥发[J].华北农学报,2002,17(1):76-81
    李建民,王璞.灌溉制度对冬小麦耗水及产量的影响[J].生态农业研究,1999,7(4):23-26
    李捷,吴慎杰.半干旱区春小麦生长冗余的研究[J].湖北农业科学,2002(1):26-27
    李菊梅,徐明岗,秦道珠,李冬初.有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报,2005,11(1):51
    李莉.不同施肥制度土壤肥力特征及其对作物产量和品质的影响[D].山东农业大学,2005
    李升东,王法宏,司纪升,张宾,孔令安,冯波.氮肥管理对小麦产量和氮肥利用效率的影响[J].核农学报,2012,26(2):403-407
    李生秀,李世清.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果[J].干旱地区农业研究,1994,12(1):38-46
    李世清,田霄鸿.养分对旱地小麦水分腔迫的生理补偿效应[J].西北植物学报,2000,20(1):22-28
    李淑文,文宏达,薛宝民,齐永清,肖凯.小麦高效吸收利用氮素的生理生化特性研究进展[J].麦类作物学报,2003,23(4):131-135
    李晓欣,胡春胜,程一松.不同施肥处理对作物产量及土壤中硝态氮累积的影响[J].干旱地区农业研究,2003,21(3):38-42
    李絮花,杨守祥,于振文,余松烈.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营养与肥料学报,2005,11(4):467
    李玉山.渭北农田水分条件评价和提高旱地水分生产效率的途径[J].陕西农业科学,1982,(2):17-21
    吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-15.
    林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[J].植物营养与肥料,1994,1:6-18
    林植芳.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系.植物学报,l984,26(6):605-615
    刘春增,寇长林,王秋杰.长期施肥对砂土肥力变化及硝态氮积累和分布的影响[J].土壤通报,1996,27(5):216-218
    刘道宏.植物叶片的衰老[J].植物生理学通讯,1983(2):14-19
    刘芳,于振文,亓新华.应用15N示踪法对旱地冬小麦施肥与氮素吸收利用的研究[J].土壤肥料,1997,(2):30-31
    刘凤楼,宋美丽,冯毅,孙道杰,李学军,李进仓,张睿.施肥量与氮肥基追比对西农979产量和品质的效应[J].麦类作物学报,2010,30(3):482-487
    刘光栋,吴文良.桓台县高产农田土壤硝态氮淋失动态研究[J].中国生态农业学报,2002,10(4):71-74
    刘丽平,欧阳竹,武兰芳,孙振中,李发东.灌溉模式对不同群体小麦光合特性的调控机制[J].中国生态农业学报,2012,20(2):189-196.
    刘青林,张恩和,王琦,王田涛,刘朝巍,尹辉,俞华林.灌溉与施氮对留茬免耕春小麦耗水规律、产量和水分利用效率的影响[J].草业学报,2012,21(5):169.
    刘新宇,巨晓棠,张丽娟,李鑫,袁丽金.不同施氮水平对冬小麦季化肥氮去向及土壤氮素平衡的影响[J].植物营养与肥料学报,2010,16(2):296-303.
    刘振兴,杨振华,邱孝煊.肥料的增产贡献及对土壤有机质的影响[J].植物营养与肥料学报,1994,1:19-26
    陆景陵主编,植物营养学(上).北京浓业大学出版社,1994
    吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报,1998,4(1):8-15
    马兴华,王东,于振文,王西芝,许振柱.不同施氮量下灌水量对小麦耗水特性和氮素分配的影响[J].生态学报,2010(8):1955-1965
    马兴华,于振文,梁晓芳,颜红,史桂萍.施氮量和底追比例对小麦氮素吸收利用及子粒产量和蛋白质含量的影响[J].植物营养与肥料学报,2006,12(2):150-155
    孟琳,王强,黄启为,杨兴明,徐阳春,沈其荣.猪粪堆肥与化肥配施对水稻产量和氮效率的影响[J].生态与农村环境学报,2008,24(1):68-76
    敏超,曾长立,王兴仁,张福锁.氮肥施用对冬小麦氮肥利用率及土壤剖面硝态氮含量动态分布的影响[J].农业现代化研究,2000,21(5):309-312
    潘家荣,巨晓棠,刘学军,陈新平,张福锁,毛达如.水氮优化条件下在华北平原冬小麦-夏玉米轮作中化肥氮的去向[J].核农学报.2009,23(2):334-340
    潘家荣,邹国元,魏丽,王保忠.群体密度和追氮方法对不同熟相冬小麦产量效应的差异及对化肥氮去向的影响[J].核农学报,2003,17(6):466-471.
    潘晓华,邓强辉.作物收获指数的研究进展[J].江西农业大学学报,2007,29(1):1-5
    赛力汗赛,陈兴武,高永红,雷钧杰.限量灌溉对冬小麦植株性状和产量的影响[J].新疆农业科学,2009,46(6):1283-1287
    沈荣开,王康,张瑜芳,杨路华,穆金元,赵立新.水肥耦合条件下作物产量,水分利用和根系吸氮的试验研究[J].农业工程学报,2001,17(5):35-38.
    石岩,于振文,位东斌,余松烈.土壤水分胁迫对小麦根系与旗叶衰老的影响[J].西北植物学报,1998,18(2):196-201.
    石玉,于振文.施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影响[J].生态学报,2006,26(11):3661-3669
    宋永林,袁锋明,姚造华.化肥与有机物料配施对作物产量及土壤有机质的影响[J].华北农学报,2002,17(4):73-76
    宋勇生,范晓晖.稻田氨挥发研究进展[J].生态环境,2003,12(2):240-244.
    苏芳,丁新泉,高志岭,黄彬香,陈新平,张福锁.华北平原冬小麦-夏玉米轮作体系氮肥的氨挥发[J].中国环境科学.2007,27(3):409-413
    孙克刚,姚健,朱洪勋.长期不同施肥对潮土中硝态氮累积及作物产量的影响[J].干旱地区农业研究.1999,17(1):35-38
    孙克刚,张桂兰.长期施氮磷钾肥对轮作作物产量及土壤肥力影响[J].中国农学通报,1999,15(6):18-23
    孙志梅,武志杰,陈利军,刘永刚.农业生产中的氮肥施用现状及其环境效应研究进展[J].土壤通报,2006,37(4):782-786
    唐政,邱建军,邹国元,王立刚.有机种植条件下水肥管理对氮素淋洗和氮素平衡的影响研究[J].中国土壤与肥料,2010(1):19-24
    田光明,蔡祖聪,曹金留,李小平.镇江丘陵区稻田化肥氮的氨挥发及其影响因素[J].土壤学报,2001,38(3):324-332
    同延安,吕殿青,张航.灌区土壤中氮素平衡与硝态氮淋失[J].陕西农业科学,1994,5:12-13
    童依平,李继云,李振声.不同小麦品种吸收利用氮素效率的差异及有关机理研究I.吸收和利用效率对产量的影响[J].西北植物学报,1999,19(2):270-277
    王百群,戴鸣钧.土壤不同形态氮素在剖面中移动特征的模拟研究[J].水土保持研究,2000,7(4):117-122
    王宝山.生物自由基与植物膜的伤害[J].植物生理学通,1988(2):12-16
    王朝辉,王兵,李生秀.缺水与补水对小麦氮素吸收及土壤残留氮的影响[J].应用生态学报,2004,15(8):1339-1343.
    王东,于振文,于文明,石玉,周忠新.施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响[J].应用生态学报.2006,17(9):1593-1598
    王贺正,张均,吴金芝,徐国伟,陈明灿,付国占,李友军.不同氮素水平对小麦旗叶生理特性和产量的影响[J].草业学报,2013,22(4):69-75
    王红光,于振文,张永丽,王东,石玉,许振柱.测墒补灌对小麦光合特性和干物质积累与分配的影响[J].应用生态学报,2010,22(10),2495-2503
    王家仁,郭风洪,孙茂真,崔若亮,郭春荣,边萍,付光永.调亏灌溉节水高效技术指标试验初报[J].灌溉排水学报,2004,23(1):36-40
    王敏,张胜全,方保停,郑强,张英华.氮肥运筹对限水灌溉冬小麦产量及氮素利用的影响[J].2007,23(7):349-353
    王萍,陈国祥,张成军,王静,施大伟,陈利,黄春娟.宁麦8号功能叶衰老过程中的光能转化特性[J].麦类作物学报,2005,25(2):61-65
    王秋君,张小莉,罗佳,黄启为,沈其荣.不同有机无机复混肥对小麦产量氮效率和土壤微生物多样性的影响[J].植物营养学报与肥料学报,2009,15(5):1003-1009
    王小燕,刘学军,巨晓棠,张福锁.北方冬小麦-夏玉米轮作体系土壤氨挥发的原位测定[J].生态学报.2002,22(3):359-365
    王小燕,于振文.不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响[J].中国农业科学,2008,41(10):3015-3024
    王小燕.施氮量和土壤水分对小麦碳氮代谢和产量与品质形成的影响[D].山东农业大学,2006
    王晓楠,吴贳玉,付连双,李卓夫.氮肥处理对春小麦穗粒数形成阶段的影响[J].东北农业大学学报,2011,42(4):32-35.
    王晓英,贺明荣,刘永环,张洪华,李飞,华芳霞.水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋洗的影响[J].生态学报,2008,28(2):685-694
    王旭东,张一平,吕家珑.不同施肥条件对土壤有机质及胡敏酸特性的影响[J].中国农业科学,2000,33(2):75-81
    王艳博,黄启为,孟琳,沈其荣.有机无机肥料配施对盆栽菠菜的生长和土壤供氮特性的影响[J].南京农业大学学报,2006,29(3):44-48
    王艳朋,靳静晨,汤继华,胡彦民,刘宗华.作物氮素高效利用研究与现代农业[J].中国农学通报,2008,23(10):179-183.
    王余龙.栽培条件对水稻粒重的影响及其原因分析[J].作物学报,1998,24(3):280-290.
    王月福,姜东,于振文,曹卫星.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,2003,36(5):513-520
    吴金水,郭胜利,党廷辉.半干旱区农田土壤无机氮累积与迁移机理[J].生态学报,2003,23(10):2040-2049
    吴永成,周顺利,王志敏,罗延庆.华北地区夏玉米土壤硝态氮的时空氮的时空动态与残留[J].生态学报,2005,25(7):1620-1625.
    肖新华.冬小麦-夏玉米轮作下灌溉农田水氮平衡的定量评价[D].中国农业大学,2004.
    肖自添,蒋卫杰,余宏军.作物水肥耦合效应研究进展[J].作物杂志,2007,6:18-22
    徐海,王益权,刘军.半干旱偏湿润地区旱地小麦土壤水肥耦合的时空变异特征[J].干旱地区农业研究,2009,27(2):184-188
    徐恒永,赵君实.高产冬小麦的冠层光合能力及不同器官的贡献[J].作物学报,1995,21(2):204-209.
    徐明岗,邹长明,秦道珠.有机无机肥配合施用下的稻田氮素转化与利用[J].土壤学报,2002,39(增刊):147-156
    徐学选,陈国良,穆兴民.春小麦水肥产出协同效应研究[J].水土保持学报,1994,8(4):72-78
    许旭旦.旱作农业中的合理施肥及其生理学基础[J].干旱地区农业研究,1985,1(2):56-71
    许振柱,李长荣,陈平,于振文,余松烈.土壤干旱对冬小麦生理特性和干物质积累的影响[J].干旱地区农业研究,2000,18:113-118
    薛坚,赵秉强,李凤超.秸秆直接还田的定位研究[J].土壤肥料,1993,2:27-29.
    薛崧,吴小平,冯彩平,张倩.不同氮素水平对旱地小麦叶片叶绿素和糖含量的影响及其与产量[J].干旱地区农业研究,1997,15(1):79-84.
    杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制的研究[J].土壤学报,1992,29(1),73-79
    杨晓亚,于振文,许振柱.灌水量和灌水时期对小麦耗水特性和氮素积累分配的影响[J].生态学报,2009,29(20):846-853
    杨学云,张树兰,袁新民.长期施肥对土硝态氮分布、累积和移动的影响[J].植物营养与肥料学报,2010,7(2):134-138
    姚源喜,杨延蕃.长期定位施肥对作物产量和土壤肥力的影响[J].莱阳农学院学报,1991,8(4):245-251
    叶优良,黄玉芳,刘春生,曲日涛,宋海燕,崔振岭.氮素实时管理对冬小麦产量和氮素利用的影响[J].作物学报,2010,36(9):1578-1584.
    于利鹏,黄冠华,刘海军,王相平,王明强.喷灌灌水量对冬小麦生长,耗水与水分利用效率的影响[J].应用生态学报,2010(8):2031-2037.
    袁新民,同延安,杨学云,李晓林,张福锁.灌溉与降水对土壤NO3--N积累的影响[J].水土保持学报,2000,14(3):71-73
    袁新民,同延安,杨学云,李晓林,张福锁.有机肥对土壤NO3--N累积的影响[J].土壤与环境,2000,9(3):197-200.
    翟学旭,王振林,戴忠民,刘霞,王平,刘海涛,尹燕枰,曹丽,徐彩龙,崔正勇,吴光磊.灌溉与非灌溉条件下黄淮冬麦区不同追氮时期农田土壤氨挥发损失研究[J].植物营养与肥料学报,2012,19(1):55-67
    张法全,王小燕,于振文,王西芝,白洪立.公顷产10000kg小麦氮素和干物质积累与分配特性[J].作物学报,2009,35(6):1086-1096
    张凤翔,周明耀,徐华平,郭凯泉.水肥耦合对冬小麦生长和产量的影响[J].水利与建筑工程学报,2005,3(2):22-24.
    张福锁,崔振岭,王激清,李春俭,陈新平.中国土壤和植物养分管理现状与改进策略[J].植物学通报,2007,24:687–694。
    张福锁,王激清,张卫峰,崔振岭,马文奇,陈新,江荣风.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924
    张雷明,上官周平,毛明策,于贵端.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响[J].应用生态学报,2003,14(5):695-698
    张磷,黄小红,谢晓丽,谢耀均,王运房.施肥技术对土壤肥力和肥料利用率的影响[J].广东农业科学,2005(2):46-49.
    张仁涉,李小刚,胡恒觉.施肥对提高旱地农田水分利用效率的机理[J].植物营养和肥料学报,1999,5(3):221-226.
    张维理,田哲旭,张宁,李晓齐.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87
    张文英,张庆江.小麦-玉米两熟制土壤-作物系统的的氮素平衡[J].华北农学报,1994,9(增刊):109-114
    张永丽,于振文,郑成岩,谷淑波.不同灌水处理对强筋小麦济麦20耗水特性和籽粒淀粉组分积累的影响[J].中国农业科学,2009,42(12):4218-4227
    张永丽,于振文.灌水量对小麦氮素吸收、分配、利用及产量与品质的影响[J].作物学报,2008,34(5):870-878
    张玉铭,胡春,张佳宝,李晓欣,董文旭.太行山前平原农田生态系统氮素循环与平衡研究[J].植物营养与肥料学报,2006,12(1):5-11
    张忠学,于贵瑞.不同灌水处理对冬小麦生长及水分利用效率的影响[J].灌溉排水学报,2003,22(2):1-4
    赵广才,常旭虹,刘利华,杨玉双,池忠志,杨丽珍.施氮量对不同强筋小麦产量和加工品质的影响[J].作物学报,2006,32(5):723-727.
    赵广才,常旭虹,杨玉双,李振华,丰明.追氮量对不同品质类型小麦产量和品质的调节效应[J].植物营养与肥料学报,2010,16(4):859-865;
    赵广才,李春喜,张保明.小麦各器官氮素含量动态及其与产量和蛋白质含量的关系[J].中国农业科学,1999,32:302-304.
    赵广帅,李发东,李运生,张妍,欧阳竹,田振荣.长期施肥对土壤有机质积累的影响[J].生态环境学报,2012,21(5):840-847.
    赵会杰,王向阳.小麦灌浆后期青枯骤死与体内活性氧代谢关系的研究[J].作物学报,1994,20(3):302-305.
    赵俊晔,于振文.不同土壤肥力条件下施氮量对小麦氮肥利用和土壤硝态氮含量的影响[J].生态学报,2013,26(3):815-822.
    赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J].作物学报,2006,32(4):484-490.
    赵荣芳,陈新平,张福锁.华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡[J].土壤学报,2009,46(4):684-697
    赵伟,王宏燕,于佳,廖莎,宋立娟.农肥和化肥对黑土农田生态系统氮素循环与平衡影响的研究[J].水土保持学报,2010(1):155-158.
    郑成岩,于振文,王西芝,武同华.灌水量和时期对高产小麦氮素积累、分配和转运及土壤硝态氮含量的影响[J].植物营养与肥料学报,2009,15(6):1324-1332
    郑丕尧.作物生理学导论.北京:北京农业大学出版社,1992:121-127
    郑昭佩,刘作新.水肥管理对半干旱丘陵区土壤有机质含量的影响.水土保持学报,2012,16(4),102-104
    朱济成.关于地下水硝酸盐污染原因的探讨[J].北京地质,1995,2:720-26
    朱兆良,文启孝.农田生态系统中化肥的去向和氮素管理[J].见:朱兆良,文启孝.中国土壤氮素.南京:江苏科学技术出版社,1992,245:1992.228-245.
    朱兆良,文启孝.中国土壤氮素[M].江苏:江苏科学技术出版社,1992:p213-249
    朱兆良.肥料与农业和环境[J].大自然探索.1998,17(64):25-28
    朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6
    朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783
    Abad A, Lloveras J, Michelena A. Nitrogen fertilization and foliar urea effects on durumwheat yield and quality and on residual soil nitration irrigated Mediterranean conditions.Field Crops Research,2004,87:257-269
    Ahmad S, Kalra A, Stephen H. Estimating soil moisture using remote sensing data: Amachine learning approach [J]. Advances in Water Resources,2010,33(1):69-80.
    Angus J F, Gault R R, Peoples M B, M. Stapper and A. F. van Herwaarde. Soil water extraction bydryland crops, annual pastures, and lucerne in south-eastern Australia[J]. Crop andPasture Science,2001,52(2):183-192
    Badr M A, El-Tohamy W A, Zaghloul A M. Yield and water use efficiency of potato grownunder different irrigation and nitrogen levels in an arid region[J]. Agricultural WaterManagement,2012,110:9-15.
    Bahrani A, Abad H H S, Aynehband A. Nitrogen remobilization in wheat as influenced bynitrogen application and post-anthesis water deficit during grain filling[J]. AfricanJournal of Biotechnology,2013,10(52):10585-10594.
    Basso B, Ritchie J T. Impact of compost, manure and inorganic fertilizer on nitrate leachingand yield for a6-year maize–alfalfa rotation in Michigan[J]. Agriculture, ecosystems andenvironment,2005,108(4):329-341.
    Beeson R.C. Jr. Weighing lysimeter systems for quantifying water use and studies ofcontrolled water stress for crops grown in low bulk density substrates [J]. AgriculturalWater Management,2011,98:967–976
    Bergstr m L, Brink N. Effects of differentiated applications of fertilizer N on leaching lossesand distribution of inorganic N in the soil[J]. Plant and soil,1986,93(3):333-345.
    Berry P M, Sylvester-Bradley R, Philipps L, Hatch D J, Cuttle S P, Rayns F W, Goslin P. Isthe productivity of organic farms restricted by the supply of available nitrogen?[J] SoilUse Management,2002,18:248–255
    Boswell F C, Anderson O E. Nitrogen movement comparisons in cropped versus fallowedsoils[J]. Agronomy journal,1970,62(4):449-503.
    Cai G X, Chen D L, Ding H, Pacholski A, Fan X H, Zhu Z L. Nitrogen losses from fertilizersapplied to maize, wheat and rice in the North China Plain. Nutrient Cycling inAgroecosystems,2002,63(2-3),187-195.
    Caldwell M M, Dawson T E, Richards J H. Hydraulic lift: consequences of water efflux fromthe roots of plants[J]. Oecologia,1998,113(2):151-161.
    Campbell C A. Soil organic carbon, nitrogen and fertility[J]. Soil organic matter,1978,8:173-271.
    Cartagena M C, Vallejo A, Diez J A, Bustosb A, Caballerob R, Romanb R. Effect of the typeof fertilizer and source of irrigation water on N use in a maize crop[J]. Field CropsResearch,1995,44(1):33-39.
    Cassman K G, Dobermann A, Walters D T. Agroecosystems, nitrogen-use efficiency, andnitrogen management[J]. AMBIO: A Journal of the Human Environment,2002,31(2):132-140.
    Chaney K. Effect of nitrogen fertilizer rate on soil nitrate nitrogen content after harvestingwinter wheat[J]. The Journal of Agricultural Science,1990,114(02):171-176
    Chang C, Entz T. Nitrate leaching losses under repeated cattle feedlot manure applications insouthern Alberta[J]. Journal of Environmental quality,1996,25(1):145-153.
    Chen J, Ren Y, Chen P, Chen, Y L. Effects of nitrogen nutrition on growth of wheat varietieswith different drought-resistance under various soil moistures[J]. Zuo wu xue bao,1995,22(4):483-489.
    Cox M C, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation andtranslocation in wheat. III. Nitrogen translocation in relation to grain yield and protein[J].Crop Science,1986,26(4):737-740.
    Dang T H, Cai G X, Guo S L, Hao M D, Heng L K. Effect of nitrogen management on yieldand water use efficiency of rainfed wheat and maize in Northwest China[J]. Pedosphere,2006,16(4):495-504
    Dawson J C, Huggins D R, Jones S S. Characterizing nitrogen use efficiency in natural andagricultural ecosystems to improve the performance of cereal crops in low-input andorganic agricultural systems [J]. Field Crops Research,2008,107(2):89-101.
    De Rooij, G H, Stagnitti F. Spatial and temporal distribution of solute leaching inheterogeneous soils: analysis and application to multi-sampler lysimeter data. Journal ofcontaminant hydrology,2002,54(3):329-346
    Dhugga K S, Waines J G. Analysis of nitrogen accumulation and use in bread and durumwheat [J]. Crop Science,1989,29(5):1232-1239.
    Di H J, Cameron K C.2002. Nitrate leaching in temperate agroecosystems: Sources, factorsand mitigating strategies. Nutrient Cycling in Agroecosystems,46,237–256
    Diez J A, Roman R, Cartagena M C. Controlling nitrate pollution of aquifers by usingdifferent nitrogenous controlled release fertilizers in maize crop[J]. Agriculture,ecosystems and environment,1994,48(1):49-56.
    Engstr m L, Stenberg M, Aronsson H. Reducing nitrate leaching after winter oilseed rape andpeas in mild and cold winters[J]. Agronomy for sustainable development,2010.31:337-347
    Fan J, Hao M D, Shao M A. Nitrate Accumulation in Soil Profile of Dry Land Farming inNorthwest China”[J]. Pedosphere,2003,13(4):367-374.
    Fang Q, Ma L, Yu Q, Ahuja L R, Malone R W. Irrigation strategies to improve the water useefficiency of wheat–maize double cropping systems in North China Plain[J]. Agriculturalwater management,2010,97(8):1165-1174.
    Fapohunda H O, Aina P O, Hossain M M. Water use-Yield relations for cowpea and maize[J].Agricultural water management,1984,9(3):219-224.
    Fedkiw J. Nitrate occurrence in US waters (and related questions)[J]. USDA Working Groupon Water Quality,1991
    Ferguson R B, Kissel D E. Effects of soil drying on ammonia volatilization fromsurface-applied urea[J]. Soil Science Society of America Journal,1986,50(2):485-490.
    Ferreira T C, Goncalves D A. Crop-yield/water-use production functions of potatoes(Solanum tuberosum, L.) grown under differential nitrogen and irrigation treatments in ahot, dry climate[J]. Agricultural water management,2007,90(1):45-55.
    Freney J R, Simpson J R, Denmead O T. Ammonia volatilization[J]. Ecological Bulletins(Sweden),1981.
    Freney J R, Simpson J R. Gaseous loss of nitrogen from plant-soil systems[M]. MartinNijhoff/Dr. W. Junk Publishers,1983.p1-32.
    Goulding K. Nitrate leaching from arable and horticultural land[J]. Soil use and management,2000,16(s1):145-151.
    Hadas A, Feigin A, Feigenbaum S, Portnoy R.. Nitrogen mineralization in the field at varioussoil depths[J]. Journal of soil science,1989,40(1):131-137.
    Halvorson A D, Curtis A. Nitrogen fertilizer requirements in an annual dryland croppingsystem[J]. Agronomy Journal.1994,86:315-318
    Halvorson A D, Brian J, Wienhold, Alfred L.Black. Tillage and nitrogen fertilizationinfluence grain and soil nitrogen in an annual cropping system[J]. Agronomy Journal,2001,93:836-841
    Hati K M, Mandal K G, Misra A K, Ghosh, P K, Bandyopadhyay, K K. Effect of inorganicfertilizer and farmyard manure on soil physical properties, root distribution, andwater-use efficiency of soybean in Vertisols of central India[J]. Bioresource Technology,2006,97(16):2182-2188.
    Herron G M, Terman G L, Dreier A F. Residual nitrate nitrogen in fertilized deeploess-derived soils[J]. Agronomy Journal,1968,60(5):477-482.
    Himken M, Lammel J, Neukirchen D. Cultivation of Miscanthus under West Europeanconditions: seasonal changes in dry matter production, nutrient uptake andremobilization[J]. Plant and Soil,1997,189(1):117-126.
    Huggins D R, Pan W L. Key indicators for assessing nitrogen use efficiency in cereal-basedagroecosystems. Journal of Crop Production,2003,8:157-185
    IPCC. Agriculture: Nitrous Oxide From Agricultural. Soil and Manure Management [R].Paris: OECD,1996:1-20
    Jiang Z, Sullivan W M, Hull R J. Nitrate uptake and nitrogen use efficiency by Kentuckybluegrass cultivars[J]. HortScience,2000,35(7):1350-1354.
    Ju X T, Liu X J, Zhang F S, Roelcke M. Nitrogen fertilization, soil nitrate accumulation, andpolicy recommendations in several agricultural regions of China [J]. AMBIO: A Journalof the Human Environment,2004,33(6):300-305
    Ju XT, Kou CL, Zhang FS, Christie P. Nitrogen balance and groundwater nitratecontamination: comparison among three intensive cropping systems on the North ChinaPlain [J]. Environmental Pollution,2006,143:117–125.
    Kandeler E, Eder G, Sobotik M. Microbial biomass, N mineralization, and the activities ofvarious enzymes in relation to nitrate leaching and root distribution in a slurry-amendedgrassland[J]. Biology and fertility of soils,1994,18(1):7-12.
    Kang S Z, Zhang L, Liang Y L, Hu, X T, Cai, H J, Gu, B J. Effects of limited irrigation onyield and water use efficiency of winter wheat in the Loess Plateau of China[J].Agricultural water management,2002,55(3):203-216.
    Karapanagioti H K, Gaganis P, Burganos V N, H hener P. Reactive transport of volatileorganic compound mixtures in the unsaturated zone: modeling and tuning with lysimeterdata. Environmental Modelling and Software,2004,19(5):435-450
    Kononova M M,1964. Soil organic matter, its nature, its role in soil formation and in fertility.2nd ed. London, pengamon Press,1964,5-20
    Krzyszowska A J, Allen R D, Vance G F. Assessment of the fate of two herbicides in aWyoming rangeland soil: column studies[J]. Journal of environmental quality,1994,23(5):1051-1058
    Larsen S, Gunary D. Ammonia loss from ammoniacal fertilisers applied to calcareous soils[J].Journal of the Science of Food and Agriculture,1962,13(11):566-572.
    Lears J. Fables of abundance: A cultural history of advertising in America[M]. Basic Books,1995.
    Li F M, Liu X L, Li S Q. Effects of early soil water distribution on the dry matter partitionbetween roots and shoots of winter wheat[J]. Agricultural water management,2001,49(3):163-171.
    Li F, Kang S, Zhang J, Cohen S. Effects of atmospheric CO2enrichment, water status andapplied nitrogen on water-and nitrogen-use efficiencies of wheat[J]. Plant and Soil,2003,254(2):279-289.
    Li Z J, Xie X Y, Zhang S Q, Liang, Y C. Negative Effects of Oxytetracycline on Wheat(Triticum aestivum L.) Growth, Root Activity, Photosynthesis, and ChlorophyllContents[J]. Agricultural Sciences in China,2011,10(10):1545-1553
    Lind A M, Debosz K K, Maag M. N-balance for mineral N on spring barley cropped sandyloam and coarse sandy soil with mineral and organic fertilizers[J]. Acta AgriculturaeScandinavica B-Plant Soil Sciences,1995,45(1):39-50.
    Liu H, Yu L, Luo Y, Wang X P, Huang G H. Responses of winter wheat (Triticum aestivumL.) evapotranspiration and yield to sprinkler irrigation regimes[J]. Agricultural watermanagement,2011,98(4):483-492.
    Liu J, Liu H, Huang S M, Yang X Y, Wang B R, Li X Y, Ma Y B. Nitrogen efficiency inlong-term wheat–maize cropping systems under diverse field sites in China[J]. Fieldcrops research,2010,118(2):145-151.
    Luo Y, Sophocleous M. Seasonal groundwater contribution to crop-water use assessed withlysimeter observations and model simulations. Journal of hydrology.2010,389,325-335.
    Mae T, Inaba A, Kaneta Y, Masaki S, Sasaki M, Aizawa M, Makino A. A large-grain ricecultivar, Akita63, exhibits high yields with high physiological N-use efficiency. Fieldcrops research,2006,97(2),227-237
    Martin R J, Jamieson P D, Wilson D R, Fransis, G S. Effects of soil moisture deficits on yieldand quality of ‘Russet Burbank’potatoes[J]. New Zealand journal of crop andhorticultural science,1992,20(1):1-9.
    Matson P A, Parton W J, Power A G, Swift, M J. Agricultural intensification and ecosystemproperties[J]. Science,1997,277(5325):504-509
    Maurizio Borin, Carlo Giupponi, Francesco Morari. Effects of four cultivation systems formaize on nitrogen leaching1.Field experiment [J]. European Journal of Agronomy,1997,6:101-l12
    Meade R H. Contaminants in the Mississippi River,1987-92[J]. US Geological Surveycircular (USA),1996
    Mediavilla V, Stauffer W, Siegenthaler A. Pig slurry and sewage sludge: effects on soilproperties[J]. Agrarforschung (Switzerland),1995,2,265–268
    Minchin F R, Summerfield R J, Neves M C P. Carbon metabolism, nitrogen assimilation, andseed yield of cowpea (Vigna unquiculata L. Walp.) grown in an adverse temperatureregime[J]. Journal of experimental botany,1980,31(5):1327-1345.
    Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors whichcontribute to efficiency of nitrogen utilization[J]. Agronomy Journal,1982,74(3):562-564.
    Morris C F, Paulsen G M. Development of hard winter wheat after anthesis as affected bynitrogen nutrition[J]. Crop Science,1985,25(6):1007-1010.
    Murchie E H, Chen Y, Hubbart S. Interactions between senescence and leaf orientationdetermine in situ patterns of photosynthesis and photoinhibition in field-grown rice[J].Plant Physiology,1999,119(2):553-564.
    Musick J T, Jones O R, Stewart B A. Water-yield relationships for irrigated and drylandwheat in the US Southern Plains[J]. Agronomy Journal,1994,86(6):980-986.
    Ortiz-Monasterio R, Sayre K D, Rajaram S, McMahon M. Genetic progress in wheat yieldand nitrogen use efficiency under four nitrogen rates[J]. Crop Science,1997,37(3):898-904.
    Oenema O, Kros H, de Vries W,2003. Approaches and uncertainties in nutrients budgets:implications for nutrient management and environmental policies. European Journal ofAgronomy20:3-16.
    Ottman M J, Pope N V. Nitrogen fertilizer movement in the soil as influenced by nitrogen rateand timing in irrigated wheat[J]. Soil Science Society of America Journal,2000,64(5):1883-1892.
    Passioura J B. Grain yield, harvest index, and water use of wheat[J]. Journal of the AustralianInstitute of Agricultural Science,1977
    Plaut Z, Butow B J, Blumenthal C S, Wrigley C W. Transport of dry matter into developingwheat kernels and its contribution to grain yield under post-anthesis water deficit andelevated temperature[J]. Field Crops Research,2004,86(2):185-198.
    Rasool R., Kukal S S, Hira G S. Soil organic carbon and physical properties as affected bylong-term application of FYM and inorganic fertilizers in maize–wheat system[J]. Soiland Tillage Research,2008,101:31–36
    Rehana Rasool, Kukal S S, Hira G S. Soil organic carbon and physical properties as affectedby long-term application of FYM and inorganic fertilizer in maize-wheat system[J].Soiland tillage research,2008,101:31-36
    Riley W J, Ortiz-Minasterio I., Matson P A. Nitrogen leaching and soil nitrate,nitrite,andammonium level under irrigated wheat in Northern Mexico[J].Nutrient Cycling inAgroecosystems,2001,61:223-236
    Sallade Y E, Sims J T. Nitrate leaching in an Atlantic Coastal Plain soil amended with poultrymanure or urea-ammonium nitrate: influence of thiosulfate[J]. Water, air, and soilpollution,1994,78(3-4):307-316.
    Sharma P N, Alonso Neto F B. Water production function of sorghum for northeast Brazil [J].Agricultural water management,1986,11(2):169-180.
    Shi Z L, Li D D, Jing Q, Cai J, Jiang D, Cao W X, Dai T B. Effects of nitrogen applicationson soil nitrogen balance and nitrogen utilization of winter wheat in a rice–wheat rotation.Field Crops Research,2012,127,241-247.
    Sieling K, Kage H,2006. N balance as an indicator of N leaching in an oilseed rape–winterwheat-winter barley rotation. Agriculture Ecosystems and Environment115:261–269.
    Sinclair T R, Pinter Jr P J, Kimball B A. Leaf nitrogen concentration of wheat subjected toelevated CO2and either water or N deficits[J]. Agriculture, ecosystems&environment,2000,79(1):53-60.
    Sinclair T R. Historical changes in harvest index and crop nitrogen accumulation [J]. CropScience,1998,38(3):638-643.
    Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: amechanism for C sequestration under no-tillage agriculture [J]. Soil Biology andBiochemistry,2000,32(14):2099-2103.
    Souza E J, Martin J M, Guttieri M J, O'Brien K M., Habernicht D K., Lanning S P, Talbert LE. Influence of genotype, environment, and nitrogen management on spring wheatquality[J]. Crop Science,2004,44(2):425-432.
    Sun H Y, Liu C M, Zhang X Y. Effects of irrigation on water balance, yield and WUE ofwinter wheat in the North China Plain[J]. Agricultural water management,2006,85(1):211-218
    Sun H Y, Liu C M, Zhang X Y, Shen Y J, Zhang Y Q. Effects of irrigation on water balance,yield and WUE of winter wheat in the North China Plain[J]. agricultural watermanagement,2006,85(1):211-218.
    Sun H Y, Shen Y, Yu Q, Flerchinger, G N, Zhang Y, Liu C, Zhang X. Effect of precipitationchange on water balance and WUE of the winter wheat–summer maize rotation in theNorth China Plain[J]. Agricultural water management,2010,97(8):1139-1145
    Sun H Y, Shen Y J, Yu Q, Gerald N F, Zhang Y Q, Liu C M, Zhang X Y. Effect ofprecipitation change on water balance and WUE of the winter wheat–summer maizerotation in the North China Plain[J]. Agricultural water management,2010,97(8):1139-1145.
    Tang Z, Qiu J J, Zou G Y, Wang L G. Effects of different water and organic fertilizermanagements on the N balance and nitrate leaching in sunlight greenhouse vegetablesystem [J]. Soil and Fertilizer Sciences in China,2010,1:19–24
    Tian G M, Cao J L, Cai Z C, Ren L T. Ammonia volatilization from winter wheat fieldtop-dressed with urea[J]. Pedosphere,1998,8(4):331-336.
    Tisdall J M, Oades J M. The management of ryegrass to stabilise aggregates of a red brownearth[J]. Soil Research,1980,18(4):415-422.
    Tyson A, Dixon M L, Segars W. Your Drinking Water: Nitrates Ext. Publ.819-5[J]. Univ. ofGeorgia, Athens, GA, USA,1992.
    Vaio N, Cabrera M L, Kissel D E. Ammonia volatilization from urea-based fertilizers appliedto tall fescue pastures in Georgia, USA[J]. Soil Science Society of America Journal,2008,72(6):1665-1671.
    Vasconcelos E, Cabral F, Cordovil C M S. Effects of solid phase from pig slurry on soilchemical characteristics, nitrate leaching, composition, and yield of wheat [J]. Journal ofplant nutrition,1997,20(7-8):939-952.
    Viets F G. Water deficits and nutrient availability [A]. koz low ski, T T, ed. water deficits andplant growth[C].Acad. Press,1972, l3:217-247
    Wang C H, Wang B, Li S X. Influence of water deficit and supplemental irrigation onnitrogen uptake by winter wheat and nitrogen residual in soil.Chinese Journal ofApplied Ecology,2004,15,1339–1343
    Wang X L, Feng A P, Wang Q, Wu C Q, Liu Z, Ma Z S, Wei X F. Spatial variability of thenutrient balance and related NPSP risk analysis for agro-ecosystems in China in2010[J].Agriculture, Ecosystems and Environment, in press.
    Watson C A, Atkinson D, Gosling P, Jackson, L R, Rayns, F W. Managing soil fertility inorganic farming systems[J]. Soil Use and Management,2002,18(s1):239-247.
    Westerman R L, Boman R K, Raun W R. Ammonium and nitrate nitrogen in soil profiles oflong-term winter wheat fertilization experiments[J]. Agronomy journal,1994,86(1):94-99.
    Xing G X. N2O emission from cropland in China[J]. Nutrient Cycling in Agroecosystems,1998,52(2-3):249-254.
    Yamagishi J, Matsuzaki A. The maturing processes of field reclaimed with sub-surface soil:The change of matter production during17years[J]. Japanese Journal of Crop Science(Japan),1998.
    Yang J, Zhang J, Huang Z. Remobilization of carbon reserves is improved by controlledsoil-drying during grain filling of wheat [J]. Crop Science,2000,40(6):1645-1655.
    Yang S, Li F, Malhi S S, Wang P, Suo D R, Wang J G. Long-term fertilization effects on cropyield and nitrate nitrogen accumulation in soil in Northwestern China[J]. AgronomyJournal,2004,96(4):1039-1049.
    Yuan B Z, Nishiyama S, Kang Y. Effects of different irrigation regimes on the growth andyield of drip-irrigated potato[J]. Agricultural Water Management,2003,63(3):153-167.
    Zhang H, Oweis T. Water–yield relations and optimal irrigation scheduling of wheat in theMediterranean region [J]. Agricultural Water Management,1999,38(3):195-211.
    Zhang H, Wang X, You M. Water-yield relations and water-use efficiency of winter wheat inthe North China Plain[J]. Irrigation Science,1999,19(1):37-45
    Zhang H, Wang X, You M, Liu, C. Water-yield relations and water-use efficiency of winterwheat in the North China Plain[J]. Irrigation Science,1999,19(1):37-45.
    Zhang S, Li X, Li X. Crop yield, N uptake and nitratec in a fluvo-aquic soil profile[J].Pedosphere,2003,14(1):131-136.
    Zhang X Y, Chen S Y, Sun H Y, Wang, Y M, Shao, L W. Water use efficiency and associatedtraits in winter wheat cultivars in the North China Plain[J]. Agricultural watermanagement,2010,97(8):1117-1125.
    Zhang Y M, Hu C S, Zhang J B. Nitrate leaching in an irrigated wheat-maize rotation field inthe North China Plain[J]. Pedosphere,2005,15(2):196-203.
    Zhao R F, Chen X P, Zhang F S. Fertilization and nitrogen balance in a wheat–maize rotationsystem in North China[J]. Agronomy Journal,2006,98(4):938-945.
    Zhao, S H, Yang, Y H, Qiu, G Y, Qin, Q M, Yao, Y J, Xiong, Y J, Li, C Q. Remote detectionof bare soil moisture using a surface-temperature-based soil evaporation transfercoefficient[J]. International Journal of Applied Earth Observation and Geoinformation,2010,12(5):351-358
    Zheng C Y, Yu Z W, Wang X Z, Wu T H. Effects of irrigation amount and stage on nitrogenaccumulation, distribution and translocation and soil NO3--N content in high-yieldwheat cultivation[J]. Plant Nutrition and Fertilizer Science,2009,15(6):1324-1332.
    Zwart S J, Bastiaanssen W G M. Review of measured crop water productivity values forirrigated wheat, rice, cotton and maize[J]. Agricultural Water Management,2004,69(2):115-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700