用户名: 密码: 验证码:
共形相控阵天线分析综合技术与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共形相控阵天线作为更加广义的相控阵天线形式,是平面相控阵天线在概念上的延拓与发展。其天线阵面与载体表面相贴合,不仅可以有效增加口径面积、扩展扫描角度范围,而且不会影响载体本身的气动-隐身一体化外形设计,有效弥补了传统平面相控阵的固有缺陷,同时迎合了现代雷达等电子系统的发展需求。论文围绕共形相控阵天线的精确数值分析方法、方向图分析与综合、阵列互耦与校正、阵列极化分析与优化,以及共形相控阵原理样机研制几个方面系统深入地进行了理论研究,数值分析和实验验证。
     论文首先针对微带共形阵列天线的精确电磁分析展开研究,以推导的电磁场体面结合积分方程为基础,研究了预修正快速傅里叶变换(P-FFT)方法在求解共形天线辐射问题中的应用,同时针对同轴探针馈电的微带共形天线结构,提出了“长端口同轴馈电”模型,提高了P-FFT对该类结构天线的辐射场以及馈电端口S参数的计算精度。实现了P-FFT方法对孤立微带共形天线、共形阵中微带天线单元以及共形微带天线阵列的分析。
     针对共形阵列的单一极化分量方向图综合问题,提出了“改进的口径投影法(IAPM)”,实现了共形阵低副瓣大角度扫描波束方向图的综合。同时提出了“增强型交错映射算法(EAPM)”,加快了共形阵列综合迭代优化收敛速度。另外,将IAPM和EAPM做了有机结合,提出了预条件增强型交错映射算法(P-EAPM),其将IAPM综合得到的阵元激励作为EAPM进一步迭代优化的初始值,很好地克服了该类迭代优化算法在综合共形阵列中的局部最优陷阱现象。
     针对共形阵列天线的互耦分析和校正问题,完成了互耦条件下单极化共形阵列的数学建模。改进了基于阵元有源方向图的共形阵列互耦提取方法,并且根据共形阵列中各阵元端接负载情况,提出了“结构模式互耦”和“天线模式互耦”的概念。然后分别针对两种互耦提出了有效的校正措施,解决了单极化共形阵中阵元端接非理想匹配负载时的阵列互耦校正问题。
     针对单极化共形阵列的功率方向图综合问题,提出一种动态自适应Meta粒子群优化(ADMPSO)算法。其在传统Meta粒子群优化(MPSO)算法基础上,定义了优势子群和非优子群的概念,并通过植入非优子群裁减、优势子群规模膨胀以及惯性权重自适应更新等机制,实现了优化过程中多子群的自适应动态调整,全面提高了算法性能。利用提出的ADMPSO算法,成功实现了共形阵列三维空间的方向图综合和共形相控阵的可重构多功率方向图设计。
     针对激励限制下的共形阵功率方向图综合问题,提出一种改进的多目标粒子群优化(IMOPSO)算法。其将共形阵列在激励限制条件下的综合命题,转化为激励优化和功率方向图赋形的多目标优化命题。IMOPSO算法通过引入粒子聚焦距离优选、非支配解集修剪,以及新生粒子微扰复制等机制,显著提高了原粒子群优化算法所构建Pareto解集的优越性和散布性。采用IMOPSO算法成功获得了微带共形阵列在不同激励约束条件下的最优赋形方向图集,为规划共形相控阵的激励限制提供了极有价值的参考。
     针对全极化共形阵列天线的极化方向图综合问题,建立了由正交双极化阵元构筑的全极化共形阵列(FPCAA)数学模型,提出了基于FPCAA的考虑完备极化分量的互耦分析和修正方法。基于引入的“完备正交极化基”概念,提出了用于FPCAA方向图-极化状态联合综合的“广义口径投影法(GIAPM)”和“广义增强交错映射法(GEAPM)”。同时,通过建立FPCAA方向图-极化联合适应度函数,成功将ADMPSO算法用于了互耦条件下的共形阵列的极化-方向图联合综合。
     最后,基于以上关于共形相控阵的理论和数值分析,研制了“全极化发射数字共形相控阵”(TDBF-FPCPA)实验样机,并进行了相关的实验研究。该TDBF-FPCPA的柱面共形阵列以设计的双极化新型层叠微带天线为辐射阵元,采用构建的矢量方向图测试系统完成了各个阵元的完备极化矢量方向图测量和校正。TDBF-FPCPA的多通道数字发射组件借助DDS完成对馈电信号的精确幅相调整和校准,同时借助辅助的射频数控衰减控制,实现了信号幅度的大动态调整。该TDBF-FPCPA在实验中成功形成了多种极化状态兼多种赋形的数字发射波束,从而验证了论文理论和数值分析的正确性。
As the more general phased array form, conformal phased array (CPA) is theextension and development of the concept for planar phased array. The antennaelements of CPA being arranged on a platform surface not only expands the aperturearea of array and beam scan range, but also is good for the design ofaerodynamic-stealthy shape, which overcomes the inherent drawback of planar arrayand fulfill the development need of the modern electronic system. This paper focus onthe antenna array of CPA that is conformal antenna array (CAA), and make the theoryand experiment research in the accurate analysis of microstrip CAA, the analysis andsynthesis of array, the analysis and calibration for mutual coupling, the analysis andoptimization for polarization, and the design of the CPA. The contents list as follows:
     Firstly, the accurate numerical analysis of microstrip CAA is researched. Based onthe deduced volume-surface integral equation (VSIE), the precorrected-fast Fouriertransform (P-FFT) method and its application in radiation problem for CAA is studied.Besides, aim at coaxial probe feed conformal microstrip antenna, the “long coaxial feedmodel” is proposed, which can improve the precision of calculation for the radiationfield and S parameter, efficiently. Meanwhile, the characters of isolated conformalmicrostrip antenna, the conformal microstrip antenna in CAA, and the whole CAA areanalyzed by P-FFT method, successfully.
     Secondly, aim at the synthesis of CAA for single polarization element, theimproved aperture projection method (IAPM) is proposed, which enhance the ability ofsynthesizing large angle scan beam with low sidelobe. Meanwhile, the enhancedalternating projections method (EAPM) is proposed, and its convergence speed isaccelerated obviously compare with the traditional alternating projections method.What’s more, the precondition-enhanced alternating projections method (P-EAPM) isproposed by combining IAPM with EAPM. In P-EAPM, the element excitationsachieved by IAPM are regard as the initial value for EAPM to do further optimization,which could avoid the algorithm trapping in local optimum effectively.
     Thirdly, aim at the analysis and calibration for mutual coupling of CAA, themathematic model for single polarization CAA is built. The mutual coupling analysismethod based on the active element pattern is improved, besides the concepts of the“structure mode mutual coupling” and the “antenna mode mutual coupling” areproposed. Meanwhile, the effective calibration techniques are proposed for two kind ofmutual coupling. And the mutual coupling of the CAA, in which the elements are notterminated matched loads, is calibrated.
     Fourthly, for the purpose of synthesizing power pattern for single polarizationCAA, the adaptive dynamic meta particle swarm optimization (ADMPSO) is proposed. In ADMPSO, the dominated subgroup and nondominated subgroup are defined on thebasis of traditional meta particle swarm. Meanwhile, the adaptive dynamic modulatingfor multiple-subgroup is realized by introducing the downsizing of nondominatedsubgroup, the dominated subgroup expansion, and the updating for the adaptive inertiaweights, which improve the optimization performance of ADMPSO. Furthermore, theADMPSO algorithm is applied to synthesizing3D pattern and multiple-pattern inmicrostrip CAA, respectively.
     Fifthly, for the purpose of power pattern synthesis for single polarization CAAwith the excitations restricted, the improved multi-objective particle swarm optimization(IMOPSO) algorithm is proposed. By applying IMOPSO, the original problem can betransformed into the multi-objective optimization problem, in which the excitationoptimization and power pattern synthesis are considered at the same time. Byintroducing the particle focused distance selection, the nondominated solution setcutting, and the new particles copy mechanism, the performance of IMOPSO isimproved significantly, compare with traditional MOPSO algorithm. Moreover, the setof power patterns with different excitation restriction for microstrip CAA is achieved byIMOPSO, which offer the valuable reference for designing feed strategy of CPA.
     Sixthly, aim at the synthesis of full polarization conformal antenna array (FPCAA),the mathematic model of FPCAA which employs dual polarized antennas as radiators isbuilt, with the mutual coupling analysis and calibration techniques for FPCAA proposed.Meanwhile, based on the introduced “complete orthogonal polarization bases” concept,the generalized improved aperture projection method (GIAPM) and generalizedenhanced alternating projections method (GEAPM) are proposed forpattern-polarization synthesis of FPCAA. What’s more, by building thepattern-polarization fitness function, the ADMPSO is introduced to synthesize FPCAAwith mutual coupling considered.
     Lastly, based on the theory research of CAA described above, the transmit digitalbeam-forming full polarization conformal phased array (TDBF-FPCPA) is designed andmanufactured, with the corresponding experiments done. The cylinder CAA of theTDBF-FPCPA employs the fabricated new dual polarized stacked microstrip antennasas radiators, and the full polarization element pattern of every element is measured bybuilt vector pattern measurement system. The multi-channel digital transmit module ofthe TDBF-FPCPA is based on the direct digital frequency synthesis (DDS), and it cancontrol the amplitude and phase of signal in every channel accurately. Meanwhile, thelarge dynamic amplitude control is gotten by the RF numerical control attenuator.Furthermore, the TDBF-FPCPA transmits several kinds of shaped pattern with differentpolarization state in experiment successfully, which demonstrates the accuracy of thetheory and numerical analysis for CAA in practice.
引文
[1]束咸荣,何炳发,高铁.相控阵雷达天线[M].北京:国防工业出版社,2007.
    [2]柴舜连.毫米波介质共形顶相控阵研究[D].长沙:国防科学技术大学,1998.
    [3]张光义.共形相控阵天线的应用与关键技术[J].中国电子科学研究院学报.2010,5(04):331-336.
    [4]张光义,赵玉结.相控阵雷达技术[M].北京:电子工业出版社,2006.
    [5]何庆强.共形辐射单元及共形阵列研究[D].成都:电子科技大学,2008.
    [6] Wong K. Design of Nonplanar Microstrip Antennas and Transmission[M]. NewYork: Wiley-interscience publication,1999.
    [7]肖科.体面结合积分方程及快速算法在复杂电磁问题中的分析与应用[D].长沙:国防科学技术大学,2011.
    [8] Dolph C L. A Current Distribution for Broadside Arrays Which Optimizes theRelationship Between Beam Width and Side-Lobe Level[J]. Proceedings of the I.R.E.and Waves and Electrons.1946,34:335-345.
    [9] Taylor T T. Design of circular apertures for narrow beamwidth and low[J].Proceedings of the I.R.E. and Waves and Electrons.1960:17-22.
    [10] Elliott R S. Design of Line Source Antennas for Narrow Beamwidth andAsymmetric Low Sidelobes[J]. IEEE Trans. Transactions on Antennas and Propagation.1975,23:100-107.
    [11] Elliott R S. Design of Line Source Antennas for Difference atterns with Sidelobesof Individually Arbitrary Heights[J]. IEEE Trans. Transactions on Antennas andPropagation.1976,24:310-316.
    [12] Orchard H J, Elliott R S, Stern G J. Optimising the synthesis of shaped beamantenna patterns[J]. IEE Proceedings.1985,132(1):63-68.
    [13] Taylor T T. Design of Line Source Antennas for Narrow Beamwidth and LowSide-lobes[J]. IEEE Transactions on Antennas and Propagation.1955,3:16-28.
    [14]许峰,赵玉洁.新一代预警飞机“费尔康”[J].现代兵器.1994,1:24-25.
    [15] Hansen R C. Conformal antenna array[M].1982.
    [16] Hansen R C. Phased Array Antennas[M]. New York: Wiley-IntersciencePubilcation,2009.
    [17] Page H. Radiation Resistance of Ring Aerials[J]. Wireless Eng.1948,25.
    [18] Knudsen H L. The Necessary Number of Elements in a Directional Ring Aerial[J].Jr. of Applied Physics.1951,22.
    [19] Bailin L L. The radiation field produced by a slot in a large circular cylinder[J].IRE Transactions on Antennas and Propagation.1950:128-137.
    [20] Bailin L L, Silver S. Exterior electromagnetic boundary valus problems forspheres and cones[J]. IRE Transactions on Antennas and Propagation.1956,4:5-16.
    [21] Kummer W H, Villeneuve A T, Howard J E, et al. Integated ConformalArrays[R].,1970.
    [22] Mukger A D, Vaughn G, Provencher J H, et al. Conical Array Studies[J]. IEEETransactions on Antennas and Propagation.1974,22(1):35-43.
    [23]刘俊.共形阵低副瓣方向图综合方法研究[D].西安:西安电子科技大学,2009.
    [24] Pathak P H. A Uniform GTD Solution for the Raditaton for Surfaces on ConvexSurface[J]. IEEE Transactions on Antennas and Propagation.1981,29:609-621.
    [25] Pathak P H. Ray Analysis of Mutual Couping Between Antenna on a ConvexSurface[J]. IEEE Transactions on Antennas and Propagation.1981,29:911-922.
    [26] Wills R W. Mutual Coupling and Far Field Raditon from Waveguide AntennaElement on Conformal Surfaces[C].1987.
    [27] Jha R M. A Novel Ray Tracing on General Paraboloids of Revolution for UTDApplications[J]. IEEE Transactions on Antennas and Propagation.1993,41(7):934-939.
    [28] Jha R M. Surface Ray Trcing on Hybrid Surfaces of Revolution for UTD MutualCoupling Analysis[J]. IEEE Transactions on Antennas and Propagation.1994,42(8):1167-1174.
    [29] Rizk M. Projected aperture synthesis method for the design of conformal arrayantennas[C].1985.
    [30] Chiba I, Kenichi H, Sato S, et al. A projection method providing low sidelobepattern in conformal array antennas[C].1989.
    [31] Chujo W, Konishi Y, Ohtaki Y, et al. Performance of a Spherical Array AntennaFabricated by Vacuum Forming Technique[C].1990.
    [32]陈忠宽.预修正快速傅里叶变换方法在电磁散射分析中的研究及应用[D].长沙:国防科学技术大学,2009.
    [33]肖科.体面结合积分方程及快速算法在复杂电磁问题中的分析与应用[D].长沙:国防科学技术大学,2011.
    [34] Xiao K, Li Y, Zhao F, et al. Analysis of Microstrip Antennas Using VSIEFormulation and P-FFT Method[J]. Applied Computational Electromagnetics SocietyJournal.2011:922-929.
    [35]曾万辉.毫米波共形相控阵天线的优化设计[D].长沙:国防科学技术大学,1995.
    [36] Zhao F, Xiao K, Qi H, et al. Preconditioned alternate projections method tosynthesise conformal array[J]. Electronics Letters.2011,47(13):735-736.
    [37]赵菲,齐会颖,肖科,等.考虑互耦修正的共形天线阵方向图综合研究[J].国防科大学报.2011(6):84-88.
    [38] Zhao F, Qi H, Xiao K, et al. The Experimental Study of Mutual Coupling inConformal Array[J]. Microwave and Optical Technology Letters.2012,54(1):199-203.
    [39]戴振铎,鲁述.电磁理论中的并矢格林函数[M].武汉:武汉大学出版社,1995.
    [40] Volakis J L, Chatterjee A, Kempel L C. Finite Element Method forElectromagnetics: Antennas, Microwave Circuits and Scattering Applications[M]. NewYork: IEEE Press,1998.
    [41] Swanson D J, Hoefer J R. Micorwave Circuit Moldeling with ElectormagneticField Simulation[M]. Boston: Artech House,2004.
    [42]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998.
    [43]高本庆.时域有限查分法[M].北京:国防工业出版社,1995.
    [44]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2002.
    [45] Dey S, Mittra R. A locally conformal finite-difference time-domain(FDTD)algorithm for modeling three-dimensional perfectly conducting objects[J]. IEEEMicrowave and Guided Wave Letters.1997,7(9):273-275.
    [46] Dey S, Mittra R. A modified locally conformal finite-difference time-domainalgorithm for modeling three-dimensional perfectly conducting objects[J]. Microwaveand Optical Technology Letters.1998,17(6):349-352.
    [47] Wang J J. Generilized Moment Methods in Electromagnetics: Formulation andComputer Solution of Integral Equations[M]. New York: John Wiley&Sons,1991.
    [48] Makarov S N. Antenna and EM Modeling With MATLAB[M]. New York: JohnWiley&Sons,2002.
    [49] Kolundzija B M, Djordjevic A R. Electromagnetic Modeling of CompositeMetallic and Dielectric Structures[M]. Boston: Artech House,2002.
    [50] Peterson A F, Ray S L, Mittra R. Computational Methods for Electromagetics[M].New York: IEEE Press,1998.
    [51] Chew W C, Jin J M, Midielssen E, et al. Fast and Efficient Algorithms inComputational Electromagnetics[M]. Boston: Artech House,2001.
    [52] Lu C C. A fast algorithm based on volume integral equation for analysis ofarbitrarily shaped dielectric radomes[J]. IEEE Transactions on Antennas andPropagation.2003,51(9):606-612.
    [53] Sarkar T K, Arvas E. An integral equation approach to the analysis of finitemicrostrip antennas: Volume/surface formulation[J]. IEEE Transactions on Antennasand Propagation.1990,38(3):305-313.
    [54] Lu C C, Chew W C. An integral equation approach to the analysis of finitemicrostrip antennas[J]. IEEE Transactions on Antennas and Propagation.2000,48(12):1866-1868.
    [55] Harrington R F. Field Computation by Method of Moment[M]. New York: JohnWiley&Sons,1992.
    [56] Schaubert D H, Wilton D R, Glisson A W. A tetrahedral modeling method forelectromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies[J].IEEE Antennas and Propagation Magazine.1984,32(1):77-85.
    [57] Rao S M, Wilton D R, Glisson A W. Electromagnetic scattering by surfaces ofarbitrary shape[J]. IEEE Transactions on Antennas and Propagation[J]. IEEETransactions on Antennas and Propagation.1982,30(3):409-418.
    [58] Kashiwa T, Onishi T, Fukai I. Analysis of microstrip antennas on a curved surfaceusing the conformal grids FD-TD method[J]. IEEE Transactions on Antennas andPropagation.1994,42(3):423-427.
    [59] Yu W, Farahat N, Mittra R. Application of FDTD method to conformal patchantennas[J]. IEE Proc.-Microw. Antennas Propag.2001,148(3):218-220.
    [60] Zdemir T O, Volakis J L. Triangular prisms for edge-based vector finite elementanalysis of conformal antennas[J]. IEEE Transactions on Antennas and Propagation.1997,45(5):788-797.
    [61] Chen H, Chen H, Cheng Y. Full-wave analysis of the annular-ring loadedspherical-circular microstrip antenna[J]. IEEE Transactions on Antennas andPropagation.1997,45(11):1581-1583.
    [62] Ertürk V B, Rojas R G. Efficient analysis of input impedance and mutual couplingof microstrip antennas mounted on large coated cylinders[J]. IEEE Transactions onAntennas and Propagation.2003,51(4):739-749.
    [63] He M, Xu X. Closed-form solutions for analysis of cylindrically conformalmicrostrip antennas with arbit[J]. IEEE Transactions on Antennas and Propagation.2005.
    [64] Persson P, Josefsson L. Calculating the mutual coupling between apertures on aconvex circular cylinder using a hybr[J]. IEEE Transactions on Antennas andPropagation.2001,49(4):672-677.
    [65] Josefsson L, Persson P. Conformal Array Antenna Theory and Design[M]. NewYork: Wiley-Interscience Pubilcation,2006.
    [66] Bosiljevac M, Persson P, Sipus Z. Efficient Analysis of Aperture Antennas onGenerally Shaped Convex Multilayered Surfaces Usi[J]. IEEE Transactions onAntennas and Propagation.2009,57(5):1420-1431.
    [67] Kempel L C, Phd P J L V, Sliva R J. Radiation by cavity-backed antennas on acircular cylinder[J]. IEE Proc.-Microw. Antennas Propag.1995,142(3):233-239.
    [68] Volakis J L, Ozdemir T, Jian Gong. Hybrid finite-element methodologies forantennas and scattering[J]. IEEE Transactions on Antennas and Propagation.1997,45(3):493-507.
    [69] Wu C, Kempel L C, Rothwell E J.2003-Mutual coupling between patch antennasrecessed in an elliptic cylinder[J]. IEEE Transactions on Antennas and Propagation.2003,51(9):2489-2492.
    [70] Coifman R, Rokhlin V, Wandzura S. The fast multipole method for the waveequation: A pedestrian prescription[J]. IEEE Antennas And Propagation Magazine.1993,35:7-12.
    [71] Song J M, Lu C C, C C W. Multilevel fast multipole algorithm forelectromagnetic scattering by large complex objects[J]. IEEE Transactions on Antennasand Propagation.1997,45:1488-1493.
    [72]欧阳骏.共形天线及阵列的分析和综合研究[D].成都:电子科技大学,2008.
    [73] Brigham E O. The Fast Fourier Transform and its Application[M]. EnglewoodCliffs: Prentice-Hall,1988.
    [74] Sarkar T K, Arvas E, Rao S M. Application of FFT and the conjugate gradientmethod for the solution of electromagnetic radiation from electrically large and smallconducting bodies[J]. IEEETransactions on Antennas And Propagation.1986,34:635-640.
    [75] Gan H, Chew W C. A discrete BCG-FFT algorithm for solving3Dinhomogeneous scatterer problems[J]. Journal of Electromagnetic Waves AndApplications.1995,9(10):1339-1357.
    [76] Bleszynski E, Bleszynski M, Jaroszewicz T. AIM: Adaptive integral method forsolving large-scale electromagnetic scattering and radiation problems[J]. Radio Science.1996,31:1225-1251.
    [77] Zhang Z Q, Liu Q H. A volume adaptive integral method (VAIM) for3-Dinhomogeneous objects[J]. IEEE Antennas and Wireless Propagation Letters.2001,1(6):102-105.
    [78] Carr M A, Topsakal E, Volakis J, et al. Adaptive integral method applied tomultilayer penetrable scatterers with junctions[C].2001.
    [79] Phillips J R, Kamon M, White J. An FFT-based approach to including nonidealground planes in a fast3-D inductance extraction program[C].1993.
    [80] Yuan N, Yeo T S, Nie X, et al.2006-Analysis of Probe-Fed ConformalMicrostrip[J]. IEEE Transactions on Antennas and Propagation.2006,54(2).
    [81] Xiao K, Li L, Zhao W, et al. Efficient design of finite conformal antenna arraysusing VSIE Formulation and P-FFT Method[C].2010.
    [82] Bucci O M, Elia G D, Romito G. Power synthesis of conformal arrays by ageneralised projection method[J]. IEE Proc.-Microw. Antennas Propag.1995,142(6):467-471.
    [83] Bucci O M. Non-redundant representation of electromagnetic fields over acylinder--an effective source[J]. IEEE Trans. Transactions on Antennas andPropagation.1996.
    [84] Bucci O M, D'Eiia G, Romito G. Optimal synthesis of reconfigurable conformalarrays with phase only control[J]. IEEE Trans. Transactions on Antennas andPropagation.1996.
    [85] Bucci O M, Elia G D. Power synthesis of reconfigurable conformal arrays withphase-only control[J]. IEE Proc.-Microw. Antennas Propag.1998:131-136.
    [86] Dinnchert M. Full polarimetric pattern synthesis for an active conformal array[C].2000.
    [87] Steyskal H. Pattern synthesis for a conformal wing array[C].2002.
    [88]陈云,何炳发.共形相控阵天线方向图综合[J].现代雷达.2008,30(12):78-80.
    [89] Vaskelainen L I. Iterative least-squares synthesis methods for conformal arrayantennas with optimized polarization and frequency properties[J]. IEEE Transactions onAntennas and Propagation.1997,45(7):1179-1185.
    [90] Fletcher P N, Dean M. Least squares pattern synthesis for conformal arrays[J].Electronics Letters.1998,34(25):2363-2365.
    [91] Vaskelainen L I. Phase synthesis of conformal array antennas[J]. IEEETransactions on Antennas and Propagation.2000,48(6):987-991.
    [92] Vaskelainen L I. Constrained Least-Squares Optimization in Conformal ArrayAntenna Synthesis[J]. IEEE Transactions on Antennas and Propagation.2007,55(3).
    [93] Sureau J, Keeping K J. Sidelobe control in cylindrical arrays[J]. IEEETransactions on Antennas and Propagation.1982,30(5):1027-1031.
    [94] Dufort, C E. Pattern synthesis based on aperture array theory[J]. IEEETransactions on Antennas and Propagation.1989,37:1017-1018.
    [95] Olen C A, Compton R T. A numerical pattern synthesis algorithm for arrays[J].IEEE Transactions on Antennas and Propagation.1990,38(10):1666-1676.
    [96] Zhou P Y, Ingram M A. Pattern synthesis for arbitrary arrays using an adptivearray method[J]. IEEE Transactions on Antennas and Propagation.1999,47(5):862-869.
    [97] Ferreira J A, Ares F. Pattern synthesis of conformal arrays by the simulatedannealing technique[J]. Electronics Letters.1997,33(14):1187-1189.
    [98] Ferreira J A, Ares F. Radiation pattern synthesis for conformal antenna arrays[J].Journal of Electromagnetic Waves And Applications.2000,14:473-492.
    [99] Allard R J, Werner D H, Werner P L. Radiation pattern synthesis for arrays ofconformal antennas mounted on arbitrarily-shaped three-dimensionalplatforms usinggenetic algorithms[J]. IEEE Transactions on Antennas and Propagation.2003,51(5):1054-1062.
    [100] Haupt R L, Werner D H. Genetic Algorithms in Electromagnetics[M]. New York:Wiley-interscience publication,2006.
    [101]欧阳骏,杨峰,聂在平,等.遗传算法的载体上共形天线阵列优化[J].电波科学学报.2008,23(2):356-359.
    [102] Xu Z, Li H, Liu Q Z. Pattern synthesis of conformal antenna array by the hybridgenetic algorithm[J]. Progress In Electromagnetics Research.2008(79):75-90.
    [103]崔兵伟,陈客松.运用遗传算法优化共形球面天线阵列[J].中国雷达.2009(02):46-49.
    [104]包子阳,陈客松,何子述,等.基于遗传算法的圆柱阵列稀疏方法[J].电子技术应用.2009(05):93-95.
    [105]路占波,孙丹,陈亚军.遗传算法在共形天线阵方向图综合中的应用[J].系统仿真学报.2009(05):1488-1491.
    [106]包子阳,陈客松,何子述,等.基于遗传算法的圆柱阵列旁瓣电平优化方法[J].空间电子技术.2010(02):81-85.
    [107]张玉洁,龚书喜,王文涛,等.非规则曲面共形阵列的优化设计[J].电子与信息学报.2010(09):2226-2230.
    [108]张玉洁,龚书喜,王文涛,等.基于改进遗传算法的非规则共形阵的研究[J].电波科学学报.2010(04):689-695.
    [109] Storn R, Price K. Differential evolution: A simple and efficient adaptive schemefor global optimization over continuous spaces[J]. Journal of Global Optimization.1997,11:341-359.
    [110] Guo J, Li J. Pattern Synthesis of Conformal Array Antenna in the Presence ofPlatform Using Differential EvolutionUsing Differential Evolution[J]. IEEETransactions on Antennas and Propagation.2009,57(9):2621-2651.
    [111]李蕊,史小卫,徐乐,等.竞争差分进化算法及其在共形天线阵方向图综合中的应用[J].西安电子科技大学学报.2012(03):126-133.
    [112] Kennedy J, Eberhart R. Particle swarm optimization[C].1995.
    [113] Kennedy J. The particle swarm: Social adaptation of knowledge[C]. Indianapolis:1997.
    [114] Boeringer D W, Werner D H. Efficiency-constrained particle swarm optimizationof a modified bernstein polynomial for conformal array excitation amplitudesynthesis[J]. IEEE Transactions on Antennas and Propagation.2005,53(8):2662-2673.
    [115] Lu Z B, Zhang A, Hou D X Y. Pattern Synthesis of Cylindrical Conformal Arrayby the Modified Particle Swarm Optimization Algorithm[J]. Progress InElectromagnetics Research.2008,79:415-426.
    [116] Wang W B, Feng Q Y, Liu D. Application of Chaotic Particle SwarmOptimization Algorithm to Pattern Synthesis of Antenna Arrays[J]. Progress InElectromagnetics Research.2011,115:173-189.
    [117]李文涛,刘淑芳,史小卫,等.改进粒子群算法及其在共形相控阵综合中的应用[J].西安电子科技大学学报.2009(05):835-840.
    [118]李文涛,黑永强,史小卫.增强粒子群优化算法设计共形可重构天线阵[J].电波科学学报.2010,25(3):477-484.
    [119] Li W T, Shi X W, Hei Y Q, et al. A Hybrid Optimization Algorithm and ItsApplication for Conformal Array Pattern Synthesis[J]. IEEE Transactions onAntennas and Propagation.2010,58(10):3401-3406.
    [120] Li W, Hei Y, Shi X, et al. An extended particle swarm optimization algorithm forpattern synthesis of conformal phased arrays[J]. International Journal of RF andMicrowave Computer-Aided Engineering.2010,20(2):190-199.
    [121] Li W, Liu S, Shi X, et al. Low-sidelobe pattern synthesis of spherical array usingthe hybrid genetic algorithm[J]. Microwave and Optical Technology Letters.2009,51(6):1487-1491.
    [122] Fondevila-Gomez J, Rodriguez-Gonzalez J A, Bregains J. Very fast method tosynthesise conformal arrays[J]. Electronics Letters.2007,43(16):856-857.
    [123] Fuchs B, Fuchs J J. Optimal Polarization Synthesis of Arbitrary Arrays[J]. IEEETransactions on Antennas and Propagation.2011,59(12):4512-4519.
    [124] Sun D, Dou W, You L. Application of Novel Cavity-Backed Proximity-CoupledMicrostrip Patch Antenna to Design Broadband Conformal Phased Array[J]. IEEEAntennas and Propagation Letters.2010,9:1010-1013.
    [125] Knott P. Antenna Design and Beamforming for a Conformal Antenna ArrayDemonstrator[C].2006.
    [126] Bayram Y, Zhou Y, Shim B S, et al. E-Textile Conductors and PolymerComposites for Conformal Lightweight Antennas[J]. IEEE Transactions on Antennasand Propagation.2010,58(8):2732-2736.
    [127] Josefsson L, Persson P. Conformal array synthesis including mutual coupling[J].Electronics Letters.1999,35(8):625-627.
    [128] Kojima N, Hariu K, Chiba I. Low sidelobe pattern synthesis using projectionmethod with mutual coupling compensation[C].2003.
    [129] Guo J, Li J. Pattern Synthesis of Conformal Array Antenna in the Presence ofPlatform Using Differential Evolution Algorithm[J]. IEEE Transactions on Antennasand Propagation.2009,57(9):2615-2621.
    [130] Gerini G, Member, Zappelli L. Phased arrays of rectangular apertures onconformal cylindrical surfaces-a multimode equiva[J]. IEEE Transactions onAntennas and Propagation.2004,52(7):1843-1850.
    [131] He Q, Wang B, Shao W. Radiation Pattern Calculation for Arbitrary ConformalArrays that Include Mutual-Coupling Effects[J]. IEEE Antennas and PropagationMagazine.2010,52(2):57-63.
    [132]宋银锁.制导武器天线的共形阵列[J].航空兵器.1997,4:43-47.
    [133]张凡.锥台共形阵天线与特定用途天线研究[D].西安电子科技大学,2011.
    [134] Caille G, Vourch E, Martin M J, et al. Conformal array antenna for observationplatforms in low Earth orbit[J]. IEEE Antennas and Propagation Magazlne.2002,44(3).
    [135] Malmqvist R, Ouacha A, Erickson R. Multi-Band and Reconfigurable Front-Endsfor Flexible and Multi-Functional RF Systems[C].2007.
    [136] Malmqvist R, Samuelsson C, Gustafsson A, et al. On the Use of MEMS PhaseShifters in a Low-Cost Ka-band Multifunctional ESA on a Small UAV[C].2007.
    [137] Bjklund S, Boman T, Nelander A. Clutter properties for STAP with smooth andfaceted cylindrical conformal antennas[C].2010.
    [138] Kannoa M, Hashimura T, Katada T. An active conformal array antenna with verysmall thickness[C]. Boston, Massachusetts:1996.
    [139] Kanno M, Hashimura T, Katada T. Digital beam forming for conformal activearray antenna[C].1996.
    [140] James J R, Hall P S, Wood C. Microstrip antenna theory and design[M].Stevenage, U.K.: IEE Press,1981.
    [141]张钧.微带天线理论与工程[M].北京:国防工业出版社,1988.
    [142]钟顺时.微带天线理论与应用[M].西安:西安电子科技大学出版社,1991.
    [143]胡明春,周志鹏,严伟.相控阵雷达收发组件技术[M].北京:国防工业出版社,2010.
    [144] Robertson I,Lucyszyn S.单片射频微波集成电路技术与设计[M].北京:电子工业出版社,2007.
    [145]张明友.数字阵列雷达和软件化雷达[M].北京:电子工业出版社,2008.
    [146]弋稳.雷达接收机技术[M].北京:电子工业出版社,2006.
    [147]白居宪.直接数字频率合成[M].西安:西安交通大学出版社,2007.
    [148]王永良,陈辉,彭应宁,等.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [149]王永良,丁前军,李荣锋.自适应阵列处理[M].北京:清华大学出版社,2009.
    [150] Special issue on adaptive arrays[J]. IEEE Transactions on Antennas andPropagation.1964,12.
    [151] Special issue on adaptive arrays[J]. IEEE Transactions on Antennas andPropagation.1976,24.
    [152] Special issue on adaptive arrays[J]. IEEE Transactions on Antennas andPropagation.1986,34.
    [153]杨鹏,杨峰,聂在平,等. MUSIC算法在柱面共形天线阵DOA估计中的应用研究[J].电波科学学报.2008,23(2):288-291.
    [154]齐子森,郭英,王布宏,等.共形阵列天线MUSIC算法性能分析[J].电子与信息学报.2008,30(11):2674-2677.
    [155]杨鹏,杨峰,聂在平.基于子阵分割和虚拟内插ESPRIT算法的圆柱共形阵DOA估计[C].成都:电子工业出版社,2009.
    [156]齐子森,郭英,姬伟峰,等.锥面共形阵列天线盲极化DOA估计算法[J].电子学报.2009,37(9).
    [157]齐子森,郭英,姬伟峰,等.锥面共形阵列天线盲极化DOA估计算法[J].电子学报.2009(09):1919-1925.
    [158]高飞,谢文冲,王永良.机载共形阵雷达杂波抑制方法研究[J].电子学报.2010(09):2014-2020.
    [159]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用[M].北京:国防工业出版社,1999.
    [160] Kostinski A B, Boerner W M. On fundations of radar polarimetry[J]. IEEETransactions on Antennas and Propagation.1986,34(12).
    [161] Li J, Compton R T. Angle and polarization estimation using ESPRIT with apolarization sensitive array[J]. IEEE Transactions on Antennas and Propagation.1991,39(9):1376-1383.
    [162] Li J. Direction and polar ization estimation using arrays with small loo ps andshort dipoles[J]. IEEE Transactions on Antennas and Propagation.1993,41(3):379-387.
    [163]庄钊文,徐振海,肖顺平,等.极化敏感阵列信号处理[M].北京:国防工业出版社,2005.
    [164] Wang X S, Chang Y L, Dai D H. Band Characterist ics of SINR Polarizat ionFilter[J]. IEEE Transactions on Antennas and Propagation.2007,55(4):1148-1154.
    [165] Kumar G, Ray K P. Broadband Microstrip Antennas[M]. Boston: Artech House,2003.
    [166]盛新庆.计算电磁学要论[M].北京:科学出版社,2005.
    [167] Harrington R F. Time-Harmonic Electromagnetic Fields[M]. New York: JohnWiley&Sons,2001.
    [168] Bin E W. Fast solution to electromagnetic scattering by large-scale complicatedstructures using adaptive integral method[Z].2004.
    [169] Wilton D R, Rao S M, Glisson A. Potential integrals of uniform and linear sourcedistributions on polygonal and poiyhedral domains[J]. IEEE Transactions on Antennasand Propagation.1984,32(3):276-281.
    [170]董健.边界积分方程及快速算法在分析复杂电磁问题中的研究与应用[D].长沙:国防科学技术大学,2005.
    [171]李磊.多层媒质中的电磁快速算法研究[D].西安:西安电子科技大学,2007.
    [172] Yeung E K L, Beal J C, Antar Y M M. Multilayer microstrip structure analysiswith matched load simulation[J]. IEEE IEEE Transactions on Microwave Theory andTechnique.1995,43(1):143-149.
    [173]闫润卿.微波技术基础[M].北京:北京理工大学出版社,1995.
    [174] Hua Y, Sarker T K. Matrix pencil method for estimation parameters ofexponentially damped/undamped sinusoids in noise[J]. IEEE Trans. Acoust., Speech,Signal Processing.1990,38(5):814-824.
    [175] Bunger R, Arndt F. Arndt. Efficient MPIE Approach for the Analysis ofThree-Dimensional Microstrip Structures in Layered Media[J]. IEEE Transations onMicrowave Theory and Techniques.1997,45(8):1141-1153.
    [176] Mailloux R J. Phased Array Antenna Handbook[M]. Boston and London: ArtechHouse antennas and propagation library,2007.
    [177] Elliot R S. The Theory of Antenna Arrays[M]. New York: Academic Press,1966.
    [178] Burger H A. Use of Euler-rotation angles for generating antenna patterns.pdf[J].IEEE Antennas and Propagation Magazine.1995,37(2):56-63.
    [179] Milligan T. More applications of Euler rotation angles[J]. IEEE Antennas andPropagation Magazine.1999,41(4):78-83.
    [180]王布宏,郭英,王永良,等.共形天线阵列流形的建模方法[J].电子学报.2009,37(3).
    [181]刘英.天线雷达散射截面预估与减缩[D].西安:西安电子科技大学,2004.
    [182]龚书喜.天线雷达截面预估与缩减[M].西安:西安电子科技大学出版社,2010.
    [183] Steyskal H, Herd J S. Mutual Coupling Compensation in Small Array antennas[J].IEEE Transactions on Antennas and Propagation.1990,38(12):1971-1975.
    [184]齐会颖.微带共形天线阵的方向图综合与实验研究[D].长沙:国防科学技术大学,2010.
    [185]薛正辉,李伟明,任武.阵列天线分析与综合[M].北京:北京航空航天大学出版社,2011.
    [186] Elliott R S. Design of Line-Source Antennas for Sum Patterns with Sidelobes ofIndividually Arbitrary Heights[J]. IEEE Trans. Transactions on Antennas andPropagation.1975,23:76-83.
    [187] Silver S. Microwave Antenna Theory and Design,[M]. New York: McGraw-Hill,1979.
    [188] Woodward P M, Lawson J P. The Theoretical Precision with Which an AribitraryRadiation Pattern May be Obtained from a Source of Finite Size[J]. Proceedings of theI.R.E. and Waves and Electrons.1948,95:362-370.
    [189] Elliott R S, Stern G J. Shaped patterns from a continuous planar aperturedistribution[J]. IEE Proceedings.1988,135(6):366-370.
    [190] Elliott R S, Stern G J. Footprint patterns obtained by planar arrays[J]. IEEProc.-Microw. Antennas Propag.1990,137(2):108-112.
    [191] Ares F, Elliott R S, Moreno E. Optimised synthesis of shaped line-source antennabeams[J]. Electronics Letters.1993,29(12):1136-1137.
    [192] Ares F, Elliott R S, Moreno E. Synthesis of shaped line-source antenna beamsusing pure real distributions[J]. Electronics Letters.1994,30(4):280-281.
    [193] Ares F, Elliott R S, Moreno E. Design of planar arrays to obtain efficient footprintpatterns with an arbitrary footprint boundary[J]. IEEE Trans. Transactions on Antennasand Propagation.1994,42(11):1509-1514.
    [194] Ares F, Elliott R S, Moreno E. Optimised synthesis of shaped line-source antennabeams[J]. Electronics Letters.1993,29(12):1136-1137.
    [195] Ares F, Rodriguez J A. Asymmetric-shaped beam patterns from a continuouslinear aperture distribution[J]. Microwave and Optical Technology Letters.1997,15(5):288-291.
    [196] Makino S, Konishi Y. Pattern synthesis and calibration methods for conformalarray antennas [C].2006.
    [197] Boyd S, Dattorro J. Alternating Projections[J]. EE392o, Stanford University.2003:1-9.
    [198] Bucci O M, Franceschetti G, Mazzarella G, et al. Intersection approach to arraypattern synthesis[J]. IEE Proceedings.1990,137(6):349-357.
    [199] Parrish J K, Hamner W M. Animal Groups in Three Dimensions[M]. Cambridge:Cambridge University Press,1997.
    [200]崔志华,曾建潮.微粒群优化算法[M].北京:科学出版社,2011.
    [201]王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社,2008.
    [202] Shi Y, Eberhart R C. A modified particle swarm optmizer[Z].199869-73.
    [203] Clerc M, Kennedy J. The particle swarm: explosion, stability and convergence inmultidimensional complex space[J]. IEEE Trans. Evolt. Comput.2002,6:58-73.
    [204] Baskar S, Alphones A, Suganthan P N. Concurrent PSO and FDR-PSO basedreconfigurable phase-differentiated antenna array design[C].2004.
    [205] Van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarmoptimzation[J]. IEEE Trans. on Evolut. Comput.2004,8:225-239.
    [206] Selleri S, Mussetta M, Pirinoli P, et al. Some Insight Over New Variations of theParticle Swarm Optimization Method [J]. IEEE Antennas and Wireless PropagationLetters.2006(5):235-238.
    [207] Selleri S, Mussetta M, Pirinoli P, et al. Differentiated Meta-PSO Methods forArray Optimization[J]. IEEE Transactions on Antennas and Propagation.2008,56(1):67-75.
    [208] Ciuprina G, Ioan D, Munteanu I. Use of intelligent-particle swarm optimization inelectromagnetics[J]. IEEE Trans. on Magnetics.2002,38:1037-1040.
    [209] Rodriguez A, Reggia J A. Extending self-organizing particle systems to problemsolving[J]. Artificial Life.2004,10:379-395.
    [210] Katare S, Kalos A, West D. A hybrid swarm optimizer for efficient parameterestimation[J].2004:309-315.
    [211] Victoire T A A, Jeyakumar A E. Hybrid simplex search and particle swarmoptimization for the global optimization of multimodal functions[J]. Electric PowerSystems Research.2004,71:51-59.
    [212]金欣磊.基于PSO的多目标优化算法研究及应用[D].浙江大学,2006.
    [213] Rosenberg R S. Simulation of Genetic Populations with BiochemicalProperties[D]. Michigan: University of Michigan,1967.
    [214] Schaffer J D. Some Experiments in Machine Learing Using Vector EvaluatedGenetic Algorithms[D]. Vanderbilt University,1984.
    [215] Baumgartner U, Magele C, Preis K, et al. Particle swarm optimisation for Paretooptimal solutions in electromagnetic shape design [J]. IEE Proceedings.2004,151(6):499-502.
    [216] Carlos A C C. Handling multiple objectives with particle swarm optimization[J].IEEE Transctions on Evolutionary Computaton.2004,8(3):259-279.
    [217]郑金华.多目标进化算法及其应用[M].科学出版社:北京,2011.
    [218] Deb K. Multi-objective Evolutionary Optimization: Past, Present and Future[Z].London:2000.
    [219] Van V D A, Lamont G B. Multiobjective Evolutionary Algorithm Test Suites[Z].1999,351-357.
    [220] Díaz X, Rodríguez J A, Ares F, et al. Design of phase-differentiatedmultiple-pattern antenna arrays[J]. Microwave and Optical Technology Letters.2000,26(1):52-53.
    [221] Durr M, Trastoy A, Ares F. Multiple-pattern linear antenna arrays with singleprefixed amplitude distributions: modified Woodward-Lawson synthesis[J]. ElectronicsLetters.2000,36(16):1345-1346.
    [222] Gies D, Rahmat-Samii Y. Reconfigurable array design using parallel particleswarm optimization[C].2003.
    [223]刘旭峰.微带共形阵列天线的研究[D].西安:西安电子科技大学,2008.
    [224] Homaifar A, Qi C X, Lai S H. Constrained optimization via genetic algorithms [J].Siumlaton.1994,62:242-254.
    [225] Michalewicz Z, Schoenauer M. Evolutionary algorithms for cnstrained parameteroptimization problems[J]. Evolutionary Computaion.1996,4:1-32.
    [226] Dohmen C, Odendaal J W, Joubert J. Synthesis of Conformal Arrays WithOptimized Polarization[J]. IEEE Transactions on Antennas and Propagation.2007,55(10):2922-2925.
    [227] Deschamps G A. Techniques for Handling Elliptically Polarized Waves withSpecial Reference to Antennas: Part II-Geometrical Representation of the Polarizationof a Plane Electromagnetic Wave[J]. Proceedings of the IRE.1951,39(5):540-544.
    [228] Ludwing A C. The Definition of Cross Polarization[J]. IEEE Trans. Transactionson Antennas and Propagation.1973:116-117.
    [229]吴曼青.数字阵列雷达的发展与构想[J].雷达科学与技术.2008(06):401-405.
    [230]梁剑.数字化雷达及其发展[J].雷达科学与技术.2008(06):406-410.
    [231]张明友.数字阵列雷达和软件化雷达[M].北京:电子工业出版社,2008.
    [232]赵菲,叶良丰,肖科,等. X波段瞬态极化雷达射频前端关键技术研究[J].系统工程与电子技术.2010,32(6):1140-1145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700