用户名: 密码: 验证码:
自然杀伤细胞在创伤性脑损伤中的变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     通过测定创伤性脑损伤(Traumatic Brain Injury,TBI)患者外周血中自然杀伤(Natural Killer cells, NK cells)细胞表型的变化,探讨伤后不同时间NK细胞水平与不同程度TBI的关系。
     研究内容:
     TBI是导致我国青壮年死亡的主要原因之一,有极高的致死率和伤残率,构成重大的公共卫生和社会经济问题。新研究发现神经损伤的程度似乎与固有免疫活动规模和活性程度相关,细胞和体液免疫系统在TBI的损伤机制中起到的关键作用。NK细胞是与T、B细胞并列的第三类群淋巴细胞,是免疫监视的第一道防线,可以调控适应性免疫的发生,具有极强的免疫学调节功能。本研究以不同程度TBI患者外周血中NK细胞变化为研究内容,为进一步探讨脑损伤与免疫反应的关系,探明TBI的发病机制,为探寻新的TBI治疗方式提供参考。
     研究方法:
     选择30例于天津医科大学总医院神经创伤监护中心收治的闭合性颅脑外伤患者,根据格拉斯哥昏迷评分(Glasgow Coma Scale, GCS)评定脑损伤程度,选择轻、中、重不同程度TBI患者各10例。分别于脑损伤后1、3、7、14、21天采集外周血样,应用流式细胞仪检测方法分析外周血CD3-CD56+NK细胞百分比和绝对值数量变化。同步收集性别,年龄等一般临床资料与TBI患者相对照的20例正常健康志愿者外周血标本。统计不同程度TBI患者感染类型、感染率,测定中重TBI患者清晨血清皮质醇浓度,随访伤后3和6个月格拉斯哥预后评分(Glasgow Outcome Scale,GOS)评价神经功能预后,进一步探讨伤后不同时间NK细胞与GCS、GOS评分关系,明确感染与NK细胞变化的关系,初步探讨TBI后固有免疫变化机制。
     研究结果:
     1、与健康对照组相比,轻度TBI患者NK细胞的百分比和绝对值数量在伤后第1天和第3天呈显著下降,伤后7天,NK细胞的百分比和绝对值数量恢复至正常范围水平;中度TBI患者相同的时间点的CD3-CD56+NK细胞的百分比和绝对值数量的变化趋势并不完全相同,伤后7天,NK细胞的百分比和绝对值数量与对照组比较均明显降低,外周血NK细胞的绝对值数量于伤后21天已恢复正常范围;重度TBI患者外周血中最低NK细胞百分比和绝对值数量被发现在伤后3-7天,此外,NK细胞百分比和绝对值数量在伤后21天仍没有恢复正常水平。
     2、TBI患者感染发生率较高,最常见的感染并发症为肺部感染、尿路感染和败血症。感染组与非感染组TBI患者在伤后3-7天左右出现NK细胞的统计学差异,感染组NK细胞相对非感染组呈显著下降趋势。
     3、TBI组患者伤后7、14和21天NK细胞与GCS评分呈正相关:伤后3、6个月,TBI后7、14天NK细胞与GOS评分呈正相关;感染组和非感染组TBI组患者伤后7天NK细胞与GCS评分呈正相关;感染组外周血NK细胞百分比和绝对值数量和3、6个月的GOS评分无明显相关;非感染组在伤后7天外周血NK细胞和GOS评分相关性有统计学意义。
     研究结论:
     1、本研究调查了不同程度TBI患者外周血中NK细胞百分比和绝对值数量的变化。结果提示脑损伤后伴随着外周血中NK细胞的比例和数目的减少,脑损伤愈严重,NK细胞减少愈明显,呈先下降后缓慢复原的趋势。研究揭示了创伤性脑损伤可以诱发外周血NK细胞的减少。
     2、脑损伤后常伴有严重的颅外全身系统并发症,原因与免疫失衡和中枢神经系统诱发的免疫缺陷相关。常见并发症为严重的肺部感染、尿路感染和败血症等。我们发现不同程度TBI患者罹患颅外感染的几率不同,在TBI疾病发展过程中,外周血固有免疫反应的主要效应细胞—NK细胞发生了戏剧性的变化,其变化趋势与感染发生规律有相关性。
     3、NK细胞可能在某种程度上对TBI患者的神经功能和预后产生一定影响。严重TBI后常伴随下丘脑-垂体-肾上腺轴功能衰竭及中枢性免疫抑制的发生,我们选定中重度TBI患者检测清晨外周血清皮质醇浓度,进一步探讨TBI患者合并外周血NK细胞减少的机制。改善中枢神经损伤后NK细胞功能可能会对控制感染和改善预后起到帮助,但同时避免NK细胞对自体细胞的识别和过度对获得性免疫的调控也是进一步思考的课题。总之,TBI诱导NK细胞病理变化原因可能是复杂和多方面的,尚需进一步的探索和研究。
Objective:
     To investigate the relationship between natural killer (NK) cells and traumatic brain injury (TBI), we explored the phenotype of circulating NK cells in patients with different grades of TBI at different time points.
     Background:
     TBI is the leading cause of neurological disability, especially among young persons. It leads to a large public health problem and enormously financial burden throughout the world. The extent of neuronal damage seems to correlate with the degree of innate immune activity and numerous studies have demonstrated the critical role of the cellular and humoral immune system in TBI. NK cells are large granular cells and being third in lineage among lymphocytes after B and T cells. The role of NK cells is the first line of defense to combat infections and one of the earliest cell types to arrive at target organs of inflammation. NK cells can affect the initiation of autoimmunity and regulate inflammation. Herein, we aimed to investigate the change of circulating NK cells in patients with mild, moderate and severe TBI quantitatively. In addition, we explored the relationship between NK cells and neurologic outcome, and tried to take a step toward understanding the pathogenesis of immunodepression after TBI.
     Method:
     The consecutive30patients who treated in the Neurotrauma Intensive Care Unit at Department of Neurosurgery of General Hospital, Tianjin Medical University, China were enrolled. Patients with TBI were graded as mild, moderate or severe on the basis of the level of GCS score on admission. Peripheral blood samples of all enrolled patients were examined on first, third, seventh, fourteenth and twenty-first days after TBI and evaluated for immunological analysis. The rates and types of infection of different extent TBI were analyzed. The hormone assays were performed at different days after trauma in moderate and severe group. The primary neurologic outcome was assessed with the Glasgow Outcome Scale (GOS).
     Result:
     1. The percentage and absolute number of NK cells in mild group within7days of injury restore to the level obtained in healthy volunteers. The percentage and absolute number of NK cells were significantly lower in moderate TBI patients than controls on the7day after injury. The absolute number of peripheral blood CD3-CD56+NK cells of moderate TBI return to normal by day21. In patients with severe TBI, the lowest percentage and absolute number of CD3-CD56+NK cells were noticed on day3to7as comparison with other days and control group. In addition, the percentage and absolute number of peripheral blood CD3-CD56+NK cells did not returned to normal by day21.
     2. TBI patients showed high susceptibility to infections such as pneumonia, urinary tract infections and septicaemia. On post-injury day3to7, the percentage and absolute number of NK cells in infective group dropped significantly compared with the noninfective group.
     3. The lower NK cells were independently associated with the lower Glasgow Coma Scale score in some time point investigated. In addition, the positive correlation between NK cells at some time point and Glasgow Outcome Scale score was calculated.
     Conclusion:
     1. The magnitude of NK cell reduction correlated with different severity of TBI at different time points. Our results indicate that TBI induce reduction of NK cells, and the magnitude of such reduction appears correlated with severity of TBI.
     2. Severe TBI have serious systemic complications outside the brain. One of such complications is the impact on the immune system and the induction of immune deficiency. The alterations of NK cells during the course of TBI and revealed a dramatic change of those innate immune cells. We further analyzed the correlation of NK cell alteration with clinical infection of TBI.
     3. Neurological damage induces a disturbance between central nervous system and the immune system, and leads to central nervous system injury-induced immunodepression and the dysfunction of the Hypothalamic Pituitary Adrenal axis. We checked the morning serum cortisol concentrations on the different days after trauma in moderate and severe TBI group. Our experimental evidence indicates that NK cells may contribute to the amplification of drastic immunodepression after TBI. Measuring NK cells expressing CD3-CD56+post-TBI may have novel prognostic and therapeutic implications for TBI. Extensive monitoring of the NK-cell phenotype in TBI patients might aid future NK-based immuno-interventions. More work is yet needed to elucidate roles of NK cells on immune responses in the TBI patients.
引文
[1]Schneider HJ, Kreitschmann-Anidermahr I, Ghigo E, Stalla GK, Agha A. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage:a systematic review. JAMA 2007,298:1429-1438.
    [2]Shao J, Zhu H, Yao H, Stallones L, Yeates K, Wheeler K, et al. Characteristics and trends of pediatric traumatic brain injuries treated at a large pediatric medical center in China,2002-2011. PLoS One 2012,7:e51634.
    [3]Wang SY, Li YH, Chi GB, Xiao SY, Ozanne-Smith J, Stevenson M, et al. Injury-related fatalities in China:an under-recognised public-health problem. Lancet 2008,372:1765-1773.
    [4]Maas Al, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol 2008,7:728-741.
    [5]Chen X, Zhang KL, Yang SY, Dong JF, Zhang JN. Glucocorticoids aggravate retrograde memory deficiency associated with traumatic brain injury in rats. J Neurotrauma 2009,26:253-260.
    [6]Fabregas N, Torres A. Pulmonary infection in the brain injured patient. Minerva Anestesiol 2002,68:285-290.
    [7]Piek J, Chesnut RM, Marshall LF, van Berkum-Clark M, Klauber MR, Blunt BA, et al. Extracranial complications of severe head injury. J Neurosurg 1992,77: 901-907.
    [8]Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 2005,6:775-786.
    [9]Wong CH, Jenne CN, Lee WY, Leger C, Kubes P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 2011,334: 101-105.
    [10]Shi FD, Zhou Q. Natural killer cells as indispensable players and therapeutic targets in autoimmunity. Autoimmunity 2011,44:3-10.
    [11]Shi FD, Wang HB, Li H, Hong S, Taniguchi M, Link H, et al. Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nat Immunol 2000,1: 245-251.
    [12]Shi FD, Ljunggren HG, Sarvetnick N. Innate immunity and autoimmunity:from self-protection to self-destruction. Trends Immunol 2001,22:97-101.
    [13]Hao J, Liu R, Piao W, Zhou Q, Vollmer TL, Campagnolo DI, et al. Central nervous system (CNS)-resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J Exp Med 2010,207:1907-1921.
    [14]Shi FD, Ljunggren HG, La Cava A, Van Kaer L. Organ-specific features of natural killer cells. Nat Rev Immunol 2011,11:658-671.
    [15]Wolach B, Sazbon L, Gavrieli R, Broda A, Schlesinger M. Early immunological defects in comatose patients after acute brain injury. J Neurosurg 2001,94:706-711.
    [16]Mrakovcic-Sutic I, Tokmadzic VS, Laskarin G, Mahmutefendic H, Lucin P, Zupan Z, et al Early changes in frequency of peripheral blood lymphocyte subpopulations in severe traumatic brain-injured patients. Scand J Immunol 2010,72: 57-65.
    [17]Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974,2:81-84.
    [18]Ghajar J. Traumatic brain injury. Lancet 2000,356:923-929.
    [19]Brain Trauma F, American Association of Neurological S, Congress of Neurological S. Guidelines for the management of severe traumatic brain injury. J Neurotrauma 2007,24 Suppl 1:S1-106.
    [20]Marshall LF, Marshall SB, Klauber MR, Van Berkum Clark M, Eisenberg H, Jane JA, et al. The diagnosis of head injury requires a classification based on computed axial tomography. J Neurotrauma 1992,9 Suppl 1:S287-292.
    [21]Marion DW, Penrod LE, Kelsey SF, Obrist WD, Kochanek PM, Palmer AM, et al. Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 1997,336:540-546.
    [22]Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D'Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 2011, 364:1493-1502.
    [23]Mizell M. Limb regeneration:induction in the newborn opossum. Science 1968, 161:283-286.
    [24]Yoles E, Schwartz M. Degeneration of spared axons following partial white matter lesion:implications for optic nerve neuropathies. ExpNeuroI 1998,153:1-7.
    [25]Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006,7:628-643.
    [26]Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 1992,12: 4565-4574.
    [27]Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000,403:434-439.
    [28]Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N, et al. Two faces of chondroitin sulfate proteoglycan in spinal cord repair:a role in microglia/macrophage activation. PLoS Med 2008,5:e171.
    [29]Shi FD RR. Nature Killer Cells in the Central Nervous System. In Natural Killer Cells.. M.T. Lotze and A.W. Thomson, editors. Academic Press, London 2010:10.
    [30]Shi QG, Wang ZH, Ma XW, Zhang DQ, Yang CS, Shi FD3 et al. Clinical significance of detection of antibodies to fetal and adult acetylcholine receptors in myasthenia gravis. Neurosci Bull 2012,28:469-474.
    [31]Lunemann A, Lunemann JD, Roberts S, Messmer B, Barreira da Silva R, Raine CS, et al. Human NK cells kill resting but not activated microglia via NKG2D-and NKp46-mediated recognition. J Immunol 2008,181:6170-6177.
    [32]Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park IK, et al. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood 2010,115:274-281.
    [33]Trinchieri G Biology of natural killer cells. Adv Immunol 1989,47:187-376.
    [34]Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature 2009,457:557-561.
    [35]Forel JM, Chiche L, Thomas G, Mancini J, Farnarier C, Cognet C, et al. Phenotype and functions of natural killer cells in critically-ill septic patients. PLoS One 2012,7:e50446.
    [36]Liu R, Van Kaer L, La Cava A, Price M, Campagnolo DI, Collins M, et al. Autoreactive T cells mediate NK cell degeneration in autoimmune disease. J Immunol 2006,176:5247-5254.
    [37]Narayan RK, Michel ME, Ansell B, Baethmann A, Biegon A, Bracken MB, et al. Clinical trials in head injury. J Neurotrauma 2002,19:503-557.
    [38]Hao J, Campagnolo D, Liu R, Piao W, Shi S, Hu B, et al. Interleukin-2/interleukin-2 antibody therapy induces target organ natural killer cells that inhibit central nervous system inflammation. Ann Neurol 2011,69:721-734.
    [39]Kelly DF, Gonzalo IT, Cohan P, Berman N, Swerdloff R, Wang C. Hypopituitarism following traumatic brain injury and aneurysmal subarachnoid hemorrhage:a preliminary report. J Neurosurg 2000,93:743-752.
    [40]Davenport RJ, Dennis MS, Wellwood I, Warlow CP. Complications after acute stroke. Stroke 1996,27:415-420.
    [41]Langhorne P, Stott DJ, Robertson L, MacDonald J, Jones L, McAlpine C, et al. Medical complications after stroke:a multicenter study. Stroke 2000,31:1223-1229.
    [42]Hajat C, Hajat S, Sharma P. Effects of poststroke pyrexia on stroke outcome:a meta-analysis of studies in patients. Stroke 2000,31:410-414.
    [43]Diez-Tejedor E, Fuentes B. Acute care in stroke:the importance of early intervention to achieve better brain protection. Cerebrovasc Dis 2004,17 Suppl 1: 130-137.
    [44]DeVivo MJ, Black KJ, Stover SL. Causes of death during the first 12 years after spinal cord injury. Arch Phys Med Rehabil 1993,74:248-254.
    [45]DeVivo MJ, Krause JS, Lammertse DP. Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil 1999,80: 1411-1419.
    [46]Kalra L, Yu G, Wilson K, Roots P. Medical complications during stroke rehabilitation. Stroke 1995,26:990-994.
    [47]Johnston KC, Li JY, Lyden PD, Hanson SK, Feasby TE, Adams RJ, et al. Medical and neurological complications of ischemic stroke:experience from the RANTTAS trial. RANTTAS Investigators. Stroke 1998,29:447-453.
    [48]Jackson AB, Groomes TE. Incidence of respiratory complications following spinal cord injury. Arch Phys Med Rehabil 1994,75:270-275.
    [49]Waites KB, Canupp KC, Chen Y, DeVivo MJ, Moser SA. Bacteremia after spinal cord injury in initial versus subsequent hospitalizations. J Spinal Cord Med 2001,24: 96-100.
    [50]Reines HD, Harris RC. Pulmonary complications of acute spinal cord injuries. Neurosurgery 1987,21:193-196.
    [51]Weimar C, Roth MP, Zillessen G, Glahn J, Wimmer ML, Busse O, et al. Complications following acute ischemic stroke. Eur Neurol 2002,48:133-140.
    [52]Henon H, Godefroy O, Leys D, Mounier-Vehier F, Lucas C, Rondepierre P, et al. Early predictors of death and disability after acute cerebral ischemic event. Stroke 1995,26:392-398.
    [53]Rodriguez R, Lema M, Prieto JM, Cadarso C, Castillo J, Noya M. [3 year survival in patients hospitalized for acute cerebrovascular disorders]. Rev Neurol 1996,24:199-206.
    [54]Vernino S, Brown RD, Jr., Sejvar JJ, Sicks JD, Petty GW, O'Fallon WM. Cause-specific mortality after first cerebral infarction:a population-based study. Stroke 2003,34:1828-1832.
    [55]Heuschmann PU, Kolominsky-Rabas PL, Misselwitz B, Hermanek P, Leffmann C, Janzen RW, et al. Predictors of in-hospital mortality and attributable risks of death after ischemic stroke:the German Stroke Registers Study Group. Arch Intern Med 2004,164:1761-1768.
    [56]Bronchard R, Albaladejo P, Brezac G, Geffroy A, Seince PF, Morris W, et al. Early onset pneumonia:risk factors and consequences in head trauma patients. Anesthesiology 2004,100:234-239.
    [57]Woiciechowsky C, Schoning B, Cobanov J, Lanksch WR, Volk HD, Docke WD. Early IL-6 plasma concentrations correlate with severity of brain injury and pneumonia in brain-injured patients. J Trauma 2002,52:339-345.
    [58]Ishikawa K, Tanaka H, Shiozaki T, Takaoka M, Ogura H, Kishi M, et al. Characteristics of infection and leukocyte count in severely head-injured patients treated with mild hypothermia. J Trauma 2000,49:912-922.
    [59]Kossmann T, Hans VH, Imhof HG, Stocker R, Grob P, Trentz O, et al. Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 1995,4:311-317.
    [60]Huschak G, Zur Nieden K, Stuttmann R, Riemann D. Changes in monocytic expression of aminopeptidase N/CD13 after major trauma. Clin Exp Immunol 2003, 134:491-496.
    [61]Cruse JM, Lewis RE, Bishop GR, Kliesch WF, Gaitan E. Neuroendocrine-immune interactions associated with loss and restoration of immune system function in spinal cord injury and stroke patients. Immunol Res 1992,11: 104-116.
    [62]Cruse JM, Lewis RE, Jr., Bishop GR, Kliesch WF, Gaitan E, Britt R. Decreased immune reactivity and neuroendocrine alterations related to chronic stress in spinal cord injury and stroke patients. Pathobiology 1993,61:183-192.
    [63]Hug A, Dalpke A, Wieczorek N, Giese T, Lorenz A, Auffarth G, et al. Infarct volume is a major determiner of post-stroke immune cell function and susceptibility to infection. Stroke 2009,40:3226-3232.
    [64]Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 2003,198:725-736.
    [65]Offner H, Vandenbark AA, Hurn PD. Effect of experimental stroke on peripheral immunity:CNS ischemia induces profound immunosuppression. Neuroscience 2009, 158:1098-1111.
    [66]Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway:a missing link in neuroimmunomodulation. Mol Med 2003,9:125-134.
    [67]Buller KM. Role of circumventricular organs in pro-inflammatory cytokine-induced activation of the hypothalamic-pituitary-adrenal axis. Clin Exp Pharmacol Physiol 2001,28:581-589.
    [68]Banks WA, Kastin AJ, Broadwell RD. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 1995,2:241-248.
    [69]Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR. Vagal immune-to-brain communication:a visceral chemosensory pathway. Auton Neurosci 2000,85:49-59.
    [70]Haddad JJ, Saade NE, Safieh-Garabedian B. Cytokines and neuro-immune-endocrine interactions:a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol 2002,133:1-19.
    [71]Ewig S, Torres A, El-Ebiary M, Fabregas N, Hernandez C, Gonzalez J, et al. Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury. Incidence, risk factors, and association with ventilator-associated pneumonia. Am J Respir Crit Care Med 1999,159:188-198.
    [72]Woratyla SP, Morgan AS, Mackay L, Bernstein B, Barba C. Factors associated with early onset pneumonia in the severely brain-injured patient. Conn Med 1995,59: 643-647.
    [73]Gatti G, Masera RG, Bateman A, Sartori ML, Pallavicini L, Maina L, et al. Effects of CRH, ACTH and the corticostatin HP-4 on the spontaneous NK cell activity and susceptibility to endogenous modifiers. Arch Gerontol Geriatr 1992,15 Suppl 1:159-171.
    [74]Flores CM, Hernandez MC, Hargreaves KM, Bayer BM. Restraint stress-induced elevations in plasma corticosterone and beta-endorphin are not accompanied by alterations in immune function. J Neuroimmunol 1990,28:219-225.
    [75]Gatti G, Cavallo R, Sartori ML, del Ponte D, Masera R, Salvadori A, et al. Inhibition by cortisol of human natural killer (NK) cell activity. J Steroid Biochem 1987,26:49-58.
    [76]Masera R, Gatti G, Sartori ML, Carignola R, Salvadori A, Magro E, et al. Involvement of Ca2+-dependent pathways in the inhibition of human natural killer (NK) cell activity by cortisol 体外实验Immunopharmacology 1989,18:11-22.
    [77]Callewaert DM, Moudgil VK, Radcliff G, Waite R. Hormone specific regulation of natural killer cells by cortisol. Direct inactivation of the cytotoxic function of cloned human NK cells without an effect on cellular proliferation 体外实验. FEBS Lett 1991,285:108-110.
    [78]Mavoungou E, Bouyou-Akotet MK, Kremsner PG Effects of prolactin and cortisol on natural killer (NK) cell surface expression and function of human natural cytotoxicity receptors (NKp46, NKp44 and NKp30). Clin Exp Immunol 2005,139: 287-296.
    [79]Felten DL, Felten SY, Bellinger DL, Carlson SL, Ackerman KD, Madden KS, et al. Noradrenergic sympathetic neural interactions with the immune system:structure and function. Immunol Rev 1987,100:225-260.
    [80]Benschop RJ, Rodriguez-Feuerhahn M, Schedlowski M. 1Catecholamine-induced leukocytosis:early observations, current research, and future directions. Brain Behav Immun 1996,10:77-91.
    [81]Shakhar G, Ben-Eliyahu S.3 In vivo beta-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol 1998,160:3251-3258.
    [82]Takamoto T, Hori Y, Koga Y, Toshima H, Hara A, Yokoyama MM. Norepinephrine inhibits human natural killer cell activity in vitro. Int J Neurosci 1991, 58:127-131.
    [83]Hsueh CM, Chen SF, Lin RJ, Chao HJ.2Cholinergic and serotonergic activities are required in triggering conditioned NK cell response. J Neuroimmunol 2002,123: 102-111.
    [84]Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000,405:458-462.
    [85]Jiang JL, Qiu YH, Peng YP.5 [Effect of acetylcholine on the cytotoxicity of natural killer cells]. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2005,21:330-333.
    [86]Hao J, Shi FD, Abdelwahab M, Shi SX, Simard A, Whiteaker P, et al. Nicotinic receptor beta2 determines NK cell-dependent metastasis in a murine model of metastatic lung cancer. PLoS One 2013,8:e57495.
    [87]Annane D, Meduri GU, Marik P. Critical illness-related corticosteroid insufficiency and community-acquired pneumonia:back to the future! Eur Respir J 2008,31:1150-1152.
    [88]Mavoungou E. Interactions between natural killer cells, cortisol and prolactin in malaria during pregnancy. Clin Med Res 2006,4:33-41.
    [89]Masera R, Gatti Q Sartori ML, Carignola R, Salvadori A, Magro E, et al. Involvement of Ca2+-dependent pathways in the inhibition of human natural killer (NK) cell activity by cortisol. Immunopharmacology 1989,18:11-22.
    [90]Mavoungou E, Bouyou-Akotet MK, Kremsner PG Effects of prolactin and cortisol on natural killer (NK) cell surface expression and function of human natural cytotoxicity receptors (NKp46, NKp44 and NKp30). Clin Exp Immunol 2005,139: 287-296.
    [91]Hsueh CM, Chen SF, Lin RJ, Chao HJ. Cholinergic and serotonergic activities are required in triggering conditioned NK cell response. J Neuroimmunol 2002,123: 102-111.
    [92]Jurkowski M, Trojniar W, Borman A, Ciepielewski Z, Siemion D, Tokarski J. Peripheral blood natural killer cell cytotoxicity after damage to the limbic system in the rat. Brain Behav Immun 2001,15:93-113.
    [93]Shi FD, Piao WH, Kuo YP, Campagnolo DI, Vollmer TL, Lukas RJ. Nicotinic attenuation of central nervous system inflammation and autoimmunity. J Immunol 2009,182:1730-1739.
    [1]Chen X, Zhang KL, Yang SY, Dong JF, Zhang JN. Glucocorticoids aggravate retrograde memory deficiency associated with traumatic brain injury in rats. J Neurotrauma 2009,26:253-260.
    [2]Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2011,2:492-516.
    [3]Wolach B, Sazbon L, Gavrieli R, Broda A, Schlesinger M. Early immunological defects in comatose patients after acute brain injury. J Neurosurg 2001,94:706-711.
    [4]Davenport RJ, Dennis MS, Wellwood I, Warlow CP. Complications after acute stroke. Stroke 1996,27:415-420.
    [5]Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers:similarities and differences. Fluids Barriers CNS 2011,8:3.
    [6]Wilson EH, Weninger W, Hunter CA. Trafficking of immune cells in the central nervous system. J Clin Invest 2010,120:1368-1379.
    [7]Kierdorf K, Wang Y, Neumann H. Immune-mediated CNS damage. Results Probl Cell Differ 2010,51:173-196.
    [8]Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS immune privilege:hiding in plain sight. Immunol Rev 2006,213:48-65.
    [9]Ankeny DP, Popovich PG. B cells and autoantibodies:complex roles in CNS injury. Trends Immunol 2010,31:332-338.
    [10]Lutz HU, Binder CJ, Kaveri S. Naturally occurring auto-antibodies in homeostasis and disease. Trends Immunol 2009,30:43-51.
    [11]Dorner T, Radbruch A, Burmester GR. B-cell-directed therapies for autoimmune disease. Nat Rev Rheumatol 2009,5:433-441.
    [12]Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol 2008,29: 608-615.
    [13]Samuelsson A, Towers TL, Ravetch JV. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 2001,291:484-486.
    [14]Mrakovcic-Sutic I, Tokmadzic VS, Laskarin G, Mahmutefendic H, Lucin P, Zupan Z, et al. Early changes in frequency of peripheral blood lymphocyte subpopulations in severe traumatic brain-injured patients. Scand J Immunol 2010,72: 57-65.
    [15]Correale J, Villa A. The neuroprotective role of inflammation in nervous system injuries. J Neurol 2004,251:1304-1316.
    [16]Skoda D, Kranda K, Bojar M, Glosova L, Baurle J, Kenney J, et al. Antibody formation against beta-tubulin class Ⅲ in response to brain trauma. Brain Res Bull 2006,68:213-216.
    [17]Wright BR, Warrington AE, Edberg DD, Rodriguez M. Cellular mechanisms of central nervous system repair by natural autoreactive monoclonal antibodies. Arch Neurol 2009,66:1456-1459.
    [18]Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 2005,6:775-786.
    [19]Lund FE, Randall TD. Effector and regulatory B cells:modulators of CD4+T cell immunity. Nat Rev Immunol 2010,10:236-247.
    [20]Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement ofIgM and Toll-like receptors. Nature 2002,416:603-607.
    [21]Paterson HM, Murphy TJ, Purcell EJ, Shelley O, Kriynovich SJ, Lien E, et al. Injury primes the innate immune system for enhanced Toll-like receptor reactivity. J Immunol 2003,171:1473-1483.
    [22]Beg AA. Endogenous ligands of Toll-like receptors:implications for regulating inflammatory and immune responses. Trends Immunol 2002,23:509-512.
    [23]Fields ML, Metzgar MH, Hondowicz BD, Kang SA, Alexander ST, Hazard KD, et al. Exogenous and endogenous TLR ligands activate anti-chromatin and polyreactive B cells. J Immunol 2006,176:6491-6502.
    [24]Skok MV, Grailhe R, Agenes F, Changeux JP. The role of nicotinic receptors in B-lymphocyte development and activation. Life Sci 2007,80:2334-2336.
    [25]Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999,5:49-55.
    [26]Yoles E, Hauben E, Palgi O, Agranov E, Gothilf A, Cohen A, et al. Protective autoimmunity is a physiological response to CNS trauma. J Neurosci 2001,21: 3740-3748.
    [27]Arneth BM. Protective autoimmunity and protein localization. J Neuroimmunol 2010,219:123-125.
    [28]Holmin S, Mathiesen T, Shetye J, Biberfeld P. Intracerebral inflammatory response to experimental brain contusion. Acta Neurochir (Wien) 1995,132:110-119.
    [29]Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, et al. Neuroprotection by encephalomyelitis:rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 2000,20:5283-5291.
    [30]Johnson TV, Camras CB, Kipnis J. Bacterial DNA confers neuroprotection after optic nerve injury by suppressing CD4+CD25+regulatory T-cell activity. Invest Ophthalmol Vis Sci 2007,48:3441-3449.
    [31]Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M. Neuroprotective autoimmunity:naturally occurring CD4+CD25+regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc Natl Acad Sci U S A 2002,99:15620-15625.
    [32]Shi FD, Zhou Q. Natural killer cells as indispensable players and therapeutic targets in autoimmunity. Autoimmunity 2011,44:3-10.
    [33]Shi FD, Van Kaer L. Reciprocal regulation between natural killer cells and autoreactive T cells. Nat Rev Immunol 2006,6:751-760.
    [34]Hao J, Campagnolo D, Liu R, Piao W, Shi S, Hu B, et al. Interleukin-2/interleukin-2 antibody therapy induces target organ natural killer cells that inhibit central nervous system inflammation. Ann Neurol 2011,69:721-734.
    [35]Shi FD, Ljunggren HQ La Cava A, Van Kaer L. Organ-specific features of natural killer cells. Nat Rev Immunol 2011,11:658-671.
    [36]Avaliani TV, Ogurtsov RP, Puzyreva VP, Seryakova OR. Lateralization of brain trauma in female Wistar rats determines the immune and neurological status of offspring. Neurosci Behav Physiol 2002,32:425-430.
    [37]Jurkowski M, Trojniar W, Borman A, Ciepielewski Z, Siemion D, Tokarski J. Peripheral blood natural killer cell cytotoxicity after damage to the limbic system in the rat. Brain Behav Immun 2001,15:93-113.
    [38]Lunemann A, Lunemann JD, Roberts S, Messmer B, Barreira da Silva R, Raine CS, et al. Human NK cells kill resting but not activated microglia via NKG2D-and NKp46-mediated recognition. J Immunol 2008,181:6170-6177.
    [39]Trifilo MJ, Montalto-Morrison C, Stiles LN, Hurst KR, Hardison JL, Manning JE, et al. CXC chemokine ligand 10 controls viral infection in the central nervous system:evidence for a role in innate immune response through recruitment and activation of natural killer cells. J Virol 2004,78:585-594.
    [40]Hao J, Liu R, Piao W, Zhou Q, Vollmer TL, Campagnolo DI, et al. Central nervous system (CNS)-resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J Exp Med 2010,207:1907-1921.
    [41]Wong CH, Jenne CN, Lee WY, Leger C, Kubes P. Functional mnervation of hepatic iNKT cells is immunosuppressive following stroke. Science 2011,334: 101-105.
    [42]Shi FD, Wang HB, Li H, Hong S, Taniguchi M, Link H, et al. Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nat Immunol 2000,1: 245-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700