用户名: 密码: 验证码:
激活转录因子3促进皮肤癌细胞增殖机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     皮肤癌是临床上最常见的恶性肿瘤之一,可笼统分为恶性黑色素瘤和非黑色素瘤性皮肤癌,后者主要包括鳞状细胞癌和基底细胞癌。皮肤癌严重者可危及生命,其发病率逐年上升,已经成为了一个全球性的公共健康问题。多种危险因素可导致皮肤癌的发生,包括内源性因素(遗传因素、基因突变等)和外源性因素(如紫外线暴露,化学致癌物质和其他环境压力)。早期诊断和治疗,可以减少因该病所造成的死亡和畸型。然而,皮肤癌发生的确切分子机制仍不清楚,这严重的影响了对于该病的治疗和预防。
     激活转录因子3(ATF3)是ATF/CREB转录因子家族成员之一,特征性的含有碱性亮氨酸拉链(bZIP)基序。正常细胞中ATF3的表达处于较低水平,但可由多种不同的胞外信号诱导而迅速上调表达,包括生长因子,细胞因子和某些基因毒性应激剂。做为转录因子,ATF3广泛参与人体的多种生理功能,包括维持身体内环境平衡,伤口愈合,细胞粘附,肿瘤细胞侵袭,细胞凋亡和信号通路等。新的证据表明,ATF3可能通过调整增殖和凋亡信号之间的微妙平衡关系,影响肿瘤的发生和发展。值得思考的是,ATF3在肿瘤发展中发挥的作用不尽相同,这可能取决于细胞的类型和所处的环境背景。有报道提示,免疫抑制宿主ATF3高表达可抑制p53依赖的细胞衰老,从而增加了皮肤鳞状细胞癌发生的可能性,但在皮肤癌背景下,ATF3与p53两者之间的相互作用关系,以及ATF3促进皮肤癌发生的分子机制仍不明确。
     信号传导蛋白和转录激活物3(Stat3)是生长因子受体(GFR)下游的信号转导蛋白,调节着参与细胞周期进程,细胞凋亡,血管生成,肿瘤细胞侵袭和转移相关靶基因的表达,其在肿瘤发生过程中发挥着重要的调控作用。有研究显示,Stat3在许多上皮癌,包括头和颈、乳腺、肺、皮肤、前列腺癌中存在组成型激活;表皮特异性Stat3缺陷小鼠皮肤癌发生相关实验结果表明,Stat3在上皮癌启动和促进阶段均发挥着重要作用。然而在ATF3促进皮肤癌发生的过程中,Stat3的角色作用尚不清楚。
     表遗传学相关改变是肿瘤发生的另一重要机制,这其中就包括组蛋白乙酰化模式的失调。能够阻断组蛋白脱乙酰酶(HDAC)活性的组蛋白脱乙酰酶抑制剂(HDACi)已被研发并用于多种肿瘤的靶向治疗。HDACi如曲古抑菌素A(TSA)和丁酸盐,可改变正常的染色质结构,从而导致相关基因表达和调控的改变。已有报道,TSA可引起肿瘤细胞的生长抑制并增加癌细胞的凋亡敏感性,同时有报道显示,ATF3可能与HDACs发生物理性的相互作用,通过对乙酰化修饰作用的调节,影响靶基因的表达,但ATF3在TSA诱导的肿瘤细胞生长抑制过程中的角色作用,特别是ATF3与TSA重要靶基因p21之间的相互作用关系,仍不明确。
     目的:
     在本实验中,我们拟利用qPCR技术和WB等技术分析ATF3在皮肤癌组织和皮肤癌细胞株中的表达情况,同时联合MTT法分析ATF3表达状态对细胞增殖活性的影响,从而进一步明确ATF3与皮肤癌发生之间的关系;基于SCC-13细胞和p53缺失的RTS3b细胞,利用细胞转染和荧光素酶报告基因检测等技术明确ATF3、p53和Stat3之间的相互作用关系,阐明ATF3对p53-Stat3级联信号的影响;从表遗传学角度,分析ATF3在TSA造成的表皮样癌细胞生长抑制过程中所发挥的作用,以及ATF3与TSA重要靶基因p21之间的相互作用关系。从而初步阐明ATF3促进皮肤癌细胞增殖的可能分子机制。
     方法:
     1、皮肤癌组织ATF3的表达,皮肤癌组织来源原代培养细胞、SCC-13细胞,和p53缺失的RTS3b细胞ATF3的转录表达及蛋白水平测定:临床来源的皮肤癌组织和正常皮肤组织各30例,利用qPCR技术,比较分析上述组织的ATF3转录表达水平,选取ATF3高表达的皮肤癌组织和ATF3低表达的正常皮肤组织各3例,建立原代培养细胞系,利用qPCR技术和WB技术分析皮肤癌组织来源细胞、正常组织来源细胞、SCC-13细胞,和p53缺失的RTS3b细胞ATF3的转录表达情况和蛋白表达水平。
     2、利用MTT法比较分析皮肤癌组织来源和正常皮肤组织来源的原代培养细胞、SCC-13细胞和P53缺失的RTS3b细胞的增殖活性。
     3、利用荧光素酶报告基因检测技术分析ATF3过表达对SCC-13细胞和P53缺失的RTS3b细胞Stat3转录活性的影响。
     4、利用细胞转染技术,分别使用ATF3shRNA质粒,pcDNA3载体,pcDNA3-p53,pcDNA3-Stat3C和/或pcDNA3-ATF3质粒转染SCC-13和P53缺失的RTS3b细胞,并联合使用Stat3抑制剂Stattic,后续利用MTT法对转染细胞的增殖活性变化情况进行比较分析,利用WB技术分析ATF3过表达对Stat3和p53蛋白水平的影响。
     5、利用细胞培养联合细胞转染、qPCR和WB等技术,分析ATF3在TSA造成的表皮样癌细胞生长抑制过程中所发挥的作用,以及ATF3与TSA重要靶基因p21之间的相互作用关系。
     结果:
     1、qPCR检测结果提示:与正常皮肤组织相比,皮肤癌组织中ATF3表达上调,而正常皮肤组织中ATF3表达处于较低水平。WB检测结果显示,ATF3高表达皮肤癌组织来源的原代培养细胞ATF3蛋白水平高于ATF3低表达的正常组织来源的原代培养细胞;蛋白表达水平与组间ATF3转录表达差异相一致。
     2、MTT法检测结果显示,皮肤癌组织来源的原代培养细胞增殖活性明显高于正常组织来源的原代培养细胞;利用细胞转染技术,敲低ATF3表达后,SCC-13细胞增殖活性明显降低,而ATF3增强表达则显著提高了该细胞的增殖活性。
     3、利用WB技术证实皮肤癌组织来源的原代培养细胞Stat3磷酸化水平明显高于正常皮肤组织来源的原代培养细胞。利用细胞转染技术证实ATF3过表达SCC-13细胞Stat3磷酸化水平明显高于ATF3敲低组,说明ATF3为Stat3活化所需要,ATF3过表达上调了Stat3磷酸化水平。荧光素酶报告基因检测实验结果提示ATF3正向调节Stat3的转录活性。实验同时发现,皮肤癌组织来源的ATF3高表达的原代培养细胞p53表达水平较低,ATF3敲低表达使SCC-13细胞p53表达上调,而ATF3过表达明显抑制了该细胞株p53的表达水平。
     4、P53缺失的RTS3b细胞Stat3磷酸化水平高于SCC-13细胞,利用细胞转染技术证实,ATF3过表达对P53缺失的RTS3b细胞的Stat3磷酸化水平和转录活性没有影响,提示ATF3可能通过下调p53的表达来阻遏后者对Stat3活性的抑制作用。
     5、组成型激活Stat3(Stat3C)显著促进了皮肤癌细胞生长,这与ATF3功能相一致。相反,Stat3抑制剂Stattic抑制了SCC-13细胞的增殖活性,提示ATF3对皮肤癌细胞的增殖促进作用被Stattic所阻遏,提示ATF3对皮肤癌细胞的增殖促进作用主要是通过调节Stat3的活性来实现的。此外,ATF3上调表达对SCC-13细胞增殖活性的促进作用可被p53过表达所抑制,而ATF3上调表达对P53缺失的RTS3b细胞的增殖活性无显著影响。提示,ATF3通过对p53-Stat3级联信号的调节实现了对皮肤癌细胞增殖的促进作用。
     6、我们还从表遗传学的角度对ATF3可能具有的促进癌细胞增殖的作用进行了初步研究,结果提示ATF3可能通过抑制p21基因表达干扰TSA引起的表皮样癌细胞的生长抑制。
     结论:
     在皮肤癌组织中存在ATF3上调表达,ATF3上调表达具有促进皮肤癌细胞增殖的作用。进一步的研究表明ATF3可抑制皮肤癌细胞P53的表达,进而削弱了p53对Stat3的抑制作用,致Stat3表达和活化水平上升,最终导致肿瘤细胞的增殖活性提高。ATF3通过调节p53-Stat3级联信号通路,实现了其对于肿瘤细胞的增殖促进作用,这可能是ATF3促进皮肤癌发生的主要机制之一。此外,ATF3促进肿瘤细胞增殖还可能存在着大量其他未知的机制,如在表遗传学方面,我们发现ATF3可能通过抑制p21基因表达干扰TSA引起的表皮样癌细胞生长抑制。上述结果有益于我们进一步认识皮肤癌发生的分子病理机制。ATF3过表达,增加了皮肤癌的发生风险,ATF3表达水平或可成为判断皮肤癌预后的指标,而ATF3-p53-Stat3级联信号通路可能成为预防皮肤癌发生和治疗该病的潜在靶点。
Background:
     Skin cancer or cutaneous carcinoma is the most common and life-risky type ofcarcinoma, categorized as melanoma and non-melanoma skin carcer (squamous cellcarcinoma (SCC) and basal cell carcinoma (BCC) are the two most common subtypes),affecting millions worldwide. The incidence of skin cancer is increasing yearly, making it apre-eminent public health threat, and identification of risk factors is needed to stop thisincreasing trend. Multiple risk factors exist, including endogenous factors (genetic factorsand gene mutations) and exogenous factors (sun exposure, chemical carcinogens and otherenvironmental stress). Early diagnosis and treatment are needed to decrease the number ofdeaths and disfigurations due to skin cancer. Whereas, the precise molecular mechanism ofskin cancer remains unclear, which make it difficult to treat and prevent of the disease.
     Activating transcription factor3(ATF3) is an ATF/CREB family member, whichcontains the basic region and leucine zipper (bZIP) motif. ATF3is expressed at low levels innormal cells but can be rapidly induced by multiple and diverse extracellular signalsincluding growth factors, cytokines and some genotoxic stress agents. The physiologicalfunction of ATF3has been addressed in several cell lines indicated that ATF3might beinvolved in homeostasis, wound healing, cell adhesion, cancer cell invasion, apoptosis andsignaling pathways. Emerging evidence suggests that ATF3may play an critical role in hostdefence by regulating the delicate balance between proliferative and apoptotic signals thatcontribute to the development of cancer. Interestingly, ATF3has been demonstrated to playdifferent roles in cancer development depending on the cell type and context. For example,over-expression of ATF3protein moderately suppresses cell growth through slowing downprogression from G1/S transition in Hela cells. Conversely, ATF3promotes growthfactor-independent proliferation in chick embryo and enhance serum-induced cellproliferation in rat fibroblasts. Although ATF3has been reported to promote skin tumor formation through suppression of p53-dependent senescence, the precise role of ATF3andthe underlying molecular mechanism in skin cancer remain unclear. Stat3is a member ofSTAT family which may be activated by many extracellular signals. In accordance with itscritical roles in the regulation of cellular processes associated with carcinogenesis, Stat3isconstitutively activated in many epithelial cancers including head and neck, breast, lung,skin, and prostate. Nonetheless there is little known about the relationship between ATF3,p53and Stat3signaling in the skin carcinogenesis.
     Epigenetic changes is another important mechanism of tumorigenesis, includingderegulated histone acetylation patterns. Histone deacetylase inhibitors (HDACi) which canblock the activity of histone deacetylase (HDAC) have been developed and used for avariety of targeted tumor therapy. HDACi such as trichostatin A (TSA) and butyrate canalter the normal chromatin structure, leading to changes in gene expression and regulation.It has been reported that TSA can cause tumor cell growth inhibition and increasedapoptotic sensitivity of cancer cells, meanwhile as reported, ATF3may interact physicallywith HDACs, but the role of ATF3in TSA-induced inhibition of tumor cell growth,especially the interaction between ATF3and p21, the key target gene of TSA remainsunclear.
     Aims:
     First, to confirm the role of ATF3in skin carcinogenesis by detecting its expression inskin cancer tissue, meanwhile find out the relationship between the ATF3protein levels andthe proliferation activity of the cells drived from skin cancer tissue and the controlrespectively; then clarify the interactions between ATF3and p53-Stat3cascade in SCC-13and RTS3b (p53null) cells; determine the role of ATF3in TSA-induced inhibition of tumorcell growth, especially the interaction between ATF3and p21, the key target gene of TSA,finally find out the potential mechanism of ATF3promoting skin cancer development.
     Methods:
     1.The expression of ATF3in skin cancer tissue and the protein level of ATF3, Stat3andp53in different cell lines.
     A total of30surgically resected examples of skin cancer were enrolled, thirty skinspecimens from healthy donors were collected as normal control. The ATF3expression ofall the samples were detected by quantitative real-time PCR (qPCR). Then the3pieces of skin cancer tissues with highest ATF3(C1, C2, C3) and the3pieces of normal skin tissueswith lowest ATF3(N1, N2, N3) were primarily cultured and established as cell lines. Thenthe transcriptional expression of the ATF3and the protein level of ATF3, Stat3and p53inthe different cell lines, as well as in the human squamous carcinoma SCC-13cells andp53-null RTS3b cells, were analyzed by qPCR and Western blot analysis.
     2. Transcriptional activity of Stat3in SCC-13and p53-null RTS3b cells.
     The luciferase reporter construct was co-transfected with pRL-TK and over expressingplasmids or vectors into SCC-13or RTS3b cells. After transfection for48h, cells wereharvested for the luciferase reporter assay.
     3. Influence of ATF3, Stat3and p53, as well as their interaction on the proliferation ofthe diffenent Cell lines.
     SCC-13or RTS3b cells were transfected with control shRNA plasmids, ATF3shRNAplasmids, pcDNA3vector, pcDNA3-p53, pcDNA3-Stat3C and/or pcDNA3-ATF3plasmidsby using Lipofectamine2000. Otherwise the cell lines were treated with Stat3inhibitorStattic. Then the cell proliferation activity of SCC-13cells and RTS3b cells was determinedby MTT at indicated time points after transfection.
     4. ATF3interferes activation of p21in HDACi-induced growth inhibition ofepidermoid carcinoma cells.
     Based on epidermoid carcinoma cell A431, joint use of cell culture,cell transformation,qPCR and WB techniques, the relationship between ATF3that can promote tumor cellgrowth and TSA with the opposite effect was analyzed, meanwhile the interaction betweenATF3and the important target gene p21of TSA in the process of growth inhibition inducedby TSA in epidermoid carcinoma was investigated.
     Results:
     1. ATF3was significantly upregulated in skin cancer tissue, while it was maintainedat low level in normal epitheliums;the primary cultured skin cancer cells possessed higherATF3protein level, which was consistent with transcriptional expression differencebetween skin cancer and normal tissues.
     2. ATF3promotes skin cancer cell proliferation. Among the6lines of primarycultured skin cells, the cells from skin cancer (C1-C3) proliferated much faster than thatfrom the normal skin. The proliferation rate of SCC-13cells was suppressed by ATF3 knockdown (KD); conversely, forced expression of ATF3in SCC-13cells significantlypromoted cell growth; these results demonstrated that ATF3is a positive regulator of skincancer cell proliferation.
     3. Phosphorylated Stat3level was much higher in skin cancer cells with higher ATF3expression. The results of Luciferase reporter assay combined with cell transfectionrevealed that ATF3was required for Stat3phosphorylation, ATF3overexpressionupregulated Stat3phosphorylation level, furthermore, ATF3positively regulated Stat3transcriptional activity. Meanwhile p53showed lower mRNA level in established skincancer cell lines with higher ATF3expression. Correspondingly, ATF3knockdownupregulated p53expression and ATF3overexpression strongly inhibited p53transcription.
     4. The constitutive active Stat3form, Stat3C overexpression significantly promotedskin cancer cell growth. Conversely, the Stat3inhibitor Stattic inhibited cell proliferation ofSCC-13cells and the promotion effect of ATF3was prevented by Stattic. Moreover, theproliferation rate of skin cancer cells was suppressed by p53overexpression in SCC-13cells. Whereas, ATF3had no significant effects on the cell proliferation of p53-null RTS3bcells. Collectively, these data demonstrate that ATF3might act trough modulating p53-Stat3signaling cascade to enhance skin cancer cell proliferation.
     5. We also investigate the potential function of ATF3in promoting cancer cell growthfrom the perspective of epigenetic, the results suggest that ATF3may interfere withTSA-induced epidermoid cancer cell growth inhibition by inhibiting p21expression.
     Conclusion:
     In summary, ATF3was upregulated in skin cancer tissues and promoted theproliferation of skin cancer cells. The molecular mechanism of ATF3in skin carcinogenesiswas investigated and we found that ATF3enhanced skin cancer cell growth throughmodulating p53-Stat3signaling activity. This study discovered the functions of ATF3-p53-Stat3signal cascade in skin cancer development and will assist to understand the pathologicmechanism of skin carcinogenesis. ATF3might increase the risk of skin cancer and serve asan important prognostic indicator for the disease,and the ATF3-p53-Stat3signaling maybe apotential target for skin cancer prevention. Furthermore, ATF3promote skin cancer cellproliferation may also have a large number of other unknown mechanisms, as shown inepigenetics, ATF3may interfere with TSA-induced epidermoid cancer cell growthinhibition by inhibiting p21expression.
引文
1. Gordon R.Skin cancer: an overview of epidemiology and risk factors. Semin OncolNurs.2013Aug;29(3):160-9.
    2. Lomas A, Leonardi-Bee J, Bath-Hextall F.A systematic review of worldwide incidenceof nonmelanoma skin cancer. Br J Dermatol.2012May;166(5):1069-80.
    3. Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JT. J Clin Invest. Fromkeratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cellcarcinoma.2012Feb1;122(2).
    4. Lansbury L, Bath-Hextall F, Perkins W, Stanton W, Leonardi-Bee J. Interventions fornon-metastatic squamous cell carcinoma of the skin: systematic review and pooledanalysis of observational studies. BMJ.2013Nov4;347:f6153.
    5. Thompson MR, Xu D, Williams BR. ATF3transcription factor and its emerging roles inimmunity and cancer. J Mol Med (Berl).2009Nov;87(11):1053-60.
    6. Hunt D, Raivich G, Anderson PN. Activating transcription factor3and the nervoussystem. Front Mol Neurosci.2012Feb14;5:7.
    7. Yin X1, Dewille JW, Hai T.A potential dichotomous role of ATF3, an adaptive-responsegene, in cancer development. Oncogene.2008Apr3;27(15):2118-27.
    8. Nawa T, Nawa MT, Adachi MT, Uchimura I, Shimokawa R, Fujisawa K, Tanaka A,Numano F, Kitajima S. Expression of transcriptional repressor ATF3/LRF1in humanatherosclerosis: colocalization and possible involvement in cell death of vascularendothelial cells. Atherosclerosis.2002Apr;161(2):281-91.
    9. Kawauchi J, Zhang C, Nobori K, Hashimoto Y, Adachi MT, Noda A, Sunamori M,Kitajima S. Transcriptional repressor activating transcription factor3protects humanumbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosisthrough down-regulation of p53transcription. J Biol Chem.2002Oct11;277(41):39025-34.
    10. Fan F, Jin S, Amundson SA, Tong T, Fan W, Zhao H, Zhu X, Mazzacurati L, Li X,Petrik KL, Fornace AJ Jr, Rajasekaran B, Zhan Q. ATF3induction following DNAdamage is regulated by distinct signaling pathways and over-expression of ATF3proteinsuppresses cells growth. Oncogene.2002Oct24;21(49):7488-96.
    11. Yin X, DeWille JW, Hai T. A potential dichotomous role of ATF3, an adaptive-responsegene, in cancer development. Oncogene.2008;27:2118–27.
    12. Wu X, Nguyen BC, Dziunycz P, Chang S, Brooks Y, Lefort K, Hofbauer GF, DottoGP.Opposing roles for calcineurin and ATF3in squamous skin cancer. Nature.2010May20;465(7296):368-72.
    13. Rho O, Kim DJ, Kiguchi K, Digiovanni J.Growth factor signaling pathways as targetsfor prevention of epithelial carcinogenesis.Mol Carcinog.2011Apr;50(4):264-79.
    14. Haura EB, Turkson J, Jove R. Mechanisms of disease: Insights into the emerging role ofsignal transducers and activators of transcription in cancer. Nat Clin Pract Oncol.2005;2(6):315–24.
    15. Jing N, Tweardy DJ. Targeting Stat3in cancer therapy. Anticancer Drugs.2005;16(6):601–7.
    16. Sano S, Chan KS, Kira M, Kataoka K, Takagi S, Tarutani M, Itami S, Kiguchi K, YokoiM, Sugasawa K, Mori T, Hanaoka F, Takeda J, DiGiovanni J. Signal transducer andactivator of transcription3is a key regulator of keratinocyte survival and proliferationfollowing UV irradiation. Cancer Res.2005;65(13):5720–9.
    17. Sano S, Chan KS, Digiovanni J. Impact of Stat3activation upon skin biology: Adichotomy of its role between homeostasis and diseases. J Dermatol Sci.2008;50(1):1-14.
    18. Kim DJ, Chan KS, Sano S, Digiovanni J. Signal transducer and activator oftranscription3(Stat3) in epithelial carcinogenesis. Mol Carcinog.2007;46(8):725–31.
    19. Chan KS, Sano S, Kiguchi K, Anders J, Komazawa N, Takeda J, DiGiovanni J.Disruption of Stat3reveals a critical role in both the initiation and the promotion stagesof epithelial carcinogenesis. J Clin Invest.2004;114(5):720–8.
    20. Sano S, Chan KS, Kira M, Kataoka K, Takagi S, Tarutani M, Itami S, Kiguchi K, YokoiM, Sugasawa K, Mori T, Hanaoka F, Takeda J, DiGiovanni J. Signal transducer andactivator of transcription3is a key regulator of keratinocyte survival and proliferationfollowing UV irradiation. Cancer Res.2005;65(13):5720–9
    21. Kim DJ, Kataoka K, Rao D, Kiguchi K, Cotsarelis G, Digiovanni J. Targeted disruptionof Stat3reveals a major role for follicular stem cells in skin tumor initiation. Cancer Res.2009;69(19):7587–94.
    22. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat RevGenet,2002.3(6):415-28.
    23. Vaissière T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications andDNA methylation in gene silencing. Mutat Res,2008.659(1-2):40-8.
    24. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (andmore) treatments for cancer. Nat Rev Cancer,2006.6(1):38-51.
    25. Lane AA, Chabner BA.Chabner, Histone deacetylase inhibitors in cancer therapy. J ClinOncol,2009.27(32):5459-68.
    26. Johnstone, R.W., Histone-deacetylase inhibitors: novel drugs for the treatment of cancer.Nat Rev Drug Discov,2002.1(4): p.287-99.
    27. Saunders N, Dicker A, Popa C, Jones S, Dahler A. Histone deacetylase inhibitors aspotential anti-skin cancer agents. Cancer Res,1999.59(2):399-404.
    28. Wilson AJ, Chueh AC, T gel L, Corner GA, Ahmed N, Goel S, Byun DS, Nasser S,Houston MA, Jhawer M, Smartt HJ, Murray LB, Nicholas C, Heerdt BG, Arango D,Augenlicht LH, Mariadason JM. Apoptotic sensitivity of colon cancer cells to histonedeacetylase inhibitors is mediated by an Sp1/Sp3-activated transcriptional programinvolving immediate-early gene induction. Cancer Res,2010.70(2): p.609-20.
    29. Darlyuk-Saadon I, Weidenfeld-Baranboim K, Yokoyama KK, Hai T, Aronheim A. ThebZIP repressor proteins, c-Jun dimerization protein2and activating transcription factor3, recruit multiple HDAC members to the ATF3promoter. Biochim Biophys Acta,2012.1819(11-12):1142-53.
    30. Yin X, DeWille JW, Hai T. A potential dichotomous role of ATF3, an adaptive-responsegene, in cancer development. Oncogene.2008;27:2118–27.
    31. Pelzer AE, Bektic J, Haag P, Berger AP, Pycha A, Sch fer G, Rogatsch H, Horninger W,Bartsch G, Klocker H. The expression of transcription factor activating transcriptionfactor3in the human prostate and its regulation by androgen in prostate cancer. J Urol.2006;175:1517–22.
    32. Janz M, Hummel M, Truss M, Wollert-Wulf B, Mathas S, J hrens K, Hagemeier C,Bommert K, Stein H, D rken D, Bargou RC. Classical Hodgkin lymphoma ischaracterized by high constitutive expression of activating transcription factor3(ATF3),which promotes viability of Hodgkin/Reed-Sternberg cells. Blood.2006;107:2536–9.
    33. Bottone FG Jr, Martinez JM, Collins JB, Afshari CA, Eling TE. Gene modulation by thecyclooxygenase inhibitor, sulindac sulfide, in human colorectal carcinoma cells:possible link to apoptosis. J Biol Chem.2003;278:25790–801.
    34. Huang X, Li X, Guo B. KLF6induces apoptosis in prostate cancer cells throughup-regulation of ATF3. J Biol Chem.2008;283:29795–801.
    35. Bottone FG Jr, Moon Y, Kim JS, Alston-Mills B, Ishibashi M, Eling TE. Theanti-invasive activity of cyclooxygenase inhibitors is regulated by the transcriptionfactor ATF3(activating transcription factor3). Mol Cancer Ther.2005;4:693–703.
    36. Syed V, Mukherjee K, Lyons-Weiler J, Lau KM, Mashima T, Tsuruo T, Ho SM.Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2as putative antitumorigenic,progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene.2005;24:1774–87.
    37. Allen-Jennings AE, Hartman MG, Kociba GJ, Hai T. The roles of ATF3in glucosehomeostasis. A transgenic mouse model with liver dysfunction and defects in endocrinepancreas. J Biol Chem.2001Aug3;276(31):29507-14.
    38. Zmuda EJ, Viapiano M, Grey ST, Hadley G, Garcia-Oca a A, Hai T. Deficiency of Atf3,an adaptive-response gene, protects islets and ameliorates inflammation in a syngeneicmouse transplantation model. Diabetologia.2010Jul;53(7):1438-50.
    39. Tamura K1, Hua B, Adachi S, Guney I, Kawauchi J, Morioka M, Tamamori-Adachi M,Tanaka Y, Nakabeppu Y, Sunamori M, Sedivy JM, Kitajima S. Stress response geneATF3is a target of c-myc in serum-induced cell proliferation.EMBO J.2005Jul20;24(14):2590-601.
    40. Huo JS, McEachin RC, Cui TX, Duggal NK, Hai T, States DJ, Schwartz J.Profiles ofgrowth hormone (GH)-regulated genes reveal time-dependent responses and identify amechanism for regulation of activating transcription factor3by GH. J Biol Chem.2006Feb17;281(7):4132-41.
    41. Lee SH, Bahn JH, Whitlock NC, Baek SJ. Activating transcription factor2(ATF2)controls tolfenamic acid-induced ATF3expression via MAP kinase pathways. Oncogene.2010Sep16;29(37):5182-92.
    42. Konsavage WM, Zhang L, Wu Y, Shenberger JS.Hyperoxia-induced activation of theintegrated stress response in the newborn rat lung.Am J Physiol Lung Cell Mol Physiol.2012Jan1;302(1):L27-35.
    43. Suganami T, Yuan X, Shimoda Y, Uchio-Yamada K, Nakagawa N, Shirakawa I, Usami T,Tsukahara T, Nakayama K, Miyamoto Y, Yasuda K, Matsuda J, Kamei Y, Kitajima S,Ogawa Y. Activating transcription factor3constitutes a negative feedback mechanismthat attenuates saturated Fatty acid/toll-like receptor4signaling and macrophageactivation in obese adipose tissue. Circ Res.2009Jul2;105(1):25-32.
    44. Roussel L, Robins S, Schachter A, Bérubé J, Hamid Q, Rousseau S. J Allergy ClinImmunol.Steroids and extracellular signal-regulated kinase1/2activity suppressactivating transcription factor3expression in patients with severe asthma.2011Jun;127(6):1632-4.
    45. Mo P, Wang H, Lu H, Boyd DD, Yan C. MDM2mediates ubiquitination anddegradation of activating transcription factor3. J Biol Chem.2010Aug27;285(35):26908-15.
    46. Lin J, Tang H, Jin X, Jia G, Hsieh JT. p53regulates Stat3phosphorylation and DNAbinding activity in human prostate cancer cells expressing constitutively active Stat3.Oncogene,2002May21(19):3082-8.
    47. Allfrey, V.G., Structural modifications of histones and their possible role in theregulation of ribonucleic acid synthesis. Proc Can Cancer Conf,1966.6:313-35.
    48. Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplaybetween different covalent modifications of the core histone tails. Genes Dev,2001.15(18):2343-60.
    49. Clarke AS, Lotz MM, Chao C, Mercurio AM. Activation of the p21pathway of growtharrest and apoptosis by the beta4integrin cytoplasmic domain. J Biol Chem,1995.270(39):22673-6.
    50. Archer SY, Meng S, Shei A, Hodin RA. p21(WAF1) is required for butyrate-mediatedgrowth inhibition of human colon cancer cells. Proc Natl Acad Sci U S A,1998.95(12):6791-6.
    51. Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitoractivation of p21WAF1involves changes in promoter-associated proteins, includingHDAC1. Proc Natl Acad Sci U S A,2004.101(5):1241-6.
    52. Darlyuk-Saadon I, Weidenfeld-Baranboim K, Yokoyama KK, Hai T, Aronheim A. ThebZIP repressor proteins, c-Jun dimerization protein2and activating transcription factor3, recruit multiple HDAC members to the ATF3promoter. Biochim Biophys Acta,2012.1819(11-12):1142-53.
    1. Thompson MR, Xu D, Williams BR. ATF3transcription factor and its emerging roles inimmunity and cancer. J Mol Med (Berl).2009Nov;87(11):1053-60.
    2. Hunt D, Raivich G, Anderson PN. Activating transcription factor3and the nervoussystem. Front Mol Neurosci.2012Feb14;5:7.
    3. Hai T, Hartman MG.The molecular biology and nomenclature of the activatingtranscription factor/cAMP responsive element binding family of transcription factors:activating transcription factor proteins and homeostasis. Gene.2001Jul25;273(1):1-11.
    4. Hai TW, Liu F, Coukos WJ, Green MR. Transcription factor ATF cDNA clones: anextensive family of leucine zipper proteins able to selectively form DNA-bindingheterodimers. Genes Dev.1989Dec;3(12B):2083-90.
    5. Miyazaki K, Inoue S, Yamada K, Watanabe M, Liu Q, Watanabe T, Adachi MT, TanakaY, Kitajima S. Differential usage of alternate promoters of the human stress responsegene ATF3in stress response and cancer cells. Nucleic Acids Res.2009Apr;37(5):1438-51.
    6. Chen BP, Liang G, Whelan J, Hai T. ATF3and ATF3delta Zip. Transcriptionalrepression versus activation by alternatively spliced isoforms.J Biol Chem.1994Jun3;269(22):15819-26.
    7. Pan Y, Chen H, Siu F, Kilberg MS.Amino acid deprivation and endoplasmic reticulumstress induce expression of multiple activating transcription factor-3mRNA species that,when overexpressed in HepG2cells, modulate transcription by the human asparaginesynthetase promoter. J Biol Chem.2003Oct3;278(40):38402-12.
    8. Zmuda EJ, Viapiano M, Grey ST, Hadley G, Garcia-Oca a A, Hai T. Deficiency of Atf3,an adaptive-response gene, protects islets and ameliorates inflammation in a syngeneicmouse transplantation model. Diabetologia.2010Jul;53(7):1438-50.
    9. Allen-Jennings AE, Hartman MG, Kociba GJ, Hai T. The roles of ATF3in glucosehomeostasis. A transgenic mouse model with liver dysfunction and defects in endocrinepancreas. J Biol Chem.2001Aug3;276(31):29507-14.
    10. Tamura K1, Hua B, Adachi S, Guney I, Kawauchi J, Morioka M, Tamamori-Adachi M,Tanaka Y, Nakabeppu Y, Sunamori M, Sedivy JM, Kitajima S. Stress response geneATF3is a target of c-myc in serum-induced cell proliferation.EMBO J.2005Jul20;24(14):2590-601.
    11. Huo JS, McEachin RC, Cui TX, Duggal NK, Hai T, States DJ, Schwartz J.Profiles ofgrowth hormone (GH)-regulated genes reveal time-dependent responses and identify amechanism for regulation of activating transcription factor3by GH. J Biol Chem.2006Feb17;281(7):4132-41.
    12. Lee SH, Bahn JH, Whitlock NC, Baek SJ. Activating transcription factor2(ATF2)controls tolfenamic acid-induced ATF3expression via MAP kinase pathways. Oncogene.2010Sep16;29(37):5182-92.
    13. Konsavage WM, Zhang L, Wu Y, Shenberger JS.Hyperoxia-induced activation of theintegrated stress response in the newborn rat lung.Am J Physiol Lung Cell Mol Physiol.2012Jan1;302(1):L27-35.
    14. Suganami T, Yuan X, Shimoda Y, Uchio-Yamada K, Nakagawa N, Shirakawa I, Usami T,Tsukahara T, Nakayama K, Miyamoto Y, Yasuda K, Matsuda J, Kamei Y, Kitajima S,Ogawa Y. Activating transcription factor3constitutes a negative feedback mechanismthat attenuates saturated Fatty acid/toll-like receptor4signaling and macrophageactivation in obese adipose tissue. Circ Res.2009Jul2;105(1):25-32.
    15. Roussel L, Robins S, Schachter A, Bérubé J, Hamid Q, Rousseau S. J Allergy ClinImmunol.Steroids and extracellular signal-regulated kinase1/2activity suppressactivating transcription factor3expression in patients with severe asthma.2011Jun;127(6):1632-4.
    16. Mo P, Wang H, Lu H, Boyd DD, Yan C. MDM2mediates ubiquitination anddegradation of activating transcription factor3. J Biol Chem.2010Aug27;285(35):26908-15.
    17. Ameri K, Hammond EM, Culmsee C, Raida M, Katschinski DM, Wenger RH, WagnerE, Davis RJ, Hai T, Denko N, Harris AL. Induction of activating transcription factor3by anoxia is independent of p53and the hypoxic HIF signalling pathway. Oncogene.2007Jan11;26(2):284-9.
    18. Yin X1, Dewille JW, Hai T.A potential dichotomous role of ATF3, an adaptive-responsegene, in cancer development. Oncogene.2008Apr3;27(15):2118-27.
    19. Nawa T, Nawa MT, Adachi MT, Uchimura I, Shimokawa R, Fujisawa K, Tanaka A,Numano F, Kitajima S. Expression of transcriptional repressor ATF3/LRF1in humanatherosclerosis: colocalization and possible involvement in cell death of vascularendothelial cells. Atherosclerosis.2002Apr;161(2):281-91.
    20. Kawauchi J, Zhang C, Nobori K, Hashimoto Y, Adachi MT, Noda A, Sunamori M,Kitajima S. Transcriptional repressor activating transcription factor3protects humanumbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosisthrough down-regulation of p53transcription. J Biol Chem.2002Oct11;277(41):39025-34.
    21. Fan F, Jin S, Amundson SA, Tong T, Fan W, Zhao H, Zhu X, Mazzacurati L, Li X,Petrik KL, Fornace AJ Jr, Rajasekaran B, Zhan Q. ATF3induction following DNAdamage is regulated by distinct signaling pathways and over-expression of ATF3proteinsuppresses cells growth. Oncogene.2002Oct24;21(49):7488-96.
    22. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, BolouriH, Aderem A. Systems biology approaches identify ATF3as a negative regulator ofToll-like receptor4. Nature.2006May11;441(7090):173-8.
    23. Kawai T, Akira S. TLR signaling. Cell Death Differ.2006;13:816–825.
    24. Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ.Demonstration of inflammation-induced cancer and cancer immunoediting duringprimary tumorigenesis. Proc Natl Acad Sci U S A.2008;105:652–656.
    25. Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesisthrough the adaptor protein MyD88. Science.2007;317:124–127.
    26. Leitner WW, Hwang LN, DeVeer MJ, Zhou A, Silverman RH, Williams BRG,Dubensky TW,Ying H, Restifo NP. Alphavirus-based DNA vaccine breaksimmunological tolerance by activating innate antiviral pathways. Nature Medicine.2003;9:33–39.
    27. Scheule RK. The role of CpG motifs in immunostimulation and gene therapy. Adv DrugDeliv Rev.2000;44:119–134.
    28. McCluskie MJ, Weeratna RD, Davis HL. The role of CpG in DNA vaccines. SpringerSemin Immunopathol.2000;22:125–132.
    29. Whitmore MM, DeVeer MJ, Edling A, Oates RK, Simons B, Lindner D, WilliamsBRG.Synergistic activation of innate immunity by double-stranded RNA and CpG DNApromotes enhanced antitumour activity. Cancer Res.2004;64:5850–5860.
    30. Whitmore MM, Iparraguirre A, Kubelka L, Weninger W, Hai T, Williams BRG.Negative regulation of TLR-signaling pathways by activating transcription factor-3. JImmunol.2007;179:3622–3630.
    31. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Kennedy K, Hai T, Bolouri H,Aderem A. Systems biology approaches identify ATF3as a negative regulator ofToll-like receptor4. Nature.2006;441:173–178.
    32. Litvak V, Ramsey SA, Rust AG, Zak DE, Kennedy K, Lampano AE, Nykter M,Shmulevich I,Aderem A. Function of C/EBPδ in a regulatory circuit that discriminatesbetween transient andpersistent TLR4-induced signals. Nat Immunol.2009;10:437–443.
    33. Hartman MG, Lu D, Kim ML, Kociba GJ, Shukri T, Buteau J, Wang X, Frankel WL,Guttridge D, Prentki M, Grey ST, Ron D, Hai T. Role for activating transcription factor3in stress-induced beta-cell apoptosis. Mol Cell Biol.2004;24:5721–5732.
    34. Gilchrist M, Henderson WR Jr, Clark AE, Simmons RM, Ye X, Smith KD, Aderem A.Activating transcription factor3is a negative regulator of allergic pulmonaryinflammation. J Exp Med.2008;205:2349–2357.
    35. Khuu CH, Barrozo RB, Hai T, Weinstein SL. Activating transcription factor3(ATF3)represses the expression of CCL4in murine macrophages. Mol Immunol.2007;44:1598–1605.
    36. Rosenberger CM, Clark AE, Treuting PM, Johnson CD, Aderem A. ATF3regulatesMCMV infection in mice by modulating IFN-γ expression in natural killer cells. ProcNatl Acad Sci U S A.2008;105:2544–2549.
    37. Yin X, DeWille JW, Hai T. A potential dichotomous role of ATF3, an adaptive-responsegene, in cancer development. Oncogene.2008;27:2118–2127.
    38. Yin X, DeWille JW, Hai T. A potential dichotomous role of ATF3, an adaptive-responsegene, in cancer development. Oncogene.2008;27:2118–27.
    39. Pelzer AE, Bektic J, Haag P, Berger AP, Pycha A, Sch fer G, Rogatsch H, Horninger W,Bartsch G, Klocker H. The expression of transcription factor activating transcriptionfactor3in the human prostate and its regulation by androgen in prostate cancer. J Urol.2006;175:1517–22.
    40. Janz M, Hummel M, Truss M, Wollert-Wulf B, Mathas S, J hrens K, Hagemeier C,Bommert K, Stein H, D rken D, Bargou RC. Classical Hodgkin lymphoma ischaracterized by high constitutive expression of activating transcription factor3(ATF3),which promotes viability of Hodgkin/Reed-Sternberg cells. Blood.2006;107:2536–9.
    41. Bandyopadhyay S, Wang Y, Zhan R, Pai SK, Watabe M, Iiizumi M, Furuta E, Mohinta S,Liu W, Horita S, Hosobe S, Tsikada T, Miura K, Takano Y, Saito K, Commes T,Piquemal D, Hai T,Watabe K. The tumor metastatis suppressor gene Drg-1down-regulates the expression of activating transcription factor3in prostate cancer.Cancer Res.2006;66:11983–90.
    42. Ishiguro T, Nagawa H, Naito M, Tsuruo T. Inhibitory effect of ATF3antisenseoligonucleotide on ectopic growth of HT29human colon cancer cells. Jpn J Cancer Res.2000;91:833–6.
    43. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL,Ron D.CHOP is implicated in programmed cell death in response to impaired functionof the endoplasmic reticulum. Genes Dev.1998;12:982–95.
    44. Maytin EV, Ubeda M, Lin JC, Habener JF. Stress-inducible transcription factorCHOP/gadd153induces apoptosis in mammalian cells via p38kinase-dependent and-independent mechanisms. Exp Cell Res.2001;267:193–204.
    45. Scott DW, Loo G. Curcumin-induced GADD153gene up-regulation in human coloncancer cells. Carcinogenesis.2004;25:2155–64.
    46. Wolfgang CD, Chen BP, Martindale JL, Holbrook NJ, Hai T. gadd153/Chop10, apotential target gene of the transcriptional repressor ATF3. Mol Cell Biol.1997;17:6700–07.
    47. Wu X, Nguyen BC, Dziunycz P, Chang S, Brooks Y, Lefort K, Hofbauer GF, DottoGP.Opposing roles for calcineurin and ATF3in squamous skin cancer. Nature.2010May20;465(7296):368-72.
    48. Hagiya K, Yasunaga J, Satou Y, Ohshima K, Matsuoka M. ATF3, an HTLV-1bZipfactor binding protein, promotes proliferation of adult T-cell leukemia cellsRetrovirology.2011Mar17;8:19.
    49. Bottone FG Jr, Martinez JM, Collins JB, Afshari CA, Eling TE. Gene modulation by thecyclooxygenase inhibitor, sulindac sulfide, in human colorectal carcinoma cells:possible link to apoptosis. J Biol Chem.2003;278:25790–801.
    50. Huang X, Li X, Guo B. KLF6induces apoptosis in prostate cancer cells throughup-regulation of ATF3. J Biol Chem.2008;283:29795–801.
    51. Bottone FG Jr, Moon Y, Kim JS, Alston-Mills B, Ishibashi M, Eling TE. Theanti-invasive activity of cyclooxygenase inhibitors is regulated by the transcriptionfactor ATF3(activating transcription factor3). Mol Cancer Ther.2005;4:693–703.
    52. Syed V, Mukherjee K, Lyons-Weiler J, Lau KM, Mashima T, Tsuruo T, Ho SM.Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2as putative antitumorigenic,progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene.2005;24:1774–87.
    53. Kang Y, Chen CR, Massague J. A self-enabling TGFbeta response coupled to stresssignaling:Smad engages stress response factor ATF3for Id1repression in epithelial cells.Mol Cell.2003;11:915–26.
    54. Ling MT, Wang X, Zhang X, Wong YC. The multiple roles of Id-1in cancerprogression.Differentiation.2006;74:481–7.
    55. Yan C, Jamaluddin MS, Aggarwal B, Myers J, Boyd DD. Gene expression profilingidentifies activating transcription factor3as a novel contributor to the proapoptoticeffect of curcumin. Mol Cancer Ther.2005;4:233–41.
    56. Yamaguchi K, Lee SH, Kim JS, Wimalasena J, Kitajima S, Baek SJ. Activatingtranscription factor3and early growth response1are the novel targets of LY294002in aphosphatidylinositol3-kinase-independent pathway. Cancer Res.2006;66:2376–84.
    57. Wei S, Wang H, Lu C, Malmut S, Zhang J, Ren S, Yu G, Wang W, Tang DD, Yan C.TheActivating Transcription Factor3Protein Suppresses the Oncogenic Function of Mutantp53Proteins. J Biol Chem.2014Mar28;289(13):8947-59.
    58. Wang A, Arantes S, Conti C, McArthur M, Aldaz CM, MacLeod MC. Epidermalhyperplasia and oral carcinoma in mice overexpressing the transcription factor ATF3inbasal epithelial cells. Mol Carcinog.2007;46:476–87.
    59. Wang A, Arantes S, Yan L, Kiguchi K, McArthur MJ, Sahin A, Thames HD, Aldaz CM,Macleod MC. The transcription factor ATF3acts as an oncogene in mouse mammarytumorigenesis. BMC Cancer.2008;8:268.
    60. Hartman MG, Lu D, Kim ML, Kociba GJ, Shukri T, Buteau J, Wang X, Frankel WL,Guttridge D, Prentki M, Grey ST, Ron D, Hai T. Role for activating transcription factor3in stress-induced beta-cell apoptosis. Mol Cell Biol.2004;24:5721–32.
    61. Li D, Yin X, Zmuda EJ, Wolford CC, Dong X, White MF, Hai T. The repression of IRS2gene by ATF3, a stress-inducible gene, contributes to pancreatic beta-cell apoptosis.Diabetes.2008;57:635–44.
    62. Dearth RK, Cui X, Kim HJ, Hadsell DL, Lee AV. Oncogenic transformation by thesignaling adaptor proteins insulin receptor substrate (IRS)-1and IRS-2. Cell Cycle.2007;6:705–13.
    63. Lu D, Wolfgang CD, Hai T. Activating transcription factor3, a stress-inducible gene,suppresses Ras-stimulated tumorigenesis. J Biol Chem.2006;281:10473–81.
    64. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1: polymorphism, aberrantsplicing and cancer risk. Oncogene.2006;25:1620–8.
    1. Rho O, Kim DJ, Kiguchi K, Digiovanni J.Growth factor signaling pathways as targetsfor prevention of epithelial carcinogenesis.Mol Carcinog.2011Apr;50(4):264-79.
    2. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol CellBiol.2001;2(2):127–37.
    3. Nicholson RI, Hutcheson IR, Harper ME, Knowlden JM, Barrow D, McClelland RA,Jones HE, Wakeling AE, Gee JM. Modulation of epidermal growth factor receptor inendocrine-resistant, oestrogen receptor-positive breast cancer. Endocr Relat Cancer.2001;8(3):175–82.
    4. Thompson EJ, MacGowan J, Young MR, Colburn N, Bowden GT. A dominant negativec-junspecifically blocks okadaic acid-induced skin tumor promotion. Cancer Res.2002;62(11):3044–7.
    5. DiGiovanni J. Multistage carcinogenesis in mouse skin. Pharmacol Ther.1992;54(1):63–128.
    6. Kemp CJ. Multistep skin cancer in mice as a model to study the evolution of cancercells. Semin Cancer Biol.2005;15(6):460–73.
    7. Fischer SM, DiGiovanni J. Mechanisms of tumor promotion: epigenetic changesin cellsignaling. Cancer Bul.1995;47:456–63.
    8. Conti CJ, Aldaz CM, O'Connell J, Klein-Szanto AJ, Slaga TJ. Aneuploidy, an earlyevent in mouse skin tumor development. Carcinogenesis.1986;7(11):1845–48.
    9. Iwatsuki M, Mimori K, Yokobori T, et al. Epithelial-mesenchymal transition in cancerdevelopment and its clinical significance. Cancer Sci.2010;101(2):293–9.
    10. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity.Cell.1990;61:203–12.
    11. Aaronson SA. Growth factors and cancer. Science.1991;254:1146–53.
    12. Imamoto A, Beltran L, DiGiovanni J. Evidence of autocrine/paracrine growthstimulation bytransforming growth factor α during the process of skin tumor promotion.Mol Carcinog.1991;4:52–60.
    13. Kiguchi K, Beltran LM, You J, Rho O, DiGiovanni J. Elevation of transforming growthfactoralpha mRNA and protein expression by diverse tumor promoters in SENCARmouse epidermis. Mol Carcinog.1995;12(4):225–35.
    14. Kiguchi K, Beltran L, Rupp T, DiGiovanni J. Altered expression of epidermal growthfactorreceptor ligands in tumor promoter-treated mouse epidermis and in primary mouseskin tumorsinduced by an initiation-promotion protocol. Mol Carcinog.1998;22(2):73–83.
    15. Xian W, Rosenberg MP, DiGiovanni J. Activation of erbB2and c-src in phorbolester-treatedmouse epidermis: possible role in mouse skin tumor promotion. Oncogene.1997;14(12):1435–44.
    16. Xian W, Kiguchi K, Imamoto A, Rupp T, Zilberstein A, DiGiovanni J. Activation of theepidermal growth factor receptor by skin tumor promoters and in skin tumors fromSENCAR mice. Cell Growth Diff.1995;6:1447–55.
    17. Rho O, Beltran LM, Gimenez-Conti IB, DiGiovanni J. Altered expression of theepidermal growth factor receptor and transforming growth factor-alpha duringmultistage skin carcinogenesis in SENCAR mice. Mol Carcinog.1994;11(1):19–28.
    18. Bol D, Kiguchi K, Beltrán L, Rupp T, Moats S, Gimenez-Conti I, Jorcano J, DiGiovanniJ. Severe follicular hyperplasia and spontaneous papilloma formation in transgenic miceexpressing the neu oncogene under the control of the bovine keratin5promoter. MolCarcinog.1998;21(1):2–12.
    19. Casanova ML, Larcher F, Casanova B, Murillas R, Fernández-Ace ero MJ, VillanuevaC, Martínez-Palacio J, Ullrich A, Conti CJ, Jorcano JL. A critical role for ras-mediated,epidermal growth factor receptor-dependent angiogenesis in mouse skin carcinogenesis.Cancer Res.2002;62(12):3402–07.
    20. Kiguchi K, Kitamura T, Moore T, Rumi M, Chang HC, Treece D, Ruffino L, ConnollyK, DiGiovanni J.Dual inhibition of both the epidermal growth factor receptor and erbB2effectively inhibits the promotion of skin tumors during two-stagecarcinogenesis.Cancer Prev Res (Phila).2010Aug;3(8):940-52.
    21. El-Abaseri TB, Putta S, Hansen LA. Ultraviolet irradiation induces keratinocyteproliferation and epidermal hyperplasia through the activation of the epidermal growthfactor receptor.Carcinogenesis.2006;27(2):225–31.
    22. Madson JG, Lynch DT, Tinkum KL, Putta SK, Hansen LA. Erbb2regulatesinflammation andproliferation in the skin after ultraviolet irradiation. Am J Pathol.2006;169(4):1402–14.
    23. Han CY, Lim SC, Choi HS, Kang KW. Induction of ErbB2by ultraviolet A irradiation:potential role in malignant transformation of keratinocytes. Cancer Sci.2008;99(3):502–9.
    24. Madson JG, Lynch DT, Svoboda J, Ophardt R, Yanagida J, Putta SK, Bowles A,Trempus CS, Tennant RW, Hansen LA. Erbb2suppresses DNA damage-inducedcheckpoint activation and UV-induced mouse skin tumorigenesis. Am J Pathol.2009;174(6):2357–66.
    25. Song JI, Grandis JR. STAT signaling in head and neck cancer. Oncogene.2000;19(21):2489–95.
    26. Berclaz G, Altermatt HJ, Rohrbach V, Siragusa A, Dreher E, Smith PD. EGFRdependentexpression of STAT3(but not STAT1) in breast cancer. Int J Oncol.2001;19(6):1155–60.
    27. Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, Cox CE, Falcone R,Fairclough R, Parsons S, Laudano A, Gazit A, Levitzki A, Kraker A, Jove R.Constitutive activation of Stat3by the Src and JAK tyrosine kinases participates ingrowth regulation of human breast carcinoma cells. Oncogene.2001;20(20):2499–513.
    28. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH,Pollak M. Plasma insulin-like growth factor-I and prostate cancer risk: a prospectivestudy. Science.1998;279:563–6.
    29. Peyrat JP, Bonneterre J, Hecquet B, Vennin P, Louchez MM, Fournier C, Lefebvre J,Demaille A. Plasma insulin-like growth factor-1(IGF-1) concentrations in human breastcancer. Eur J Cancer.1993;29A(4):492–7.
    30. Turner BC, Haffty BG, Narayanan L, Yuan J, Havre PA, Gumbs AA, Kaplan L, BurgaudJL, Carter D, Baserga R, Glazer PM. Insulin-like growth factor-I receptoroverexpression mediates cellular radioresistance and local breast cancer recurrence afterlumpectomy and radiation. Cancer Res.1997;57(15):3079–83.
    31. Pollak M. Insulin-like growth factor physiology and cancer risk. Eur J Cancer.2000;36(10):1224–8.
    32. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins:biological actions. Endocrine Rev.1995;16:3–34.
    33. Werner H, Le Roith D. New concepts in regulation and function of the insulin-likegrowth factors: implications for understanding normal growth and neoplasia. Cell MolLife Sci.2000;57(6):932–42.
    34. DiGiovanni J, Bol DK, Wilker E, Beltrán L, Carbajal S, Moats S, Ramirez A, Jorcano J,Kiguchi K. Constitutive expression of insulin-like growth factor-1in epidermal basalcells of transgenic mice leads to spontaneous tumor promotion. Cancer Res.2000;60(6):1561–70.
    35. Wilker E, Lu J, Rho O, Carbajal S, Beltran L, DiGiovanni J. Role of PI3K/Akt signalingin insulinlike growth factor-1(IGF-1) skin tumor promotion. Mol Carcinog.2005;44(2):137–45.
    36. Bol D, Kiguchi K, Gimenez-Conti I, Rupp T, DiGiovanni J. Overexpression ofinsulin-like growth factor-1induces hyperplasia, dermal abnormalities, and spontaneoustumor formation in transgenic mice. Oncogene.1997;14:1725–34.
    37. Moore T, Carbajal S, Beltran L, Perkins SN, Yakar S, Leroith D, Hursting SD,Digiovanni J. Reduced susceptibility to two-stage skin carcinogenesis in mice with lowcirculating IGF-1levels. Cancer Res.2008;68(15):3680–8.
    38. Gherardi E, Sandin S, Petoukhov MV, Finch J, Youles ME, Ofverstedt LG, Miguel RN,Blundell TL, Vande Woude GF, Skoglund U, Svergun DI. Structural basis of hepatocytegrowth factor/scatter factor and MET signalling. Proc Natl Acad Sci U S A.2006;103(11):4046–51.
    39. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motilityand more. Nat Rev Mol Cell Biol.2003;4(12):915–25.
    40. Bertotti A, Burbridge MF, Gastaldi S, Galimi F, Torti D, Medico E, Giordano S, Corso S,Rolland-Valognes G, Lockhart BP, Hickman JA, Comoglio PM, Trusolino L. Only asubset of met-activated pathways are required to sustain oncogene addiction. Sci Signal.2009;2(102):er11.
    41. Nakamura Y, Matsubara D, Goto A, Ota S, Sachiko O, Ishikawa S, Aburatani H,Miyazawa K, Fukayama M, Niki T.. Constitutive activation of c-Met is correlated withc-Met overexpression and dependent on cell-matrix adhesion in lung adenocarcinomacell lines. Cancer Sci.2008;99(1):14–22.
    42. Noonan FP, Otsuka T, Bang S, Anver MR, Merlino G. Accelerated ultravioletradiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenicmice. Cancer Res.2000;60(14):3738–43.
    43. Mildner M, Eckhart L, Lengauer B, Tschachler E. Hepatocyte growth factor/scatterfactor inhibits UVB-induced apoptosis of human keratinocytes but not ofkeratinocyte-derived cell lines via the phosphatidylinositol3-kinase/AKT pathway. JBiol Chem.2002;277(16):14146–52.
    44. Mazzone M, Basilico C, Cavassa S, Pennacchietti S, Risio M, Naldini L, Comoglio PM,Michieli P. An uncleavable form of pro-scatter factor suppresses tumor growth anddissemination in mice. J Clin Invest.2004;114(10):1418–32.
    45. Engelman JA1, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N,Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, MokT, Lee C, Johnson BE, Cantley LC, J nne PA. MET amplification leads to gefitinibresistance in lung cancer by activating ERBB3signaling. Science.2007;316(5827):1039–43.
    46. Lai AZ, Abella JV, Park M. Crosstalk in Met receptor oncogenesis. Trends Cell Biol.2009;19(10):542–51.
    47. Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochem BiophysActa.1996;1287:121–49.
    48. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model fortargetedtherapy. Clin Cancer Res.2006;12(18):5268–72.
    49. Yeatman TJ. A renaissance for SRC. Nat Rev Cancer.2004;4(6):470–80.
    50. Summy JM, Gallick GE. Treatment for advanced tumors: SRC reclaims center stage.Clin Cancer Res.2006;12(5):1398–1401.
    51. Courtneidge SA. Role of Src in signal transduction pathways. The Jubilee Lecture.Biochem Soc Trans.2002;30(2):11–17.
    52. Wheeler DL, Iida M, Dunn EF. The role of Src in solid tumors. Oncologist.2009;14(7):667–78.
    53. Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis.CancerMetastasis Rev.2003;22(4):337–58.
    54. Matsumoto T, Jiang J, Kiguchi K, Ruffino L, Carbajal S, Beltrán L, Bol DK, RosenbergMP, DiGiovanni J. Targeted expression of c-Src in epidermal basal cells leads toenhanced skin tumor promotion, malignant progression, and metastasis. CancerRes.2003;63(16):4819–28.
    55. Matsumoto T, Kiguchi K, Jiang J, Carbajal S, Ruffino L, Beltrán L, Wang XJ, Roop DR,DiGiovanni J. Development of transgenic mice that inducibly express an active form ofc-Src in the epidermis. Mol Carcinog.2004;40(4):189–200.
    56. Matsumoto T, Jiang J, Kiguchi K, Carbajal S, Rho O, Gimenez-Conti I, Beltrán L,DiGiovanni J. Overexpression of a constitutively active form of c-src in skin epidermisincreases sensitivity to tumor promotion by12-O-tetradecanoylphorbol-13-acetate. MolCarcinog.2002;33(3):146–55.
    57. Levy DE, Lee CK. What does Stat3do? J Clin Invest.2002;109(9):1143–8.
    58. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through theJAK/STATpathway, recent advances and future challenges. Gene.2002;285(1–2):1–24.
    59. Haura EB, Turkson J, Jove R. Mechanisms of disease: Insights into the emerging role ofsignaltransducers and activators of transcription in cancer. Nat Clin Pract Oncol.2005;2(6):315–24.
    60. Leslie K1, Lang C, Devgan G, Azare J, Berishaj M, Gerald W, Kim YB, Paz K, DarnellJE, Albanese C, Sakamaki T, Pestell R, Bromberg J. Cyclin D1is transcriptionallyregulated by and required for transformation by activated signal transducer and activatorof transcription3. Cancer Res.2006;66(5):2544–52.
    61. Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M, Nam S, Eweis I,Diaz N, Sullivan D, Yoder S, Enkemann S, Eschrich S, Lee JH, Beam CA, Cheng J,Minton S, Muro-Cacho CA, Jove R. Persistent activation of Stat3signaling inducessurvivin gene expression and confers resistance to apoptosis in human breast cancercells. Clin Cancer Res.2006;12(1):11–9.
    62. Alvarez JV, Febbo PG, Ramaswamy S, Loda M, Richardson A, Frank DA. Identificationof agenetic signature of activated signal transducer and activator of transcription3inhuman tumors.Cancer Res.2005;65(12):5054–62.
    63. Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, Huang S. Stat3activationregulates the expression of matrix metalloproteinase-2and tumor invasion andmetastasis. Oncogene.2004;23(20):3550–3560.
    64. Itoh M, Murata T, Suzuki T, Shindoh M, Nakajima K, Imai K, Yoshida K. Requirementof STAT3activation for maximal collagenase-1(MMP-1) induction by epidermalgrowth factor and malignant characteristics in T24bladder cancer cells. Oncogene.2006;25(8):1195–204.
    65. Jing N, Tweardy DJ. Targeting Stat3in cancer therapy. Anticancer Drugs.2005;16(6):601–7.
    66. Sano S, Chan KS, Kira M, Kataoka K, Takagi S, Tarutani M, Itami S, Kiguchi K, YokoiM, Sugasawa K, Mori T, Hanaoka F, Takeda J, DiGiovanni J. Signal transducer andactivator of transcription3is a key regulator of keratinocyte survival and proliferationfollowing UV irradiation. Cancer Res.2005;65(13):5720–9
    67. Sano S, Chan KS, Digiovanni J. Impact of Stat3activation upon skin biology: Adichotomy of its role between homeostasis and diseases. J Dermatol Sci.2008;50(1):1-14.
    68. Kim DJ, Chan KS, Sano S, Digiovanni J. Signal transducer and activator oftranscription3(Stat3) in epithelial carcinogenesis. Mol Carcinog.2007;46(8):725–31.
    69. Chan KS, Sano S, Kiguchi K, Anders J, Komazawa N, Takeda J, DiGiovanni J.Disruption of Stat3reveals a critical role in both the initiation and the promotion stagesof epithelial carcinogenesis. J Clin Invest.2004;114(5):720–8.
    70. Kim DJ, Kataoka K, Rao D, Kiguchi K, Cotsarelis G, Digiovanni J. Targeted disruptionof Stat3reveals a major role for follicular stem cells in skin tumor initiation. Cancer Res.2009;69(19):7587–94.
    71. Kataoka K, Kim DJ, Carbajal S, Clifford JL, DiGiovanni J. Stage-specific disruption ofStat3demonstrates a direct requirement during both the initiation and promotion stagesof mouse skintumorigenesis. Carcinogenesis.2008;29(6):1108–14.
    72. Chan KS, Sano S, Kataoka K, et al. Forced expression of a constitutively active form ofStat3in mouse epidermis enhances malignant progression of skin tumors induced bytwo-stagecarcinogenesis. Oncogene.2008;27(8):1087–94.
    73. Ahsan H, Aziz MH, Ahmad N. Ultraviolet B exposure activates Stat3signaling viaphosphorylation at tyrosine705in skin of SKH1hairless mouse: a target for themanagement ofskin cancer? Biochem Biophys Res Commun.2005;333(1):241–6.
    74. Aziz MH, Manoharan HT, Verma AK. Protein kinase C epsilon, which sensitizes skinto sun'sUV radiation-induced cutaneous damage and development of squamous cellcarcinomas,associates with Stat3. Cancer Res.2007;67(3):1385–94.
    75. Barton BE, Karras JG, Murphy TF, Barton A, Huang HF. Signal transducer and activatoroftranscription3(STAT3) activation in prostate cancer: Direct STAT3inhibition inducesapoptosisin prostate cancer lines. Mol Cancer Ther.2004;3(1):11–20.
    76. Chan KS, Sano S, Kiguchi K, et al. Disruption of Stat3reveals a critical role in both theinitiation and the promotion stages of epithelial carcinogenesis. J Clin Invest.2004;114(5):720–8.
    77. Nam S, Buettner R, Turkson J, et al. Indirubin derivatives inhibit Stat3signaling andinduceapoptosis in human cancer cells. Proc Natl Acad Sci U S A.2005;102(17):5998–6003.
    78. Turkson J, Zhang S, Mora LB, Burns A, Sebti S, Jove R. A novel platinum compoundinhibitsconstitutive Stat3signaling and induces cell cycle arrest and apoptosis ofmalignant cells. J BiolChem.2005;280(38):32979–88.
    79. Turkson J. STAT proteins as novel targets for cancer drug discovery. Expert Opin TherTargets.2004;8(5):409–22.
    80. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention andtherapy ofcancer. Biochem Pharmacol.2006;71(10):1397–1421.
    81. Bharti AC, Donato N, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutiveandIL-6-inducible STAT3phosphorylation in human multiple myeloma cells. JImmunol.2003;171(7):3863–71.
    82. Masuda M, Suzui M, Weinstein IB. Effects of epigallocatechin-3-gallate on growth,epidermalgrowth factor receptor signaling pathways, gene expression, andchemosensitivity in human headand neck squamous cell carcinoma cell lines. ClinCancer Res.2001;7(12):4220–9.
    83. Wung BS, Hsu MC, Wu CC, Hsieh CW. Resveratrol suppresses IL-6-induced ICAM-1geneexpression in endothelial cells: effects on the inhibition of STAT3phosphorylation.Life Sci.2005;78(4):389–97.
    84. Ghosh AK, Kay NE, Secreto CR, Shanafelt TD. Curcumin inhibits prosurvivalpathways inchronic lymphocytic leukemia B cells and may overcome their stromalprotection in combinationwith EGCG. Clin Cancer Res.2009;15(4):1250–8.
    85. Huang MT, Ma W, Lu YP, et al. Effects of curcumin, demethoxycurcumin,bisdemethoxycurcumin and tetrahydrocurcumin on12-O-tetradecanoylphorbol-13-acetateinducedtumor promotion. Carcinogenesis.1995;16(10):2493–7.
    86. Kapadia GJ, Azuine MA, Tokuda H, et al. Chemopreventive effect of resveratrol,sesamol,sesame oil and sunflower oil in the Epstein-Barr virus early antigen activationassay and themouse skin two-stage carcinogenesis. Pharmacol Res.2002;45(6):499–505.
    87. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell.2007;129(7):1261–74.
    88. Crowell JA, Steele VE, Fay JR. Targeting the AKT protein kinase for cancerchemoprevention. Mol Cancer Ther.2007;6(8):2139–2148.
    89. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth.Nature.2006;441(7092):424–30.
    90. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B.SIN1/MIP1maintains rictor-mTOR complex integrity and regulates Aktphosphorylation and substrate specificity. Cell.2006;127(1):125–37.
    91. Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway asanintegrator of multiple inputs during tumorigenesis. Nat Rev Cancer.2006;6(3):184–92.
    92. Segrelles C, Ruiz S, Perez P, Murga C, Santos M, Budunova IV, Martínez J, Larcher F,Slaga TJ, Gutkind JS, Jorcano JL, Paramio JM. Functional roles of Akt signaling inmouse skin tumorigenesis.Oncogene.2002;21(1):53–64.
    93. Segrelles C, Moral M, Lara MF, Ruiz S, Santos M, Leis H, García-Escudero R,Martínez-Cruz AB, Martínez-Palacio J, Hernández P, Ballestín C, Paramio JM.Molecular determinants of Akt-induced keratinocyte transformation. Oncogene.2006;25(8):1174–85.
    94. Lu J, Rho O, Wilker E, Beltran L, DiGiovanni J. Activation of Epidermal Akt byDiverse Mouse Skin Tumor Promotion. Molecular Cancer Res.2007;(5):1342–52.
    95. Segrelles C, Lu J, Hammann B, et al. Deregulated activity of Akt in basal cells ofstratifiedepithelia induces spotaneous tumors and heightened sensitivity to skincarcinogenesis. CancerRes.2007;(67):10879–88.
    96. Corradetti MN, Guan KL. Upstream of the mammalian target of rapamycin: do all roadspassthrough mTOR? Oncogene.2006;25(48):6347–60.
    97. Amornphimoltham P, Patel V, Sodhi A, et al. Mammalian target of rapamycin, amolecular target in squamous cell carcinomas of the head and neck. Cancer Res.2005;65(21):9953–61.
    98. Kopelovich L, Fay JR, Sigman CC, Crowell JA. The mammalian target of rapamycinpathway as a potential target for cancer chemoprevention. Cancer EpidemiolBiomarkers Prev.2007;16(7):1330–40.
    99. Yoon S, Seger R. The extracellular signal-regulated kinase: multiple substrates regulatediverse cellular functions. Growth Factors.2006;24(1):21–44.
    100.Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. TrendsBiochem Sci.2006;31(5):268–75.
    101.Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer.Oncogene.2007;26(22):3279–90.
    102.Scholl FA, Dumesic PA, Barragan DI, Harada K, Bissonauth V, Charron J, Khavari PA.Mek1/2MAPK kinases are essential for Mammalian development, homeostasis, andRaf-induced hyperplasia. Dev Cell.2007;12(4):615–29.
    103.Scholl FA, Dumesic PA, Barragan DI, Harada K, Charron J, Khavari PA. Selective rolefor Mek1but not Mek2in the induction of epidermal neoplasia. Cancer Res.2009;69(9):3772–8.
    104.Bourcier C1, Jacquel A, Hess J, Peyrottes I, Angel P, Hofman P, Auberger P,Pouysségur J, Pagès G. p44mitogen-activated protein kinase (extracellularsignalregulated kinase1)-dependent signaling contributes to epithelial skincarcinogenesis. Cancer Res.2006;66(5):2700–7.
    105.Tarutani M, Cai T, Dajee M, Khavari PA. Inducible activation of Ras and Raf in adultepidermis.Cancer Res.2003;63(2):319–23.
    106.Scholl FA, Dumesic PA, Khavari PA. Mek1alters epidermal growth and differentiation.Cancer Res.2004;64(17):6035–40.
    107.Feith DJ, Bol DK, Carboni JM, Lynch MJ, Sass-Kuhn S, Shoop PL, Shantz LM.Induction of ornithine decarboxylase activity is a necessary step for mitogen-activatedprotein kinase kinase-induced skin tumorigenesis. Cancer Res.2005;65(2):572–8.
    108.Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis inmouse skin: fundamentals and applications. Nat Protoc.2009;4(9):1350–62.
    109.Shaulian E, Karin M. AP-1as a regulator of cell life and death. Nat Cell Biol.2002;4(5):E131–6.
    110.Cooper SJ, MacGowan J, Ranger-Moore J, Young MR, Colburn NH, Bowden GT.Expression of dominant negative c-jun inhibits ultraviolet B-induced squamous cellcarcinoma number and size in an SKH-1hairless mouse model. Mol Cancer Res.2003;1(11):848–54.
    111.Wei Q, Jiang H, Matthews CP, Colburn NH. Sulfiredoxin is an AP-1target gene that isrequired for transformation and shows elevated expression in human skin malignancies.Proc Natl Acad Sci U S A.2008;105(50):19738–43.
    112.Matthews CP, Birkholz AM, Baker AR, Perella CM, Beck GR Jr, Young MR, ColburnNH.. Dominant-negative activator protein1(TAM67) targets cyclooxygenase-2andosteopontin under conditions in which it specifically inhibits tumorigenesis. Cancer Res.2007;67(6):2430–38.
    113.Dhar A, Hu J, Reeves R, Resar LM, Colburn NH. Dominant-negative c-Jun (TAM67)targetgenes: HMGA1is required for tumor promoter-induced transformation. Oncogene.2004;23(25):4466–76.
    114.Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer.2003;3(1):11–22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700