用户名: 密码: 验证码:
内质网应激在特发性肺纤维化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分内质网应激对C57BL/6小鼠肺纤维化模型的影响
     研究目的
     建立博莱霉素小鼠肺纤维化模型,观察衣霉素诱导的内质网应激及Salubrinal阻断内质网应激通路对肺纤维化的干预作用,并探讨可能机制。
     研究方法
     1.应用单次气管内给药方法建立小鼠肺纤维化模型。
     2.观测小鼠呼吸、活动、进食、毛发及体重情况,肺组织病理切片Ashcroft评分及羟脯氨酸测定评估小鼠肺纤维化的严重程度。
     3.采集小鼠支气管肺泡灌洗液,进行炎症细胞计数;应用ELISA法测定BALF中TGF-p和MMP2蛋白含量;应用TUNEL法检测肺泡上皮细胞细胞凋亡。
     4.应用免疫组化法及Western blot法检测小鼠肺组织中CHOP、GRP78、α-SMA及E-cadherin蛋白的表达。
     5.应用Real-Time PCR法检测小鼠肺组织XBP1、Caspase3、α-SMA及TGF-p RNA的表达。
     研究结果
     1.与博莱霉素组及对照组小鼠相比,衣霉素干预组小鼠纤维化评分分值明显升高,salubrinal干预组小鼠纤维化评分分值明显减低。
     2.与博莱霉素组小鼠相比,衣霉素干预组小鼠BALF中TGF-p和MMP2蛋白含量较高、肺泡上皮细胞细胞凋亡较明显,salubrinal干预组小鼠上述指标明显减低。
     3.与博莱霉素组小鼠相比,衣霉素干预组小鼠肺组织中CHOP、GRP78、α-SMA表达水平较高,E-cadherin蛋白的表达水平较低:Salubrinal干预组CHOP、GRP78、 α-SMA表达水平较低。
     4.与博莱霉素组小鼠相比,衣霉素干预组小鼠肺组织中Caspase3、α-SMA及TGF-β1蛋白的表达水平较高,Salubrinal干预组小鼠上述指标明显减低。
     实验结论
     衣霉素诱导的ERS可加重博莱霉素诱导的C57BL/6小鼠的肺纤维化,机制可能与促进AECs凋亡及诱导EMT相关。Salubrinal阻断内质网应激的PERK通路可减轻博莱霉素及衣霉素联合博莱霉素诱导的C57BL/6小鼠的肺纤维化,在肺纤维化疾病治疗中具有应用前景。
     第二部分内质网应激在特发性肺纤维化患者中的作用
     研究目的
     观察IPF患者肺组织及血浆内质网相关蛋白的表达,探讨内质网应激在IPF患者中的作用及其可能机制,评估相关生物标记物在临床中的应用前景。
     研究方法
     1.应用TUNEL免疫荧光染色观察肺泡上皮细胞凋亡情况;
     2.应用免疫组化方法检测a-SMA、GRP78、CHOP及E-cadherin在肺组织切片中的表达;
     3.应用ELISA方法检测IPF及正常对照组血浆CK18(M65)及cCK18(M30)的表达。
     实验结果
     1. TUNEL免疫荧光染色观察,在100倍荧光显微镜下观察显示IPF患者肺泡上皮区域有散在的凋亡荧光表达。
     2.IPF患者肺内a-SMA、GRP78、CHOP明显表达,上皮细胞标记物E-cadherin似有表达,但不显著。
     3.M30/M65比值在吡非尼酮治疗IPF患者治疗12个月有明显下降;M30在IPF的支气管肺泡灌洗液浓度低于其他DPLD。
     实验结论
     IPF患者血浆CK18(M65)及cCK18(M30)的检测有一定鉴别意义。IPF患者肺泡上皮细胞存在明显凋亡,可能机制包括内质网应激及凋亡蛋白酶诱导上皮细胞凋亡。
     第三部分连花清瘟制剂临床用药安全性的系统评价
     研究目的
     系统评价连花清瘟制剂临床用药的安全性。
     研究方法
     检索中国生物医学文献数据库(CBM)、中国学术期刊全文数据库(CNKI)、索Cochrane图书馆、MEDLINE、EMbase;收集连花清瘟胶囊和颗粒随机对照临床文献,检索时限均从2003年1月至2013年5月。
     实验结果
     纳入随机对照临床文献40篇,试验组2592例,对照组2314例。试验组有63例发生不良反应,发生率为2.4%,对照组有100例发生不良反应,不良反应发生率为4.3%。试验组与对照组相比不良反应发生率明显偏低[RR=0.562,95%CI(0.412-0.767)]。纳入的文献中有24篇有不同类别的不良反应报道,统计分析结果提示连花清温制剂不良反应发生率低于其它对照组[RR=0.62,95%CI(0.46,0.82)]。不良反应系统评价亚组分析提示消化系统不良反应发生率低于其它对照组[RR=0.70,95%CI(0.50,0.97)]。
     实验结论
     连花清瘟临床常见的不良反应为胃肠道反应和皮疹,在不同疾病用药过程中,不良反应发生率明显低于对照组。
PART1:Effects of ERS on Bleomycin-Induced Pulmonary Fibrosis in C57BL/6Mice
     Objective
     To determine the effects of tunicamycin induced ERS and Salubrinal blocked ERS pathway on bleomycin-induced pulmonary fibrosis in C57BL/6mice, and discuss the mechanisms.
     Materials and Methods
     1. We used a single dosage intratracheal injection in mice.
     2. The fibrosis degree was determined pathologically by using the Ashcroft scoring method and biochemically by hydroxyproline assay in lung tissue.
     3. To collect bronchoalveolar lavage fluid, the differential inflammatory cells were counted in BALF and the concentrations of TGF-βand MMP2in BALF were determined by ELISA.
     4. The expression of CHOP、GRP78、α-SMA and E-cadherin was detected by Immunohistochemistry and Western blot.
     5. The expression of XBP1、Caspase3、α-SMA and TGF-β mRNA in lung tissue was detected by Real-time PCR.
     Results
     1. Compare to the mice administrated by bleomycin and the control group, the Aschcroft score and hydroxyproline content were significantly increased in the mice administered tunicamycin, while salubrinal decreased the effects.
     2. Compare to the mice administrated by bleomycin, treatment with tunicamycin significantly increased the level of TGF-βand MMP2in BALF, while salubrinal decreased the effects.
     3. Compared to the bleomycin alone group, treatment with tunicamycin significantly increased the level of CHOP、GRP78、α-SMA and E-cadherin in the lung tissue, while salubrinal decreased the effects.
     4. Treatment with tunicamycin significantly increased the level of XBP1、Caspase3、α-SMA and TGF-β1in the lungs of mice.
     Conclusion
     Administration of tunicamycin can aggravate bleomycin-induced pulmonary fibrosis in mice, while salubrinal decreased the effects. The mechanisms were possibly by inducing alveolar epithelial cell (AEC) apoptosis and inducing epithelial-mesenchymal transition.
     PART2:Effects of ERS on IPF Patients
     Objective
     To observe the expression of ERS associated proteins on IPF patients'lung tissue and plasma, discuss the mechanism and to investigate the application of biomarkers like CK18and cCK18in clinical diagnosis and treatment.
     Materials and Methods
     1. The apoptosis of AECs was determined pathologically by using TUNEL method;
     2. The expression of α-SMA、GRP78、CHOP and E-cadherin was detected by immunohistochemical method.
     3. The expression of CK18(M65) and cCK18(M30) in IPF patients'plasma was detected by ELISA method.
     Results
     1. Enhanced green fluorescence proteins was observed at the AECs region of the IPF patients' lung.
     2. α-SMA、GRP78、CHOP were obviously expressed in IPF patients'lung tissue, while the expression of E-cadherin was obscure;
     3. The ratio of M30and M65was significantly decreased in IPF patients'plasma after12months of treatment with pirfinitone, and the expression of M30was lower in IPF patients than in other DPLD patients.
     Conclusion
     The detection of CK18(M65) and cCK18(M30) have important clinical value in diagnosis and differential diagnosis in IPF patients. The AECs region of the IPF patients' lung had marked apoptosis.
     PART3:The Safety of Lianhuaqingwen Preparations in Clinical Use:A Systematic Review
     Objective
     To evaluate the safety of lianhuaqingwen preparations in clinical use.
     Materials and Methods
     We performed a systematic search of CBM, CNKI, Cochrane Central, MEDLINE and EMbase for trials published between January2003and May2013.
     Results
     Fourty randomized controlled clinical trials including2592cases of the experimental group and2314cases of the control group were evaluated. The experimental group had63cases with adverse reactions(2.4%).While in the control group,100cases had adverse reactions(4.3%). The relative risk of the incidence of adverse reactions in the lianhuaqingwen preparations group was lower than the control group [RR=0.562,95%CI (0.412-0.767)].In the subgroup analysis of24trails, the total adverse effects RR was0.62,95%CI (0.46,0.82),and the adverse reactions of digestive system RR was0.70,95%,CI(0.50,97).The results suggested that the incidence of digestive system adverse reactions was lower in Lianhuaqingwen preparations group.
     Conclusion
     The common adverse reactions of Lianhuaqingwen preparations were gastrointestinal and dermatological reactions.The incidence of those adverse reactions in Lianhuaqingwen preparations group was significantly lower than the control group.
引文
[1]Raghu G, Collard HR, Egan JJ, et al. An Official ATS/ERS/JRS/ALAT statement:idiopathic pulmonary fibrosis:evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med,2011,183:788-824.
    [2]Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol, 2008,3:399-425.
    [3]Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem,2005, 74:739-789.
    [4]Shang J. Quantitative measurement of events in the mammalian unfolded protein response. Methods,2005,35:390-394.
    [5]Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol,2003,23:7448-7459.
    [6]Harding HP, Novoal, Zhang Y, et al. Regulated ruanslation initiation controls stress-induced gene expression in mammalian cells. Mol Cell,2000,6:1099-1108.
    [7]Tanjore H, Blackwell TS, Lawson WE. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol,2012, 302:L721-L729.
    [8]Mulugeta S, Maguire JA, Newitt JL, et al. Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4-and cytochrome c-related mechanisms. Am J Physiol Lung Cell Mol Physiol,2007,293:L720-L729.
    [9]Korfei M, Ruppert C, Mahavadi P, et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med,2008,178:838-846.
    [10]Tanjore H, Cheng DS, Degryse AL, et al. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J Biol Chem,2011,286: 30972-30980.
    [11]Baek HA, Kim do S, Park HS, et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am J Respir Cell Mol Biol,2012,46:731-739.
    [12]Lawson WE, Cheng DS, Degryse AL, et al. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci USA,2011 Jun 28; 108(26):10562-10567.
    [13]Nogee LM, Dunbar AE 3rd, Wert SE, et al. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med,2001,344:573-579.
    [14]Zhong Q, Zhou B, Ann DK, et al. Role of ER stress in EMT of alveolar epithelial cells:Effects of misfolded surfactant protein. Am J Respir Cell Mol Biol,2011; 45:498-509.
    [15]Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol,1988,41(4):467-470.
    [16]Antje Moeller, Kjetil Ask, David Warburton, et al.The bleomycin animal model:a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol,2008; 40(3):362-382.
    [17]Benedetti C, Fabbri M, Sitia R, Cabibbo A. Aspects of gene regulation during the UPR in human cells. Biochem Biophys Res Commun,2000; 278:530-536.
    [18]Ma Y, Hendershot LM. ER chaperone functions during normal and stress conditions. J Chem Neuroanat,2004; 28:51-65.
    [19]Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol,2000; 2:326-332.
    [20]Tessitore A, del P Martin M, Sano R, et al. GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell,2004; 15: 753-766.
    [21]Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem,279:25935-25938,2004.
    [22]Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol,318: 1351-1365,2002.
    [23]Park JS, Luethy JD, Wang MG, et al. Isolation, characterization and chromosomal localization of the human GADD153 gene. Gene,1992; 116(2):259-267
    [24]Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ,2004; 11(4):381-9.
    [25]Fu HY, Okada K, Liao Y, et al. Ablation of C/EBP homologous protein attenuates endoplasmic reticulum-mediated apoptosis and cardiac dysfunction induced by pressure overload. Circulation, 2010;122(4):361-369.
    [26]Chiang CK, Hsu SP, Wu CT, et al. Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol Med,2011; 17(11-12):1295-1305.
    [27]Kim KK, Kugler MC, Wolters PJ, et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA,2006 Aug 29; 103(35):13180-13185.
    [28]Xu YD, Hua J, Mui A, et al. Release of biologically active TGF-betal by alveolar epithelial cells results in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol,2003 Sep; 285(3):L527-539.
    [29]Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum:coordination of gene transcriptional and translational controls. Genes Dev,1999; 13:1211-1233.
    [30]Brodsky JL, Skach WR. Protein folding and quality control in the endoplasmic reticulum:Recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol,2011; 23:464-475.
    [31]Faitova J, Krekac D, Hrstka R, et al. Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett,2006;11:488-505.
    [32]Krishnamoorthy T, Pavitt GD, Zhang F, et al. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol,2011; 21:5018-5030.
    [33]Novoa I, Zeng H, Harding HP, et al. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2a. J Cell Biol,153:1011-1022,2001.
    [34]Boyce M, Bryant KF, Jousse C, et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science,2005; 307:935-939.
    [35]Sokka AL, Putkonen N, Mudo G, et al. Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci,2007; 27:901-908.
    [36]Pallet N, Bouvier N, Bendjallabah A, et al. Cyclosporine-induced endoplasmic reticulum stress triggers tubular phenotypic changes and death. Am J Transplant,2008; 8:2283-2296.
    [37]Bjoraker JA, Ryu JH, Edwin MK, et al. Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med,1998,157:199-203.
    [38]Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology,2002; 40:403-439.
    [39]Barak V, Goike H, Panaretakis KW, et al. Clinical utility of cytokeratins as tumor markers. Clin Biochem,2004; 37:529-540.
    [40]Cummings J, Hodgkinson C, Odedra R, et al. Preclinical evaluation of M30 and M65 ELISAs as biomarkers of drug induced tumor cell death and antitumor activity. Mol Cancer Ther,2008; 7:455-463.
    [41]Barrett KL, Willingham JM, Garvin AJ, et al. Advances in cytochemical methods for detection of apoptosis. J Histochem Cytochem,2001;49:821-832.
    [42]Mitsudomi T, Yatabe Y. Epidermal growth factor receptor in relation to tumor development:EGFR gene and cancer. FEBS J,2010;277:301-308.
    [43]Wu SH, Li CT, Lin CH, et al. Soluble Fas ligand is another good diagnostic marker for tuberculous pleurisy. Diagn Microbiol Infect Dis,2010; 68:395-400.
    [44]de Matos LL, Del Giglio AB, Matsubayashi CO, et al. Expression of CK-19, galectin-3 and HBME-1 in the differentiation of thyroid lesions:systematic review and diagnostic meta-analysis. Diagn Pathol,2012 Aug 13;7:97.
    [45]Feldstein AE, Alkhouri N, De Vito R, et al. Serum cytokeratin-18 fragment levels are useful biomarkers for nonalcoholic steatohepatitis in children. Am J Gastroenterol,2013; 108:1526-1531.
    [46]Kawai M, Saegusa Y, Kemmochi S, et al. Cytokeratin 8/18 is a useful immunohis-tochemical marker for hepatocellular proliferative lesions in mice. J Vet Med Sci,2010;72:263-269.
    [47]De Petris L, Branden E, Herrmann R, et al. Diagnostic and prognostic role of plasma levels of two forms of cytokeratin 18 in patients with nonsmall-cell lung cancer. Eur J Cancer,2011; 47:131-137.
    [48]Linder S, Havelka AM, Ueno T, et al. Determining tumor apoptosis and necrosis in patient serum using cytokeratin 18 as a biomarker. Cancer Lett,2004; 214:1-9.
    [49]Ueno T, Toi M, Linder S. Detection of epithelial cell death in the body by cytokeratin 18 measurement. Biomed Pharmaco ther,2005;59 (2):S359-S362.
    [50]Leers MP, Kolgen W, Bjorklund V, et al. Immunocytochemical detection and mapping of a cytokeratin 18 neo-epitope exposed during early apoptosis. J Pathol,1999,187:567-572.
    [51]Chung WY, Sun JS, Park JH, et al. Epithelial apoptosis as a clinical marker in idiopathic interstitial pneumonia. Respir Med,2010; 104:1722-1728.
    [52]Ueno T, Toi M, Linder S. Detection of epithelial cell death in the body by cytokeratin 18 measurement. Biomed Pharmacother,2005,59(2):S359-S362.
    [53]Faruk Tas, Senem Karabulut, Murat Serilmez, et al. Clinical significance of serum M30 and M65 levels in melanoma. Melanoma Res,2013 Jun 27. [Epub ahead of print]
    [54]Cha SI, Ryerson CJ, Lee JS, et al. Cleaved cytokeratin-18 is a mechanistically informative biomarker in idiopathic pulmonary fibrosis. Respir Res,2012 Nov 20; 13:105.
    [55]杨立波,季振慧,高学东,谷春华.连花清瘟胶囊治疗流行性感冒Ⅱ期临床研究.中药新药与临床药理,2005,16(4):290-293
    [56]杨立波,季振慧,王保群.连花清瘟胶囊治疗流行性感冒280例疗效观察.疑难病杂志,2005,4(5):276-278
    [57]吴秋英,陈弼沧,陈莉萍,柯明远,刘宪俊.连花清瘟胶囊治疗慢性肺源性心脏病急性加重期的临床观察.光明中医,2006,21(11):70-71
    [58]左俊岭,徐元虎.连花清瘟胶囊治疗急性上呼吸道感染的临床研究.公共卫生与预防医学.2006,17(6):78-79
    [59]季振慧,王保群,陈雪玲.连花清瘟胶囊辅助治疗急性支气管炎.现代中西医结合杂志.2007,16(26):3812
    [60]胡克,姜燕,施美君,胡春花,刘珍莲,万志辉.连花清瘟胶囊治疗急性上呼吸道感染102例.医药导报.2008,27(11):1337-1340
    [61]王新功,崔学军,刘新生,刘红霞,李玉花.连花清瘟胶囊治疗流行性感冒的临床疗效观察. 中国药房.2008,19(27):2146-2148
    [62]王以炳,谢艳丽,杨玉梅,刘莉敏,陈幼发.连花清瘟胶囊治疗呼吸道感染的疗效与安全性研究.疑难病杂志.2008,7(1):24-26
    [63]王以炳,张天民,杨玉梅,谢艳丽,刘莉敏,李玉磊.连花清瘟胶囊治疗病毒性感冒的有效性与安全性观察.临床肺科杂志.2008,13(9):1118-1119
    [64]李宝法,张长青,付敏,白伟,刘宝华,李淑森.连花清瘟胶囊治疗甲型H1N1流感临床研究.医药论坛杂志.2009,30(23):91-92
    [65]林如平,刘洪.连花清瘟胶囊治疗急性上呼吸道感染疗效观察.四川医学.2010,31(9):1327-1328
    [66]刘更新,张艳霞,杨继清,高占全,孟予城.连花清瘟胶囊治疗甲型H1N1流感随机对照临床研究.疑难病杂志.2010,9(10:14-16
    [67]马羽萍,郭雅玲,康立,赵玲,彭杰,罗改云.中药治疗甲型H1N1流感疗效分析.陕西中医.2010,31(10):1351-1353
    [68]欧阳茴香,唐清艳,陈永忠,魏瑜,李国术.连花清瘟胶囊治疗甲型H1N1流感的临床研究.中国医药导报.2010,7(30):6-8
    [69]卫清,罗宏.连花清瘟胶囊与奥司他韦治疗轻症甲型H1N1流感的疗效观察.光明中医.2010,25(12):2318-2319
    [70]谢志永,王冬柏.甲型H1N1流感136例临床观察.中外医疗.2010,29(33):38
    [71]张金龙,谭亚萍.连花清瘟胶囊治疗肺部感染30例疗效观察.世界中医药.2010,5(3):158-159
    [72]崔敏,潘晓琴.连花清瘟胶囊治疗流行性感冒100例.浙江中医杂.2011,46(5):333
    [73]DUAN Zhong-ping, JIA Zhen-hua, ZHANG Jian, LIU Shuang, CHEN Yu, LIANG Lian-chun, ZHANG Chang-qing,ZHANG Zong, SUN Yan, ZHANG Shu-qin, WANG Yong-yan and WU Yi-ling.Natural herbal medicine Lianhuaqingwen capsule anti-influenza A (H1N1) trial:a randomized, double blind, positive controlled clinical trial. Chinese Medical Journal.2011,124(18):2925-2933
    [74]傅建兴,王利祥,吴军.连花清瘟胶囊治疗急性上呼吸道感染临床观察.海峡药学.2011,23(10):162-163
    [75]耿丽梅,于向艳.连花清瘟胶囊联合放血拔罐治疗甲型H1N1流感38例.河北中医.201133(5);753-754
    [76]胡桂芳.连花清瘟胶囊治疗急性上呼吸道感染疗效评价.实用心脑肺血管病杂志.2011,19(5);832-833
    [77]罗翀.连花清瘟胶囊治疗病毒性感冒的临床研究.中医中药.2011,18(18);137-138
    [78]骆红霞.连花清瘟胶囊治疗流行性感冒早期35例临床观察.中国中医医药科技.2011,18(6):517-518
    [79]荀红军,杜孟旭.连花清瘟胶囊治疗病毒性感冒的疗效观察.中医中药.2011,9(19):306-307
    [80]张谨,余云芳,侯凌云,陈顺和,白晓云,董彦希,刘永江.康复新液联合连花清瘟胶囊治 疗手足口病临床观察.中国中医药信息杂志·2011,18(1):69-70
    [81]周斌.连花清瘟胶囊治疗流感疗效观察.中国误诊学杂志.2011,11(28):6840
    [82]邓维海,庞玲玲.连花清瘟胶囊治疗急性扁桃体炎疗效观察.临床合理用药.2012,5(9A):78
    [83]鹿艳群王晓刚.连花清瘟胶囊联合阿昔洛韦治疗带状疱疹疗效观察.论著.临床论坛.2012,14(309):143-144
    [84]覃雪,杨虹.连花清瘟胶囊治疗急性上呼吸道感染临床疗效及安全性观察.中医中药.2012,16:108
    [85]吴玉波,张金强.连花清瘟胶囊治疗急性上呼吸道感染临床疗效观察.临床合理用药.2012,5(8A):102-103
    [86]许新霞,焦伟,武继涛.连花清瘟胶囊与针刺治疗中风中脏腑闭证高热神昏的临床对比研究.中西医结合心脑血管病杂志.2012,10(10):1198-1199
    [87]张全会,李琤,武建华,肖苗苗,孙燕.连花清瘟胶囊联合金荞麦片治疗甲型H1N1流感临床研究.中国中医急.2012,21(3):345-346
    [88]蒋爽.康复新液与连花清瘟胶囊联合治疗手足口病疗效分析.中国卫生产业.2013,2:75
    [89]李向军,李淳瑞.连花清瘟颗粒治疗急性扁桃体炎临床观察.临床合理用药.2009,2(9):49
    [90]王新国,张长青,白伟,左丽英,闫宗光.连花清瘟颗粒治疗手足口病的临床研究.医药论坛杂志.2009,231(22):183-184
    [91]张谨,余云芳,杨春秀,侯凌云.连花清瘟制剂联合康复新治疗手足口病疗效观察.疑难病杂志.2010,9(7):524-525
    [92]蔡尚原,闫宗光,杨新红.连花清瘟颗粒联合利巴韦林治疗手足口病的临床研究.医药论坛杂志.2011,32(16):76-78
    [93]陈波,姚扬伟,王海琴.连花清瘟颗粒联合莫西沙星片治疗老年社区获得性肺炎疗效.吉林医学.2013,34(1):79-80
    [94]何炜,郑彬,李向禹,吴百威.莲花清瘟颗粒治疗EV71手足口病疗效观察.浙江中西医结合杂志.2013,23(2):152-153
    [1]Raghu G, Collard HR, Egan JJ, et al. An Offcial ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis:evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med,2011,183:788-824.
    [2]Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol,2008,3:399-425.
    [3]Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem,2005,74:739-789.
    [4]Shang J. Quantitative measurement of events in the mammalian unfolded protein response. Methods,2005,35:390-394.
    [5]Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol, 2003,23:7448-7459.
    [6]Tanjore H, Blackwell TS, Lawson WE. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol,2012,302:L721-L729.
    [7]Obeng EA, Boise LH. Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. J Biol Chem,2005,280: 29578-29587.
    [8]Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem,2004,279:25935-25938.
    [9]Ma Y, Brewer JW, Diehl JA, et al. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol,2002,318:1351-1365.
    [10]Kuo WH, Chen JH, Lin HH, et al. Induction of apoptosis in the lung tissue from rats exposed to cigarette smoke involves p38/JNK MAPK pathway. Chem Biol Interact, 2005,155:31-42.
    [11]Oh SH, Lim SC. Endoplasmic reticulum stress-mediated autophagy/apoptosis induced by capsaicin and dihydrocapsaicin (DHC) is regulated by the extent of JNK/ERK activation in WI38 lung epithelial fibroblast cells. J Pharmacol Exp Ther,2009,329: 112-122.
    [12]袁婷,罗百灵,魏天虹等.Salubrinal对慢性阻塞性肺疾病大鼠模型肺组织内质网应激凋亡的保护作用.中华结核和呼吸杂志,2012,35:65-66.
    [13]Nogee LM, Dunbar AE 3rd, Wert SE, et al. A mutation in the surfactant protein C gene associated with familial interstitial lung disease. N Engl J Med,2001,344:573-579.
    [14]Thomas AQ, Lane K, Phillips J 3rd, et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular non-specific interstitial pneumonitis in one kindred. Am J Respir Crit Care Med,2002,165:1322-1328.
    [15]Tanjore H, Cheng DS, Degryse AL, et al. Alveolar epithelial cells undergo epithelial-to-mesenchymal transition in response to endoplasmic reticulum stress. J Biol Chem, 2011,286:30972-30980.
    [16]Lawson WE, Crossno PF, Polosukhin VV, et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF:association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol,2008,294: L1119-L1126.
    [17]Korfei M, Ruppert C, Mahavadi P, et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am J Respir Crit Care Med,2008, 178:838-846.
    [18]Mulugeta S, Maguire JA, Newitt JL, et al. Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4-and cytochrome c-related mechanisms. Am J Physiol Lung Cell Mol Physiol,2007,293:L720-L729.
    [19]Bridges JP, Wert SE, Nogee LM, et al. Expression of a human surfactant protein C mutation associated with interstitial lung disease disrupts lung development in transgenic mice. J Biol Chem,2003,278:52739-52746.
    [20]Lawson WE, Cheng DS, Degryse AL, et al. Endoplasmic reticulum stress enhances fibrotic remodeling in the lungs. Proc Natl Acad Sci U S A,2011,108:10562-10567.
    [21]Rath E, Haller D. Inflammation and cellular stress:a mechanistic link between immune-mediated and metabolically driven pathologies. Eur J Nutr,2011,50:219-233.
    [22]Maguire JA, Mulugeta S, Beers MF. Endoplasmic reticulum stress induced by surfactant protein c BRICHOS mutants promotes proinflammatory signaling by epithelial cells. Am J Respir Cell Mol Biol,2011,44:404-414.
    [23]Baek HA, Kim do S, Park HS, et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am J Respir Cell Mol Biol,2012, 46:731-739.
    [24]Yonemaru M, Kasuga I, Kusumoto H, et al. Elevation of antibodies to cytomegalovirus and other herpes viruses in pulmonary fibrosis. Eur Respir J,1997, 10:2040-2045.
    [25]Isler JA, Skalet AH, Alwine JC. Human cytomegalovirus infection activates and regulates the unfolded protein response. J Virol,2005,79:6890-6899.
    [26]Bonner JC. Lung fibrotic responses to particle exposure. Toxicol Pathol,2007,35: 148-153.
    [27]Laing S, Wang G, Briazova T, et al. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol,2010,299:C736-C749.
    [28]Watterson TL, Hamilton B, Martin R, et al. Urban particulate matter causes ER stress and the unfolded protein response in human lung cells. Toxicol Sci,2009,112:111-122.
    [29]Hengstermann A, Muller T. Endoplasmic reticulum stress induced by aqueous extracts of cigarette smoke in 3T3 cells activates the unfolded-protein-response-dependent PERK pathway of cell survival. Free Radic Biol Med,2008,44:1097-1107.
    [30]Jorgensen E, Stinson A, Shan L, et al. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer,2008,8:229.
    [31]Selman M, Rojas M, Mora AL, et al. Aging and interstitial lung diseases:unraveling an old forgotten player in the pathogenesis of lung fibrosis. Semin Respir Crit Care Med,2010,31:607-617.
    [33]Bodas M, Min T, Vij N. Early-age-related changes in proteostasis augment immunopathogenesis of sepsis and acute lung injury. PLoS One,2010,5:e15480.
    [33]Torres-Gonzalez E, Bueno M, Tanaka A, et al. Role of endoplasmic reticulum stress in age-related susceptibility to lung fibrosis. Am J Respir Cell Mol Biol,2012,46: 748-756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700