用户名: 密码: 验证码:
飞秒激光驱动太赫兹辐射的产生和控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹波由于其低光子能量,能够携带丰富的物理化学信息,以及皮秒量级脉宽和短周期量级引起了研究者的广泛关注。太赫兹波是频率范围在0.1~10THz,波长范围在0.03~3毫米,介于微波与红外之间的电磁波。众所周知,双色飞秒脉冲在空气中传输时,由于克尔自聚焦和等离子体自散焦的动态平衡所产生的光丝通道是一种有效的太赫兹波辐射源,在产生过程中,有效的控制所产生的太赫兹波的强度以及偏振一直是人们关注的问题。飞秒光丝产生的分子排列引起了分子非线性特性的改变,因此可以改变空气中的非线性过程,是一种调控光丝中非线性过程的重要手段。我们将分子排列过程引入到太赫兹的产生过程中,实现对太赫兹强度以及偏振的调控。
     本论文主要以空气中的分子排列为研究手段,对双色飞秒脉冲产生太赫兹辐射的强度以及偏振受分子排列的影响进行了深入而细致的研究工作,同时对光丝中的非线性过程受分子排列的影响进行了分析。具体的工作包括:
     1.实验上提出了一种简单有效的方法来判断双色飞秒脉冲成丝辐射太赫兹波的物理机制。该方案通过准确判断双色飞秒脉冲之间的相位差,将产生的太赫兹波的强度与双色飞秒脉冲相位差的函数关系呈现出来,表明太赫兹波的电场强度与双色飞秒脉冲的相位差的正弦成正比关系,从而证明了双色飞秒脉冲成丝产生太赫兹波的物理机制是光电流模型。这对于进一步寻找高功率太赫兹波辐射源有着重大的意义。
     2.实验上实现了一种基于分子排列的太赫兹产生控制方法。分子排列效应改变了气体分子的折射率,对于后续脉冲来说,平行的分子排列使得气体折射率增大,起到凸透镜的作用,使经过它的后续脉冲进一步聚焦,电离增强,辐射的太赫兹强度增强;垂直的分子排列使得气体折射率减小,起到凹透镜的作用,使经过它的后续脉冲的聚焦作用被平衡掉一部分,电离减弱,辐射的太赫兹强度降低。另一方面,飞秒激光导致的分子排列引起空气分子非线性性质的改变,进而影响了双色飞秒脉冲在空气分子中传播时的相速度,使得双色飞秒脉冲的相位差发生改变,对所产生的太赫兹波的强度以及偏振进行了有效的控制。因此,飞秒激光诱导的分子排列可以做为一种瞬时的太赫兹波波片,有效调控所产生的太赫兹波的偏振状况,使我们从实验上既可以得到椭圆偏振的太赫兹波,也可以探测到线偏振的太赫兹波。
     3.实验上实现了一种基于等离子体和外加偏置静电场的太赫兹控制手段。在双色飞秒脉冲形成的等离子体光丝两侧加入偏置静电场,使得等离子体光电流增强,增强了太赫兹辐射。利用泵浦光脉冲引入等离子体,然后加入外加电场,既可以实现对太赫兹强度的控制,也可以对产生的太赫兹偏振进行调节。因此,这两种方法都可以做为增强太赫兹辐射的有效方法。
It has attracted more and more research interest in terahertz generation with its low photon energy, abundant physical and chemical information, picosecond pulse-width and short few cycle pulse. The terahertz wave is between microwave and infrared wave with its frequency0.1-10THz, and the wavelength0.03-3mm. As known, the counterbalance between the Kerr self-focusing and the plasma self-defocusing effects produced the femtosecond dual-color pulse filament, which could be used as an efficient terahertz radiation source. During this process, it is quite necessary to find efficient method to control the terahertz intensity and polarization. Previous research has shown that the molecular alignment induced by the femtosecond pulse could modify its nonlinearity, and further adjust the nonlinear process conveniently.
     In this dissertation, based on the molecular alignment, we investigate the modulation of the terahertz intensity and polarization and the nonlinear process during the plasma channel. Mainly includes the following:
     1. Experimentally demonstrate the physical mechanism of the terahertz generation derived from the dual-color pulse. This project measures the phase difference of the dual-color pulse accurately, and shows the function relationship between the terahertz electric field and the dual-color pulse phase difference. It proves that the physical mechanism of the terahertz radiation can be explained by the photo current model as the terahertz electric field is proportional to the sin θ in our results, where θ is the phase difference of the dual-color pulse. It has important significance to find higher power terahertz radiation source.
     2. The terahertz generation from dual-color pulse filament was controlled by molecular alignment induced (de)focusing effect. Molecular alignment effect modulated the refractive index of the air. For the subsequent dual-color pulse, parallel molecular alignment increased the refractive index acting as a positive lens to increase the ionization of the dual-color pulse, and the terahertz generation increased. On the contrary, the perpendicular molecular alginment decreased the refractive index acting as an negitive lens for the subsequent dual-color pulse. The ionization of the dual-color pulse was decreased and the terahertz generation decreased. On the other hand, the molecular alignment leads to the change of the nonlinearity, and the phase velocity also changed during the propagation process, which adjusts the dual-color pulse phase difference and further controls the intensity and polarization of the generated terahertz. Both linearly and elliptically polarized terahertz radiations can be obtained as the field-free molecular alignment in air functioned as a transient dynamic wave plate.
     3. The pre-existing plasma and a biased DC electric field was experimentally used to control the intensity and the polarization of the THz radiation. The biased DC electric field increased the plasma photo current to produce stronger terahertz radation. The pre-existing plasma controled the intensity and the polarization by the additional refractive index induced by its presence. These provided efficient methods to improve the terahertz generation.
引文
[1]Lee C. "Picosecond optoelectronic switching in GaAs", Appl. Phys. Lett.30,84 (1977).
    [2]Auston D. "Picosecond optpelectronic switching and gating in silicon", Appl. Phys. Lett.26,101 (1975).
    [3]Exter M, Fattinger C, Grischkowsky D, "High-brightness terahertz beams characterized with an ultrafast detector", Appl. Phys. Lett.55,337, (1989).
    [4]Mourou G, Stancampino C V, Blumenthal D, "Picosecond microwave pulses generation", Appl. Phys. Lett.38,470, (1981).
    [5]Darrow J T, Hu B B, Zhang X C, Auston, D H, "Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas", Opt. Lett.15,323 (1990).
    [6]Auston D H, Cheung K P, Smith P R, "Picosecond photoconducting Hertzian dipoles", Appl. Phys. Lett.45,284 (1984).
    [7]D. E. Spence, P. N. Lean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser", Opt. Lett.16,42 (1991).
    [8]T. H. Maiman, "Stimulated optical radiation in ruby", Nature 187,493 (1960).
    [9]D. Strickland and G. Mourou, "Compression of amplified chirped optical pulse", Opt. Commun.56,291 (1985).
    [10]V. Shank and E. P. Ippen, "Subpicosecond kilowatt from a mode-locked cw dye laser", Appl. Phys. Lett.24,374 (1974).
    [11]F. J. mcClung and R. W. Hellwarth, "Giant Optical Pulsations from Ruby", J. Appl. Phys.33,828(1962).
    [12]M. Propapas, C. H. Keitel, and P. L. Knight, "Atomic physics with super-high intensity lasers", Rep. Prog. Phys.60,389 (1997).
    [13]P. Smith, D. Auston and M. Nuss. "Subpicosecond Photoconducting Dipole Antennas", IEEE Quantum Electron.24(2),255-162 (1988).
    [14]J. Darrow, X.-C. Zhang and D. Auston, "Power scaling of large aperture photoconducting antennas", Appl. Phys. Lett.15(1),25-27 (1991).
    [15]许景周,张希成,“太赫兹科学技术和应用”
    [16]G. Mechain, C. D. Amico, Y.-B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. salmon, and R. sauerbrey, "Length of plasma filaments created in air by a multiterawatt femtosecond laser", Opt. Commun.247, 171 (2005).
    [17]M. Rodriguez, R. Bourayou, G. Mejean, J. kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eisloffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Woste, and J.-P. Wolf, "Kilometric-range nonlinear propagation of femtosecond laser pulses", Phys. Rev. E 69,036607 (2004).
    [18]J. Yu, D. Mondelain, G. Ange, R. Volk, S. Niedermeier, J. P. Wolf, J. Kasparian, and R. Sauerbrey, "Backward supercontinuum emission from a filament generated by ultrashort laser pulses in air", Opt. Lett.26,533 (2001).
    [19]S. L. Chin, St. Petit, F. Borne, and K. Miyazaki, "The white light supercontinuum is indeed an ultrafast white light laser", Jpn. J. Appl. Phys.38, L126-L128 (1999).
    [20]I. S. Golubtsov, V. P. Kandidov, and O. G. kosareva, "Initial phase modulation of a high-power femtosecond laser pulse as a tool for controlling its filamentation and generation of a supercontinuum in air", Quant. Electron.33,525 (2003).
    [21]T. Brabec and F. Krausz, "Intense few-cycle laser fields:Frontiers of nonlinear optics", Rev. Mod. Phys.72,545 (2000).
    [22]A. Couairon, H. S. Chakraborty, and M. B. Gaarde, "From single-cycle self-compressed filaments to isolated attosecond pulses in noble gases", Phys. Rev. A 77,053814 (2008).
    [23]H. S. Chakraborty, M. B. Gaarde, and A. Couairon, "Single attosecond pulses from high harmonic driven by self-compresses filaments", Opt. Lett.31,3663 (2006).
    [24]C. P. hauri, A. Guandalini, P. Eckle, W. Kornelis, J. Biegert, and U. Keller, "Generation of intense few-cycle laser pulses through filamentation-parameter dependence", Opt. Express 13,7541 (2005).
    [25]D. S. steingrube, E. Schulz, T. Binhammer, T. Vockerodt, U. Morgner, and M. Kovacev, "Generation of high-order harmonics with ultra-short pulses from filamentation", Opt. Express 17,16177 (2009).
    [26]C. Winterfeldt, C. Spielmann, and G, Gerber, "Colloquium:Optimal control of high-harmonic generation", Rev. Mod. Phys.80,117 (2008).
    [27]Takao Fuji and Toshinori Suzuki, "Experimental and theoretical investigation of a multicolor filament", Phys. Rev. A 80,063822 (2009).
    [28]L. Misoguti, I. P. Christov, S. Backus, M. M. Murnane, and H. C. Kaptevn, "Nonlinear wave-mixing processes in the extreme ultraviolet", Phys. Rev. A 72, 063803 (2005).
    [29]A. E. Jailaubekov and S. E. Bradforth, "Tunable 3D-femtosecond pulses across the deep ultraviolet", Appl. Phys. Lett.87,021107 (2005).
    [30]L. Misoguti, S. Backus, C. G. Durfee, R. Bartels, M. M. Murnane, and H. C. Kapteyn, "Generation of Broadband VUV Light Using Third-Order cascaded processes", Phys. Rev. Lett.87,013601 (2001).
    [31]A. Paul, E. A. Gibson, X. Zhang, A. Lytle, T. Popmintchev, X. Zhou, M. M. Murnane, I. P. Christov, and H. C. Kapteyn, ""IEEE J. Quantum Electron.42,14 (2006).
    [32]N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, "Third-Harmonic Generation and Self-Channeling in Air using High-Power Femtosecond Laser Pulses", Phys. Rev. Lett.89,143901 (2002).
    [33]F. Theberge, N. Akozbek, W. Liu, J. Filion, and S. L. Chin, "Conical emission and induced frequency shift of third-harmonic generation during ultrashort laser filamentation in air", Opt. Commun.276,298 (2007).
    [34]M. Kolesik, E. M. Wright, A. Becker, and J. V. Moloney, "Simulation of third-harmonic and supercontinuum generation for femtosecond pulses in air", Appl. Phys. B 85,531 (2006).
    [35]F. Theberge, N. Akozbek, W. Liu, J.-F. Gravel, and S. L. Chin, "Third-harmonic beam profile generated in atmospheric air using femtosecond laser pulses", Opt. Commun.245,399 (2005).
    [36]M. Kolesik, E. M. Wright, and J. V. Moloney, "Supercontinuum and third-harmonic generation accompanying optical filamentation as first-order scattering process", Opt. Lett.32,2816 (2007).
    [37]Y. Liu, A. Houard, B. Prade, S. Akturk, A. Mysyrowicz, and V. T. Tikhonchuk, "Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses", Phys. Rev. Lett.99,135002 (2007).
    [38]C. D'Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, "Conical Forward THz Emission from Femtosecond-Laser-Beam Filamentation in air", Phys. Rev. Lett.98,235002 (2007).
    [39]J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, "White-light for atmospheric analysis", Science 301,61 (2003).
    [40]Q. Luo, H. L. Xu, S. A. Hosseini, J-F. Daigle, F. Theberge, M. Sharifi, S. L. Chin, "Remote sensing of pollutants using femtosecond laser pulses fluorescence spectroscopy", Appl. Phys. B 82,105 (2006).
    [41]J. Ju, J. Liu, C. Wang, H. Sun, X. Ge, C. Li, S. L. Chin, R. Li, and Z. Xu, "Laser-filamentation-induced condensation and snow formation", Opt. Lett.37, 1214 (2012).
    [42]P. Rohwetter, J. Kasparian, K. Stelmaszczyk, Z. Hao, S. Henin, N. Lascoux, W. M. Nakaema, Y. Petit, M. Queiβer, R. Salame, E. salmon, L. Woste and J-P Wolf, "Laser-induced water condensation in air", Nat. Photonics 4,451 (2010).
    [43]R. Ackermann, K. Stelmaszczyk, P. Rohwetter, G. Mejean, E. Salmon, J. Yu, J. Kasparian, G. Mechain, V. Bergmann, S. Schaper, B. Weise, T. Kumm, K. Rethmeier, W. Kalkner, L. Woste, and J. P. Wolf, "Triggering and guiding of megavolt discharge by laser-induced filaments under rain conditions", Appl. Phys. Lett.85,23 (2004).
    [44]D. Comtois, C. Y. Chien, A. desparoi, F. Genin, G. Jarry, T. W. Johnston, J.-C. Kieffer, B. La Fontaine, F. Martin, R. Mawassi, H. Pepin, F. A. M. Rizk, F. Vidal, P. Couture, H. P. Mercure, C. Potvin, A. Bondiou-Clergerie, and I. Gallimberti, "Triggering and guiding leader discharges using a plasma channel created by an ultrashort laser pulse", Appl. Phys. Lett.76,819 (2000).
    [45]H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, "Subpicosecond, Electromagnetic Pulses from Intense Laser-Plasma Interaction", Phys. Rev. Lett.71,2725(1993).
    [46]A. Houard, Yi Liu and B. Prade, V T. Tikhonchuk, and A. Mysyrowicz, "Strong enhancement of terahertz radiation from laser filaments in air by a static electric field", Phys. Rev. Lett.100(25),255006(2008).
    [47]Wen-Feng Sun, Yun-Song Zhou, Xin-Ke Wang, and Yan Zhang, "External electric field control of THz pulse generation in ambient air", Opt. Express, 16(21),16573-16580(2008).
    [48]Wei-Min Wang, Zheng-Ming Sheng and X.-G. Dong, H.-W. Du, Y.-T. Li and J. Zhang, "Controllable far-infrared electromagnetic radiation from plasmas applied by dc or ac bias electric fields", J. Appl. Phys.107(2), 023113(2010).
    [49]Yanping Chen, Tie-jun Wang, Claude Marceau, Francis Theberge, Marc Chateauneuf, Jacques Dubois, Olga Kosareva, and See Leang Chin, "Characterization of terahertz emission from a dc-biased filament in air", Appl. Phys. Lett.95,101101(2009).
    [50]D. Cook and R. Hochstrasser, "Intense terahertz pulses by four-wave rectification in air", Opt. Lett.25(16),1210-1212(2000).
    [51]K. Kim, J. Glownia and A. Taylor and G. Rodriguez, "Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields", Opt. Express,15(8), 4577-4584 (2007).
    [52]T. Bartel, P. Gaal and K. Reimann, M. Woerner and T. Elsaesser, "Generation of single-cycle THz transients with high electric-field amplitudes", Opt. Lett.30(20), 2805-2807(2005).
    [53]M. Kress, T. Loffler, S. Eden, M. Thomson, and H-G. Roskos, "Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves", Opt. Lett.29(10),1120-1122(2004).
    [54]M. Kreβ,T. Loffler and M. Thomson, R. Dorner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich and H-G. Roskos, "Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy", Nat. Physics,2,327-332(2006).
    [55]Jianming Dai, Xu Xie, and X.-C. Zhang, "Detection of Broadband Terahertz Waves with a Laser-Induced Plasma in Gases", Phys. Rev. Lett.97,103903(2006).
    [56]A. Nahata, A. Weling, and T. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett.69,2321-2322 (1996).
    [57]J. Shen, A. Weling, E. Knoesel, L. Bartels, and T. Heinz, "Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling," Opt. Lett.25,426-428 (2000).
    [58]M. Schall and P. Uhd Jepsen, "Photo-excited GaAs surfaces studied by transient THz time-domain spectroscopy," Opt.Lett.25,13-15 (2000).
    [59]M. Li, G. C. Cho, T.-M. Lu, X.-C. Zhang, S.-Q. Wang, and J.T. Kennedy, "Time-domain dielectric constant measurement of thin film in GHz-THz frequency range near the Brewster angle," Appl. Phys. Lett.74,2113-2115 (1999).
    [60]P. Y. Han, G. C. Cho, and X.-C. Zhang, "Time-domain tran-sillumination of biological tissues using THz pulses," Opt.Lett.25,242-244 (2000).
    [61]Q. Chen, Zhiping Jiang, and X.-C. Zhang, "All-optical THz image," Proc. SPIE 3617,98-105 (1999). K. Wynne and D. Jaroszynski, "Superluminal terahertz pulses," Opt. Lett.24,25-27 (1999).
    [62]N. Matlis, G. Plateau and J. Tilborg, et al, "Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation", J. Opt. Soc. Am. B 28(1),23-27(2011).
    [63]S. Jamison, Jingjing Shen, A. MacLeod, W. Gillespie and D. Jaroszynski, "High-temporal-resolution, single-shot characterization of terahertz pulses", Opt. Lett.28(18),1710-1712(2003).
    [64]K. Y. Kim, B. Yellampalle, G. Rodriguez, R. D. Averitt, A. J. Taylor and J. H. Glownia, "Single-shot, interferometric, high-resolution, terahertz field diagnostic", Appl. Phys. Lett.88(4),041123(2006).
    [65]Zhiping Jiang, X.-C.Zhang, "Electro-optic measurement of THz field pulses with a chirped optical beam", Appl. Phys. Lett.72(16), 1945-1947(1998).
    [66]B. Yellampalle, K. Kim, G. Rodriguez, J. Glownia and A. Taylor, "Details of electro-optic terahertz detection with a chirped probe pulse", Opt. Express, 15(3),1376-1383 (2007).
    [67]B. Yellampalle, K. Kim and G. Rodriguez, J. H. Glownia and A. J. Taylor, "Algorithm for high-resolution single-shot THz measurement using in-line spectral interferometry with chirped pulses", Appl. Phys. Lett. 87(21),211109(2005).
    [68]F. G. Sun, Zhiping Jiang, X.-C. Zhang, "Analysis of terahertz pulse measurement with a chirped probe beam", Appl. Phys. Lett.73(16),2233-2235(1998).
    [69]W. P. Leemans, C. G. R. geddes, J. Faure, Cs. Toth, J. Van Tilborg, C. B. Schroeder, E. Esarey, G. Fubiani, D. Auerbach, B. Marcelis, M. A. Carnahan, R. A. Kaindl, J. byrd, and M. C. Martin, "Observation of Terahertz Emission from a Laser-Plasma Accelerated Electron Bunch Crossing a Plasma-Vacuum Boundary", Phys. Rev. Lett.91,074802/1-1(2003).
    [70]T. Loffler, F. jacob, and H. G. Roskos, "Generation of terahertz pulses by photoionization of electrically biased air", Appl. Phys. Lett.77,453(2000).
    [71]W. Wang, Z. Sheng, X. Dong, H. Du, Y. Li and J. Zhang, "Controllable far-infrared electromagnetic radiation from plasmas applied by dc or ac bias electric fields", J. Appl. Phys.107(2),023113(2010).
    [72]Y. Chen, M. Yamaguchi, M. Wang, and X. C. Zhang, "Terahertz pulses generation from noble gases", Appl. Phys. Lett.91,251116 (2007).
    [73]X. Xie, J. Dai, and X. C. Zhang, "Coherent Control of THz Wave Generation in Ambient Air", Phys. Rev. Lett.96,075005(2006).
    [74]J. Dai, X. Xie, and X.-C. Zhang, "Terahertz wave amplification in gases with the excitation of femtosecond laser pulses", Appl. Phys. Lett.91,211102 (2007).
    [75]K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, "Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions", Nat. Photonics 2,605 (2008).
    [76]M. Durand, Y. Liu, A. Houard, and A. Mysyrowicz, "Fine control of terahertz radiation from filamentation by molecular lensing in air", Opt. Lett.35,1710 (2010).
    [77]H. Wen, D. Daranciang and A. M. Lindenberg, "High-speed all-optical terahertz polarization switching by a transient plasma phase modulator", Appl. Phys. Lett. 96,161103(2010).
    [78]J. Dai, N. Karpowicz, and X.-C. Zhang, "Coherent Polarization Control of Terahertz Waves Generated from Two-Color Laser-Induced Gas Plasma", Phys. Rev. Lett.103,023001 (2009).
    [79]H. Cai, J. Wu, H. Li, X. Bai, and H. Zeng, "Elongation of femtosecond filament by molecular alignment in air", Opt. Express 17(23),21060-21065 (2009).
    [80]J. Wu, H. Cai, P. Lu, X. Bai, L. Ding, and H. Zeng, "Intense ultrafast light kick by rotational Raman wake in atmosphere", Appl. Phys. Lett.95(22),221502 (2009).
    [81]J. Wu, Y. Tong, X. yang, H. Cai, P. Lu, H. Pan, and H. Zeng, "Interaction of two parallel femtosecond filaments at different wavelengths in air", Opt. Lett.34(20), 3211-3213(2009).
    [82]J. Ortigoso, M. Rodriguez, M. Gupta, and B. Friedrich, "Time evolution of pendu lar states created by the interaction of molecular polarizability with a pulsed nonr esonant laser field", J. Chem. Phys.110,3870 (1999).
    [83]T. Seideman, "Rotational excitation and molecular alignment in intense laser field s", J. Chem. Phys.103,7887 (1995).
    [84]B. Kim, C. P. Schick, and P. M. Weber, "Time-delayed two color photoelectron sp ectra of aniline,2-Aminopyridine and 3-Aminopyridine:Snapshots of the nonadia batic curve crossing", J. Chem. Phys.103,6903-6913 (1995).
    [85]F. Rosca-Pruna, and M. J. J. Vrakking, "Experimental observation of revival struc tures in picosecond laser-induced alignment of I2", Phys. Rev. Lett.87,153902 (2 001).
    [86]K. F. Lee, D. M. Villeneuve, P. B. Corkum, A. Stolow, and J. G. Underwood, "Fie Id-free three-Dimensional alignment of polyatomic molecules", Phys. Rev. Lett., 97,173001 (2006).
    [87]J. J. Larsen, K. Hald, N. Bjerre, and H. Stapelfeldt, T. Seideman, "Three dimensio nal alignment of molecules using elliptically polarized laser fields", Phys. Rev. Le tt.85,2470 (2000).
    [88]J. G. Underwood, M. Spanner, M. Yu. Ivanov, J. Mottershead, B. J. Sussman, and A. Stolow, "Switched wave packets:A route to nonperturbative quantum control", Phys. Rev. Lett.90,223001 (2003).
    [89]V. Kalosha, M. Spanner, J. Herrmann, and M.Yu. Ivanov, "Generation of single di spersion precompensated 1-fs pulses by shaped-pulse optimized high-order stimul ated Raman scattering", Phys. Rev. Lett.88,103901 (2002).
    [90]E. Peronne, M. D. Poulsen, C. Z. Bisgaard, and H. Stapelfeldt, "Nonadiabatic alig nment of asymmetric top molecules:Field-free alignment of Iodobenzene", Phys. Rev. Lett.91,043003 (2003).
    [91]P. W. Dooley, I. V. Litvinyuk, K. F. Lee, D. M. Rayner, M. Spanner, D. M. Villene uve, and P. B. Corkum, "Direct imaging of rotational wave-packet dynamics of di atomic molecules", Phys. Rev. A,68,023406 (2003).
    [92]J. J. Larsen, I. Wendt-Larsen, and H. Stapelfeldt, "Controlling the branching ratio of photodissociation using aligned molecules", Phys. Rev. Lett.83,1123 (1999).
    [93]E. Hertz, D. Daems, S. Guerin, H. R. Jauslin, B. Lavorel, and O. Faucher, "Field-f ree molecular alignment induced by elliptically polarized laser pulses:Noninvasi ve three-dimensional characterization", Phys. Revs. A 76,043423 (2007).
    [94]F. Rosca-Pruna, and M. J. J. Vrakking, "Revival structures in picosecond laser-ind uced alignment of 12 molecules. II. Numerical modeling", J. Chem. Phys.116,65 79 (2002).
    [95]M. Spanner, and M. Yu. Ivanov, "Optimal generation of single-dispersion precom pensated 1-fs pulses by molecular phase modulation", Opt. Lett.28,576 (2003).
    [96]J. Wu, P. Lu, J. Liu, H. Li, H. Pan, and H. Zeng, "Ultrafast optical imaging by molecular wakes", Appl. Phys. Lett.97,161106 (2010).
    [97]Y. Feng, H. Pan, J. Liu, C. Chen, J. Wu, and H. Zeng, "Direct measurement of field-free molecular alignment by spatial (de)focusing effects", Opt. Express 19(4),2852-2857 (2011).
    [98]F. Calegari, C. Vozzi, S. Gasilov, E. Benedetti, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, "Rotational Raman Effects in the wake of Optical filamentation", Phys. Rev. Lett.100(12),123006 (2008).
    [99]J. Wu, Y. Tong, M. Li, H. Pan and H. Zeng, "THz generation by a two-color pulse in prealigned molecules", Phys. Rev. A 82,053416 (2010).
    [100]H. Cai, J. Wu, A. Couairon, and H. Zeng, "Spectral modulation of femtosecond laser pulse induced by molecular alignment revivals", Opt. Lett.34, 827(2009).
    [101]S.Varma, Y.-H. Chen, and H. M. Milchberg, "Trapping and Destruction of Long-Range High-Intensity Optical Filaments by Molecular Quantum Wakes in Air", Phys. Rev. Lett.101,205001 (2008).
    [102]蔡华.基于分子取向的飞秒脉冲传输[D].上海:华东师范大学,2010.
    [103]H. Stapelfeldt and T. Seideman, "Colloquium:Aligning molecules with strong laser pulses", Rev. Mod. Phys.75,543 (2003).
    [104]B. friedrich and D. herschbach, "Alignment and trapping of molecules in intense laser fields", Phys. Rev. Lett.74,4623(1995).
    [105]M. machholm and N. E. Henriksen, "Field-free orientation of molecules", Phys. Rev. Lett.87,193001(2001).
    [106]T. Seideman, "On the dynamics of rotationally broad, spatially aligned wave packets", J. Chem. Phys.115,5965 (2001).
    [107]S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, "Filamentation-induced third-harmonic generation in air via plasma-enhanced third-order susceptibility", Phys. Rev. A81,033817 (2010).
    [108]Y. Liu, M. Durand, A. Houard, B. Forestier, A. Couairon, A. Mysyrowicz, "Efficient generation of third harmonic radiation in air filaments:A revisit", Opt. Commun.248,4706 (2011).
    [109]K. Hartinger, and R. A. Bartels, "Enhancement of third harmonic generation by a laser-induced plasma", Appl. Phys. Lett.93,151101 (2008).
    [110]S. Suntsov, D. Abdollahpour, D. G. Papazoglou, and S. Tzortzakis, "Efficient third-harmonic generation through tailored IR femtosecond laser pulse filamentation in air", Opt. Express 17,3190 (2009).
    [111]J. Yao, B. Zeng, W. Chu, J. Ni, and Y. Cheng, "Enhancement of third harmonic generation in femtosecond laser induced filamentation-comparison of results obtained with plasma and a pair of glass plates", J. Mod. Opt.59,245 (2012).
    [112]L. Feng, X. Lu, T. Xi, X. Liu, Y. Li, L. Chen, J. Ma, Q. Wang, Z. Sheng, D. He, and J. Zhang, "Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot", Phys. Plasma 19,072305 (2012).
    [113]X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, and H. Zeng, "Noncollinear interaction of femtosecond filaments with enchanced third harmonic generation in air", Appl. Phys. Lett.95,111103 (2009).
    [114]Z. Liu, P. Ding, Y. Shi, X. Lu, S. Sun, X. Liu, B. Ding, and B. Hu, "Control of third harmonic generation by plasma grating generated by two noncollinear IR femtosecond filaments", Opt. Express 20,8837 (2012).
    [115]M. Li, H. Pan, Y. Tong, C. Chen, Y. Shi, Y. Wu, and H. Zeng, "All-optical ultrafast polarization switching of terahertz radiation by impulsive molecular alignment", Opt. Lett.36,3633 (2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700