用户名: 密码: 验证码:
陕北黄土生物结皮种群特征及对土壤生物活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,对陕北黄土区生物土壤结皮(生物结皮)在生态系统中的作用的研究越来越多,而有关生物土壤结皮中地衣和苔藓植物种群特征的研究鲜有报道,并且有关不同生境下生物结皮对表层土壤生物活性的系统研究较少。本文通过采用野外调查,标本采集与鉴定,测定土壤生物活性与培育人工生物结皮的方法,对该区生物结皮中地衣和苔藓植物的种群特征和土壤生物活性对不同生境下生物结皮的响应进行了系统研究,研究结果如下:
     (1)研究发现陕北黄土区生物结皮中地衣植物有7目10科14属25种,优势科为瓶口衣科,优势属为石果衣属。苔藓植物有6科13属24种,优势科为丛藓科,优势属为扭口藓属。封禁流域内,地衣和苔藓植物Shannon-Weiner多样性指数和物种丰富度在阴坡均高于阳坡;同一坡向下地衣和苔藓Shannon-Weiner多样性指数基本随坡位的降低而逐渐升高,分别表现为峁顶<坡上<坡中<坡下和峁顶<坡上<坡下<坡中。表明地衣和苔藓植物Shannon-Weiner多样性指数和Pielou均匀度指数受坡向和坡位的影响,存在空间异质性。
     (2)研究表明结皮类型与表层土壤酶活性、微生物数量和土壤微生物量的关系存在差异性。土壤酶活性在不同结皮类型下大小顺序为:藻类地衣苔藓结皮>藻类苔藓结皮、藻类地衣结皮>物理结皮。结皮层中细菌和真菌数量在藻类地衣苔藓结皮和藻类地衣结皮中较高,而放线菌数量在藻类地衣结皮中最高;结皮下土层中细菌和真菌在藻类地衣结皮下数量最高,放线菌则在藻类地衣苔藓结皮中的数量最多。土壤微生物量碳和氮含量在不同结皮类型下为藻类地衣苔藓结皮>藻类苔藓结皮>藻类地衣结皮>物理结皮,土壤微生物量碳和氮与生物结皮的不同发育阶段呈极显著正相关关系(P<0.01)。
     (3)研究表明生物结皮表层土壤活性指标对不同立地类型的响应不同。生物结皮土壤酶活性在阴坡下显著高于阳坡(P<0.05),陡坡下生物结皮层土壤酶活性低于缓坡,但差异不显著。生物结皮中的微生物数量在阳向陡坡下最低,而真菌在坡向因子下表现出极显著差异。生物结皮中的土壤微生物量氮含量在阴坡显著高于阳坡(P<0.05),而在坡度间的差异未达到显著水平,结皮层土壤微生物量碳含量的表现与土壤微生物量氮含量相同,但在结皮层下的表现为阴向陡坡下显著低于其他立地类型下(P<0.05)。总体表明生物结皮表层(0-10cm)土壤活性受坡向因子影响显著,受坡度因子影响较小。
     (4)陡坡下林草植被类型对生物结皮土壤生物活性的影响存在差异性。在阳坡和阴坡下,生物结皮土壤脲酶在封育草地下表现出较高活性;土壤碱性磷酸酶在小叶杨林和封育草地下活性较高而生物结皮土壤蔗糖酶在三种林草植被下活性均高于物理结皮。生物结皮土壤微生物均在阴坡封育草地下数量最多,阳坡下,生物结皮细菌和放线菌在山杏林和封育草地下数量最多,真菌在山杏林和小叶杨林下数量最多。生物结皮土壤微生物量碳含量在阳坡和阴坡下均在封育草地中表现较高水平,生物结皮土壤微生物量氮含量在阴坡封育草地中显著高于林地和物理结皮而在阳坡则表现出三种林草植被下均显著高于物理结皮。结果还表明不同生境下生物结皮土壤活性指标均随土壤深度的增加而减少,说明生物结皮对土壤生物活性的改良有表聚作用。
     (5)研究表明,经过72天的短期培养后平面和坡面处理的苔藓结皮与混合结皮的盖度均达到65%以上。与无结皮对照相比,平面处理和坡面处理下的苔藓结皮中土壤有机质和速效氮的含量分别增加了100.87%、48.23%和67.56%、52.17%;土壤速效磷含量有降低趋势;人工生物结皮的形成能够降低土壤pH值,增加土壤阳离子交换量;生物结皮的形成使得土壤酶活性和微生物数量均高于对照,其中各处理下碱性磷酸酶活性显著高于对照。因此,经过短期培养后生物结皮可以快速形成,并有效改善表层土壤微环境为陕北黄土区利用生物工程措施进行植被恢复和生态重建提供了理论依据。
Recently, biological soil crusts (BSCs) play more important role in arid and semi-arid ecosystem in the Loess Area of North Shaanxi Province. Few researches reported that population characteristics of lichen and moss plant of BSCs in this area. Systematic study was less about the effect of BSCs on topsoil biological activities in different habitat. Through field survey, collection and authenticate of specimen, determination of soil biological activities and artificial cultivated BSCs, population characteristics of lichen and moss plant of BSCs and soil biological activities were studied in response to BSCs in different habitat condition.
     (1)25species of lichens were found in BSCs derived from Loess Area of North Shaanxi Province, which belong to14genera and10families. Dominant family and genus were evident which were Verrucariaceae and Endocarpon, respectively.24species of mosses were found in BSCs, which belong to13genera and6families. Dominant family and genus were Pottiaceae and Barbula, respectively. In grazing banned watershed, Shannon-Weiner diversity index and species richness of lichens and mosses on the shady slopes were greater than that on the sunny slopes. At the same slope aspect, Shannon-Weiner diversity index gradually ascended from higher to lower slope positions. Results indicated that Shannon-Weiner diversity and Pielou evenness index of lichens and mosses have spatial heterogeneity due to the effect of slope position and aspect.
     (2) The relationships between crust type and topsoil enzyme activity, crust type and microbial quantity, crust type and microbial biomass were different. The soil enzyme activity under different crusts type is the algae-lichen-moss crust> algae-moss crust, algae-lichen crust> physical crust. In crust layer, the quantity of bacteria under algae-lichen-moss crust and fungi under algae-lichen crust were the most, but the quantity of actinomyces under algae-lichen crust has more accumulation. In soil layer under crust, the number of bacteria and fungi under algae-lichen crust were the most, but actinomyces under algae-lichen-moss crust has more accumulation. Compared with physical crust, three biological soil crusts can significantly improve the soil microbial biomass carbon and nitrogen contents, the order of improvement was algae-lichen-moss crust> algae-moss crust> algae-lichen crust> physical crust. There was extremely significant positive correlation between developmental stage of biological crust and soil microbial biomass carbon and nitrogen content (P<0.01).
     (3) Effects of different site types on topsoil biological activities under BSCs were different. In shady slope, the soil enzyme activity of BSCs was significantly higher than that in sunny slope (P<0.05), and soil enzyme activity of BSCs in steep slope was higher than that in gentle slope, but the difference was not significant. In different site types, soil microbial quantity under BSCs was the lowest in sunny steep slope. The number of fungi under BSCs was highly significant difference (P<0.01). Soil microbial biomass nitrogen content of BSCs in shady slope was significantly higher than that in sunny slope (P<0.05), but no significant difference existed in slope factor. The soil microbial biomass carbon of crust layer have the same change with soil microbial biomass nitrogen content in different site type. In soil layer under BSCs, however, soil microbial biomass nitrogen content in shady steep slope was lower than other site type (P<0.05). In different site types, aspect factor could significantly affect topsoil microbial activities of BSCs, and the effect of slope factor on soil microbial activity was weaker than aspect factor.
     (4) In steep slope, the effect of forest and grass on soil microbial activities under BSCs was different. In sunny and shady slope, soil urease under BSCs has higher activity in enclosure grassland, while soil alkaline phosphatase activity under BSCs in enclosure grassland and Populus simonii forest were higher than Armeniaca sibirica forest and physical crust. Soil invertase activity under BSCs in three forest and grass vegetation were higher than physical crust. In shady slope, soil microbial quantities under BSCs in enclosure grassland were the most in all vegetation types. In sunny slope, the quantity of bacteria and actinomyces under BSCs was the most in Armeniaca sibirica forest and enclosure grassland, and fungi quantity under BSCs in forestland was more than enclosure grassland and physical crust. In shady and sunny slope, soil microbial biomass carbon content under BSCs was higher in enclosure grassland than forestlands and physical crust, and soil microbial biomass nitrogen content also has the same change in shady slope. In sunny slope, however, soil microbial biomass nitrogen content in the three forests vegetation types was higher than that in physical crust. Results indicated that soil microbial activities under BSCs gradually decreased with increasing soil depth. Therefore, BSCs could improve soil microbial activities in topsoil.
     (5) The results indicated that the coverage of artificial cultivated BSCs was more than65%after72days of cultivation. Moss crust coverage reached to40%after35days of cultivation. Compared with the control, soil organic matter and available nitrogen contents in moss crust with the horizontal treatments increased by100.87%and48.23%, respectively; and increased by67.56%and52.17%in sloping treatments, respectively. Available phosphorus content in cultivated BSCs was decreased. Soil pH was lower and cationic exchange capacity was higher in cultivated BSCs than in the control. Alkaline phosphatase, urease and invertase activities were increased in artificially cultivated BSCs. Alkaline phosphatase activity in all tratments of cultivated BSCs were significantly higher than that in the control. Quantities of soil bacteria, fungi and actinomycetes were increased in the formation process of cultivated BSCs. These results indicate that BSCs can be cultivated rapidly after short-term cultivation and improve the micro-environment of soil surface. These results will provide scientific basis for vegetation restoration and ecological reconstruction in the Loess Plateau, China.
引文
1. 阿不都拉·阿巴斯,艾尼瓦尔·吐米尔.新疆古尔班通古特沙漠南缘土壤生物结皮中地衣植物物种组成和分布[J].新疆大学学报:自然科学版,2006,23(4):379-383.
    2. 阿不都拉·阿巴斯,吴继农.新疆地衣[M].乌鲁木齐:新疆科技卫生出版社,1998.
    3. 艾尼瓦尔·吐米尔,阿不都拉·阿巴斯.新疆阿勒泰山两河源自然保护区地面生地衣的物种多样性[J].生物多样性,2006,144(5):444-450.
    4. 安韶山,黄懿梅,郑粉莉.黄土丘陵草地土壤脲酶活性特征及其与土壤性质的关系[J].草地学报,2005,13(3):233-237.
    5. 白学良,王瑶,徐杰,等.沙坡头地区固定沙丘结皮层藓类植物的繁殖和生长特性研究[J].中国沙漠,2003,23(2):171-173.
    6. 包耀贤,吴发启,贾玉奎.黄土丘陵沟壑区坝地与梯田土壤氮素特征与演变[J].西北农林科技大学学报,2008,36(3):97-104.
    7. 边丹丹,廖超英,孙长忠,等.黄土丘陵区土壤生物结皮对土壤微生物分布特征的影响[J].干旱区研究,2011,29(4):109-114.
    8. 卜楠,朱清科,王蕊,等.陕北黄土区生物土壤结皮抗冲性研究[J].北京林业大学学报,2009,31(5):96-101.
    9. 陈何生.沙坡头地区生物结皮的水文物理特点及其环境意义[J].干旱区研究,1992,9(3):31-38.
    10.陈健斌,吴继农,魏江春.神农架地衣[M].北京:世界图书出版公司,1989.
    11.陈兰周,刘永定,等.荒漠藻类及其结皮的研究[A].中国科学基金,2003.
    12.陈荣毅,魏文寿,张元明,等.干旱区生物土壤结皮对种子植物多样性的影响[J].中国沙漠,2008,28(5):868-873.
    13.陈彦芹,赵允格,冉茂勇.黄土丘陵区藓结皮人工培养方法试验研究[J].西北植物学报,2009,29(3):0586-0592.
    14.陈政,阳贵德,孙庆业.生物结皮对铜尾矿废弃地土壤微生物量及酶活性的影响[J].应用生态学,2009,20(9):2193-2198.
    15.陈祝春.不同地带沙丘结皮层的土壤酶活性[J].中国沙漠,1989,9(1):85-92.
    16.程丽娟,来航线,李素俭,等.微生物对土壤团聚体形成的影响[J].西北植物学报,2004,25(6):1269-1271.
    17.崔燕,吕贻忠,李保国.鄂尔多斯沙地土壤生物结皮的理化性质[J].土壤,2004,36(2):197-202.
    18.丁涵,胡海波,王人潮.半干旱区土壤酶活性与其理化和微生物的关系[J].南京林业大学学报:自然科学版,2007,31(2):13-18.
    19.董莉丽,郑粉莉,安娟.黄土丘陵区不同土地利用类型下土壤微生物生物量特征[J].土壤通报,2010,41(6):1370-1375.
    20.窦森.土壤有机质[M].北京:科学出版社,2010,26-43.
    21.杜宇,李钢铁,安小亮,等.藻类生物结皮人工促进技术的研究[J].内蒙古农业大学学报,2009,30(3):20-23.
    22.冯贵颖,朱铭莪,陈会明.土壤粘粒吸附脲酶特征的研究[J].西北农林科技大学学报:自然科学版,2001,29(5):84-87.
    23.冯贵颖,朱铭莪,呼世斌.土壤粘粒吸附脲酶量的影响因子研究[J].西北农业大学学报,1999,27(4):48-53.
    24.关松荫.土壤酶学与研究方法[M].农业出版社,1986.
    25.郭轶瑞,赵哈林,赵学勇,等.科尔沁沙地结皮发育对土壤理化性质影响的研究[J].水土保持学报,2007,21:135-139.
    26.郭轶瑞,赵哈林,赵学勇,等.科尔沁沙地人工林下结皮发育对表土特性研究的影响[J].中国沙漠,2007a,27(6):1000-1006.
    27.郝占庆,叶吉,姜萍,等.长白山暗针叶林苔藓植物在养分循环中的作用[J].应用生态学报,2005,16(12):2263-2266.
    28.何斌,温远光,袁霞,等.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究[J].林业科学,2002,38(2):21-26.
    29.胡承彪,朱宏光,韦源生,等.不同类型混交林土壤微生物及生化特性的研究[J].林业科技通讯,1991,(12):14-17.
    30.胡春香,张德禄,刘永定,等.荒漠藻结皮的胶结机理[J].科学通报,2002,47(12):931-937.
    31.胡春香,张德禄,刘永定.干旱区微小生物结皮中藻类研究的新进展[J].自然科学进展,2003,13(8):791-795.
    32.焦雯珺,朱清科,张宇清,等.陕北黄区退耕还林地生物结皮分布及其影响因子研究[J].北京林业大学学报,2007,29(1):102-107.
    33.李冰,张朝晖.喀斯特石漠结皮层藓类物种多样性及在石漠化治理中的作用研究[J].中国岩溶,2009,28(1):55-60.
    34.李东坡,武志杰,陈利军.土壤生物学活性对施入有机肥料的响应-Ⅰ 土壤酶活性的响应[J].土壤通报,2003,34(5):463-468.
    35.李国雷,刘勇,李瑞生,等.油松叶凋落物分解速率、养分归还及组分对间伐强度的响应[J].北京林业大学学报,2008,30(5):52-58.
    36.李荣新,张景光,王新平,等.干旱沙漠区土壤微生物结皮及其对固沙植被影响的研究[J].植物学报,2000,42(9):956-970.
    37.李晓丽,申向东.结皮土壤的抗风蚀性分析[J].干旱区资源与环境,2006,20(2):203-206.
    38.李新荣,贾玉奎,龙立群,等.干旱半干旱地区土壤微生物结皮的生态学意义及若干进展[J].中国沙漠,2001,21(1):4-10.
    39.李新荣,张元明,赵允格.生物土壤结皮研究:进展、前沿与展望[J].地球科学进展,2009,24(1):11-24.
    40.李新荣,陈应武,贾荣亮.生物土壤结皮:荒漠昆虫食物链的重要构建者[J].中国沙漠,2008,28(2):245-248.
    41.陵裕泉,屈建军,胡玟.沙面结皮形成与微环境变化[J].应用生态学报,1993,4(4):393-398.
    42.刘萌,魏江春.腾格里沙漠沙坡头地区地衣物种多样性研究[J].菌物学报,2013,32(1):42-50.
    43.刘艳梅,李新荣,何明珠,等.生物土壤结皮对土壤微生物量碳的影响[J].中国沙漠,2012,32(3):669-673.
    44.吕建亮,廖超英,孙长忠,等.黄土地表藻类结皮分布影响因素研究[J].西北林学院学报,2010,25(1):11-14.
    45.玛依努尔·依克木,张丙昌,买买提明·苏来曼.古尔班通古特沙漠生物结皮中微生物量与土壤酶活性的季节变化[J].中国沙漠,2013,33(4):1091-1097.
    46.孟杰,卜崇峰,赵玉娇,等.陕北水蚀风蚀交错区生物结皮对土壤酶活性及养分含量的影响[J].自然资源学报,2010,25(11):1864-1874.
    47.聂华丽,张元明,吴楠,等.生物结皮对5种不同形态的荒漠植物种子萌发的影响[J].植物生态学报,2009,33(1):161-170.
    48.宁远英,徐杰,张功.科尔沁沙地放牧干扰过程中植被组成和生物结皮微生物数量的变化[J].内蒙古大学学报(自然科学版),2009,40(6):670-676.
    49.齐雁冰,常庆瑞,惠泱河.高寒地区人工植被恢复过程中沙表生物结皮特性研究[J].干旱农业研究,2006,24(6):98-102.
    50.齐治军,许明祥.黄土丘陵区小流域土地覆被物空间分布特征及影响因素研究[J].西北农林科技大学学报(自然科学版),2010,38(8):75-82.
    51.齐治军,许明祥.黄土丘陵区小流域土地覆被物空间分布特征及影响因素研究[J].2010,38(8):75-82.
    52.冉茂勇,赵允格,陈彦芹.黄土丘陵水蚀区生物结皮土壤抗冲性试验研究[J].西北林学院学报,2009,24(3):37-40.
    53.饶本强,王伟波,兰书斌,等.库布齐沙地三年生人工藻结皮发育特征及微生物分布[J].水生生物学报,2009,33(5):937-944.
    54.邵玉琴,赵吉,包青海.库布齐沙漠固定沙丘土壤微生物生物量的垂直分布[J].中国沙漠,2001,21(1):88-92.
    55.邵玉琴,赵吉.不同固沙区结皮中微生物生物量和数量的比较研究[J].中国沙漠,2004,24(1):68-71.
    56.苏延桂,李新荣,张景光,等.生物土壤结皮对土壤种子库的影响[J].中国沙漠,2006,26(6):997-1001.
    57.苏延桂,李新荣,赵听,等.不同类型生物土壤结皮固氮活性及对环境因子的响应研究[J].地球科学进展,2011,26(3):332-338.
    58.苏永中,赵哈林.科尔沁沙地不同土地利用和管理方式对土壤质量性状的影响[J].应用生态学报,2003,14(10):1681-1686.
    59.唐东山,王伟波,李敦海,等.人工藻结皮对库布齐沙地土壤酶活性的影响[J].水生生物学报,2007,31(3):339-344.
    60.唐玉姝,魏朝富,颜廷梅,等.土壤质量生物学指标研究进展[J].土壤,2007,39(2):157-163.
    61.田桂泉,王子文.科尔沁沙地松树山地区苔藓植物物种多样性与分布特征研究[J].中国沙漠,2011,31(5):1181-1187.
    62.汪景宽,汤方栋,张继宏,等.不同肥力棕壤及其微团聚体中酶活性比较[J].沈阳农业大学学报,2000,31(2):185-189.
    63.汪文云,张朝晖.贵州老万场金矿石灰岩与红土矿体土壤结皮中苔藓植物种类及群落比较研究[J].水土保持研究,2008,15(4):244-247.
    64.王诚吉,李登武,党坤良.陕西天华山自然保护区苔藓植物区系研究[J].西北植物学报,2005,25(12):2472-2477.
    65.王春阳,周建斌,夏志敏,等.黄土高原区不同植被凋落物搭配对土壤微生物量碳、氮的影响[J].生态学报,2011,31(8):2139-2147.
    66.王翠萍,廖超英,孙长忠,等.黄土地表生物结皮对土壤贮水性能及水分入渗特征的影响[J].干旱地区农业研究,2009a,27(4):55-59,64.
    67.王翠萍,廖超英,孙长忠,等.藻类结皮对黄土高原丘陵沟壑区土壤物理性状的影响[J].西北林学院学报,2009b,24(3):41-45.
    68.王国梁,刘国彬,许明祥.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持通报,2002,22(1):1-5.
    69.王乐乐,聂立水,戴伟.北京山地不同针叶林型下土壤脲酶动力学和热力学特征研究[J].北京林业大学学报,2008,30(2):89-94.
    70.王启兰,曹广民,王长庭.放牧对小嵩草草甸土壤酶活性及土壤环境因素的影响[J].植物营养与肥料学报,2007,13(5):856-864.
    71.王蕊,朱清科,卜楠,等.黄土丘陵沟壑区生物土壤结皮理化性质[J].干旱区研究,2010,27(3):401-408.
    72.王蕊,朱清科,赵磊磊,等.黄土高原土壤生物结皮对植物种子出苗和生长的影响[J].干旱区研究,2011,28(5):800-807.
    73.王素娟,高丽,苏和,等.内蒙古库布齐沙地土壤蛋白酶初步研究[J].草业科学,2009,26(9):13-17.
    74.王素娟.库布齐沙地东缘土壤微生物研究[D].中国农业科学院草原研究所,2009.
    75.魏江春,姜玉梅.西藏地衣[M].北京:科学出版社,1986:1-130.
    76.魏江春.菌物多样性、系统多样性及其对人类发展的意义[J].生物多样性,1993,1(1):23-25.
    77.魏江春.地衣[M]裘维蕃.菌物学大全.北京:科学出版社,1998:445-548.
    78.吴发启,范文波.坡耕地土壤结皮形成的影响因素分析[J].水土保持学报,2002,16(1):33-36.
    79.吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    80.吴楠,潘柏荣,张元明.土壤微生物在生物结皮形成中的作用和生态学意义[J].干旱区研究,2004,21(4):444-449.
    81.吴楠,潘伯荣,张元明,等.古尔班通古特沙漠生物结皮中土壤微生物垂直分布特征[J].应用与环境生物学报,2005,11(3):349-353.
    82.吴楠,张元明.古尔班通古特沙漠土壤结皮影响下的土壤酶分布特征[J].中国沙漠,2010,30(5):1128-1136.
    83.吴向华,刘五星.土壤微生物生态工程[M].北京:化学工业出版社,2012,54-62.
    84.吴易雯,饶本强,刘永定,等.不同生境对人工结皮发育及表土氮、磷含量及其代谢酶活性的影响[J].土壤,2013,45(1):52-59.
    85.吴永胜,哈斯,李双全,等.毛乌素沙地南缘沙丘生物结皮中微生物分布特征[J].生态学杂志,2010,29(8):1624-1628.
    86.吴玉环,高谦,程国栋.生物土壤结皮的生态功能[J].生态学杂志,2002,21(4):41-45.
    87.肖波,赵允格,邵明安.陕北水蚀风蚀交错区两种生物结皮对土壤饱和导水率的影响[J].农业工程学报,2007a,23(12):35-40.
    88.肖波,赵允格,邵明安.陕北水蚀风蚀交错区两种生物结皮对土壤理化性质的影响[J].生态学报,2007b,27(11):4662-4670.
    89.肖波,赵允格,邵明安.黄土高原侵蚀区生物结皮的人工培育和其水土保持效应[J].草地学报,2008a,16(1):28-33.
    90.肖波,赵允格,许明祥,等.陕北黄土区生物结皮条件下土壤养分的积累及流失风险[J].应用生态学报,2008b,19(5):1019-1026.
    91.谢小伟,郭水良,黄华.浙江金华市区地面苔藓植物分布与环境因子关系研究[J].武汉植物学研究,2003,21(2):129-136.
    92.徐冬梅,刘广深,许中坚,等.模拟酸雨组成对棉花根际土壤水解酶活性的影响[J].土壤通报,2003,34(3):216-218.
    93.徐恒,廖超英,李晓明,等.榆林沙区人工固沙林土壤微生物生态分布特征及酶活性研究[J].西北农林科技大学学报(自然科学版),2008,36(12):135-141.
    94.徐杰,白学良,哈斯巴根,等.鄂尔多斯地区不同生境类型对苔藓植物多样性和丰富度的影响[J].内蒙古师范大学学报(自然科学汉文版),2007,36(1):98-103.
    95.徐杰,白学良,田桂泉,等.腾格里沙漠刚固定沙丘结皮层藓类植物研究:物种组成、生态功能及与土壤环境因子的关系[J].中国沙漠,2005,25(2):234-242.
    96.徐杰,白学良,杨持,等.固定沙丘生物结皮层藓类植物多样性及固沙作用研究[J].植物生态学报,2003,27(4):545-551.
    97.徐杰,宁远英.科尔沁沙地放牧恢复过程中生物土壤结皮对土壤酶活性的影响[J].内蒙古师范大学学报(自然科学汉文版),2010,39(3):302-307.
    98.薛文悦,戴伟,王乐乐,等.北京山地几种针叶林土壤酶特征及其与土壤理化性质的关系[J].北京林业大学学报,2009,31(4):90-96.
    99.亚历山大.土壤微生物学导论[M].广西农学院农业微生物学教研组译.北京:科学技术出版社,1983.
    100.闫德仁,薛英英,刘国厚.库布齐沙漠生物结皮层土壤理化特性的研究[J].土壤,2008-40(1):145-148.
    101.闫德仁,王素英,吕景辉,等.生物结皮层土壤微生物含量的变化[J].内蒙古林业科技,2008b,34(2):1-5.
    102.闫德仁.库布齐沙漠生物结皮层的肥岛特征研究[D].呼和浩特:内蒙古农业大学生态环境学院,2008.
    103.杨佳佳,李兆君,梁永超,等.温度和水分对不同肥料条件下黑土磷形态转化的影响及机制[J].植物营养与肥料学报,2009,15(6):1295-1302.
    104.杨丽娜,赵允格,明姣,等.黄土高原不同侵蚀类型区生物结皮中蓝藻的多样性[J].生态学报,2013,33(14):4416-4424.
    105.杨世琦,杨正礼.黄土高原生态系统演替进程中土壤有机质和pH值变化规律[J].水土保持研究,2008,15(2):159-163.
    106.杨秀莲,张克斌,曹永翔.封育草地土壤生物结皮对水分入渗与植物多样性的影响[J].生态环境学报,2010,19(4):853-856.
    107.俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-421.
    108.张国秀,赵允格,许明祥,等.黄土丘陵区生物结皮对土壤磷素有效性及碱性磷酸酶活性的影响[J].植物营养与肥料学报,2012,18(3):621-628.
    109.张继贤,邸醒民,王淑湘,等.沙坡头地区防护林体系建立过程中生态环境变化的特点[J].干旱区资源与环境,1994,8(3):68-79.
    110.张健,刘国彬,许明祥,等.黄土丘陵区影响生物结皮退化因素的初步研究[J].中国水土保持科学,2008,6(6):14-20.
    111.张克斌,卢晓杰,李瑞.北方农牧交错带沙地生物结皮研究[J].干旱区资源与环境,2008,22(4):147-151.
    112.张培培,赵允格,王媛,等.黄土高原丘陵区生物结皮土壤的斥水性[J].应用生态学报,2014,25(3):657-663.
    113.张笑培,杨改河,任广鑫,等.黄土高原南部植被恢复对土壤理化性状与土壤酶活性的影响[J].干旱地区农业研究,2010,28(6):64-68.
    114.张笑培,杨改河,王得祥,等.黄土高原沟壑区不同植被恢复模式对土壤生物学特性的影响[J].西北农林科技大学学报(自然科学版),2008,36(5):149-154,159.
    115.张元明,曹同,潘柏荣.新疆古尔班通古特沙漠南缘土壤结皮中苔藓植物的研究[J].西北植物学报,2002,22(1):18-23.
    116.张元明,曹同,潘柏荣.新疆博格达山地面生苔藓植物多样性的研究[J].应用生态学报,2003,14(6):887-891.
    117.张元明,杨维康,王雪芹,等.生物结皮影响下的土壤有机质分异特征[J].生态学报,2005,25(12):3420-3425.
    118.张元明.荒漠地表生物土壤结皮的微结构及其早期发育特征[J].科学通报,2005,50(1):42-47.
    119.张振国,焦菊英,白文娟.黄土丘陵沟壑区退耕地植被恢复中生物土壤结皮特征[J].水土保持通报,2006,26(4):33-37.
    120.赵帅,张静妮,赖欣,等.放牧与围封对呼伦贝尔针茅草原土壤酶活性及理化性质的影响[J].中国草地学报,2011,33(1):71-76.
    121.赵先丽,程海涛,吕国红,等.土壤微生物生物量研究进展[J].气象与环境学报,2006,22(4):68-72.
    122.赵宇龙,张晓军,金一荻,等.毛乌素沙漠生物土壤结皮真菌群落多样性分析[J].内蒙古农业大学学报,2011,32(2):170-174.
    123.赵允格,许明祥,王全九,等.黄土丘陵区退耕地生物结皮对土壤理化性状的影响[J].自然资源学报,2006,21(3):441-448.
    124. Anderson D C, Harper K T, Holmgren R C. Factors influencing development of cryptogamic crusts in Utah deserts [J]. Range Manage,1982,35(2):180-185.
    125. Aptroot A, Seaward M R D. Annotated Checklist of Hong Kong Lichens [J]. Tropical Brylogy, 1999,17:57-101.
    126. Aranibar J N, Anderson I C, Ringerose S, et al. Importance of nitrogen fixation in soil crust of southern African arid ecosystems:acetylene reduction and stable isotope studies [J]. Journal of Arid Environment,2003,54:345-358.
    127. Awasthi D D. A key to the Microlichens of India, Nepal and Srilanka [J]. Bibliotheca Lichenologica,1991,40:207-302.
    128. Bamforth S S. Protozoa of biological soil crusts of a cool desert in Utah [J]. Journal of Arid Environments,2008,72(5):722-729.
    129. Bastida F, Zsolnay A, Hernandez T, et al. Past, present and future of soil quality indices:a biological perspective [J]. Geoderma,2008,147:159-171.
    130. Belnap J, Gardner J S. Soil microstructure of the Colorado plateau:the role of the cyanobacterium Microcoleus vaginatus [J]. Great Basin Nat.,1993,53(1):40-47.
    131. Belnap J, Gillette D A. Disturbance of biological soil crusts:impacts on potential wind erodibility of sandy desert soils in southeastern Utah, USA [J]. Land Degrad Develop,1997,8(2):355-362.
    132. Belnap J, Gillette D A. Vulnerability of desert biological soil crusts to wind erosion:The influences of crust development, soil texture, and disturbance [J]. Journal of Arid Environments, 1998,39(2):133-142.
    133. Belnap J, Harper K T, Warren S D. Surface disturbance of cryptobiotic soil crusts:nitrogenase activity, chlorophyll content and chlorophyll degradation [J]. Arid Soil Res. Rehabil.,1994,8: 1-8.
    134. Belnap J, Lange O L. Biological soil crust:structure, function and Management [M]. Berlin: Springer-Verlag,2003.
    135. Belnap J, Phillips S L, Witwichi D L, et al. Visually assessing the level of development and soil suface stability of cyanobacterially dominated biological soil crusts [J]. Journal of Arid Environments,2008,72:1257-1264.
    136. Belnap J, Sanford R L, Lungu L. Biological soil crusts:ecological roles and responses to fire in Miombo Woodlands of Zimbabwe [J]. Transactions of Zimbobwean Scientific Association, 1997a,70:14-20.
    137. Belnap J. Surface disturbances their role in accelerating desertification [J]. Environ. Monit. Assess.,1995,37(1):39-57..
    138. Belnap J. Nitrogen fixation in biological soil crusts from southeast Utah, USA [J]. Biology and Fertility to Soils,2002,35:128-135.
    139. Belnap J. The world at your feet:desert biological soil crusts [J]. Frontiers in Ecology and the Environment,2003,1(5):181-189.
    140. Belnap J. The potential roles of biological soil crusts [J]. Frontiers in Ecology and the Environment,2006,1:181-189.
    141.Beymer R J, Klopatek J M. Potential contribution of carbon by microphytic crusts in pinyonjuniper woodlands [J]. Arid Soil Res. Reh.,1991,5(2):187-198.
    142. Bielders C L, Rajot J L, Amadou M. Transport of soil and nutrients by wind in bush fallow land and traditionally managed cultivated fields in the Sahel [J]. Geoderma,2002,109:19-39.
    143. Brodo I M, Sharnoff S D, Sharnoff S. Lichens of North America [M]. New Haven & London:Yale University Press,2001.
    144. Broker M A, Belnap J, Davidson D W, et al. Evidence for micronutrient limitation of biological soil crusts:importance to arid-land restoreation [J]. Ecological Applications,2005,15: 1941-1951.
    145. Brookes P C, Landman A Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil [J]. Soil Biology Biochemistry,1985,17:837-842.
    146. Castillo-Monroy A P, Maestre F T, Delgado-Baquerizo M, et al. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems:insights from Mediterranean grassland [J]. Plant and Soil,2010,333:21-34.
    147. Chamizo S, Cant6n Y, Miralles I, et al. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems [J]. Soil Biology & Biochemistry,2012,49: 96-105.
    148. Daniel C M, Michael J S. Crust formation efects on soil erosion processes [J]. Soil Sei. Soe. Am. J.,1990,54:1117-1123.
    149. Davidson D W, Bowker M D, George S L, et al. Treatment effects on performance of N-fixing lichens in disturbed soil crusts on the Colorado Plateau [J]. Ecological Applications,2002,12: 1391-1405.
    150. Drahorad S, Felix-Henningsen P, Eckhardt K U, et al. Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev Desert (Israel) along a rainfall gradient [J]. Journal of Arid Environments,2013,94:18-26.
    151. During H J, Van Tooren B F. Bryophyte interactions with other plants [J]. Botanical Journal of the Linnean Society,1990,104:79-98.
    152. Eldridge D J, Green R S B. Microbiotic soil crusts:a view of these roles in soil and ecological processes in the rangelands of Australia [J]. Australian Journal of Soil Research,1994,32: 389-415.
    153. Eldridge D J, Leys J F. Exploring some relationships between biological soil crusts, soil aggregation and wind erosion [J]. Journal of Arid Environments,2003,53(4):457-466.
    154. Eldridge D J, Zaady E, Shachak M. Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel [J]. Catena,2000,40(3):323-336.
    155. Eldridge D J. Cryptogam cover and soil surface condition:effects on hydrology on a semiarid woodland soil [J]. Arid Soil Res. Reh.,1993,7(1):203-217.
    156. Esslinger T L, Egan R. A sixth checklist of the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada [J]. The Bryologist,1995,98(4):467-549.
    157. Evans R D, Belnap J. Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem [J]. Ecology,1999,80(1):150-160.
    158. Evans R D, Ehleringer J R. A break in the nitrogen cyclein aridlands evidence from 15 N of soils [J]. Oecologia,1993,9(2):314-317.
    159. Evans R D, Johansen J R. Microbiotic crusts and ecosystem processes [J]. Critical Reviews in Plant Sciences,1999,18:183-225.
    160. Evans R D, Lange O L. Biological soil crusts and ecosystem nitrogen and carbon dynamics. In: Belnap J, Lange O L (Eds), Biological Soil Crusts:Structure, Function and Management, Springer-Verlag, Berlin,2003,263-279.
    161. Freitag T E, Chang L, Clegg C D, et al. Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils [J]. Applied & Environmental Microbiology,2005,71:8323-8334.
    162. GarciaPichel E, Belnap J. The microenvironments and microscale productivity of cyanobacterial desert crusts [J]. J. Phyt.,1996,32(4):774-782.
    163. Greene R S B, Chartres C J, Hodgkinson K C. The effects of fire on the soil in a degraded semi-arid woodland. I. Cryptogam cover and physical and micromorphological properties [J]. Australia Journal of soil Research,1990,28:755-777.
    164. Guo M J, Cao J, Wang C Y, et al. Microbial biomass and nutrients in soil at different stages of secondary forest succession in Ziwulin, northwest China [J]. Forest Ecology and Management, 2005,217:117-125.
    165. Harper K T, Belnap J. The influence of biological crusts on mineral uptake by associated vascular plants [J]. Journal of Arid Environment,2001,47(3):347-357.
    166. Harper K T, Pendleton R L. Cyanobacteria and cyanolichens:can they enhance availability of essential minerals for higher plants [J].Great Basin Naturalist,1993,53:59-72.
    167. Hawkes C V. Nitrogen cycling mediated by biological soil crusts and arbuscular mycorrhizal fungi [J]. Ecology,2003,84:1553-1562.
    168. Housman D C, Powers H H, Collins A D, et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert [J]. Journal of Arid Environments,2006,66:620-634.
    169. Jenkinson D S. Determination of microbial biomass carbon and nitrogen in soil. Advances in Nitrogen Cycling in Agricultural Ecosystems, C.A.B. International, Walling ford,1988:368-386.
    170. Kidron G.J. Two different causes for runoff initiation onmicrobiotic crusts:hydrophobicity and pore clogging [J].Soil Sci.,1999,164(1):18-27.
    171. Kirk J L, Baudette L A, Hart M, et al. Methods of studying soil microbial diversity [J]. Journal of Microbiological Methods,2004,58:169-188.
    172. Lan S B, Zhang Q Y, Li W, et al. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities [J]. Environmental Science & Technology,2014,48:307-315.
    173.Lange O L. Photosynthesis and water relations of lichen soil-crusts:Field measurementsin the coastal fog zone of the Namib Desert [J]. Funct. Ecol.,1994,8(2):253-264.
    174. Langhans T M, Storm C, Schwabe A. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques [J]. Microbial Ecology,2009,58:394-407.
    175. Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature,2006,442:806-809.
    176. Li T, Xiao H L, Li X R. Modeling the effects of crust on rain infiltration in vegetated sand dunes in arid desert [J]. Arid Land Research and Management,2001,15:41-48.
    177. Maestre F T. Infiltration penetration resistance and microphytic crust composition in contrasted microsites with in a Mediterranean semi-arid steppe [J]. Soil Biology and Bilochemistry,2002,34: 895-898.
    178. Marialigeti S. The effects of stand structure on ground-floor bryophyte assemblages in temperate mixed forests [J]. Biodiversity and Conservation,2009,18(8):2223-2241.
    179. Mills S E, Macdonald S E. Predictors of moss and liverwort species diversity of microsites in conifer-dominated boreal forest [J]. veg. Sci.,2004,15:189-198.
    180. Nakatsubo T. The role of bryophytes in terrestrial ecosystems with special reference to forests and volcanic deserts [J]. Japanese Journal of Ecology (Tokyo),1997,47(1):43-54.
    181. Park Y S. The macrolichen flora of South korea [J]. The Bryologist,1990,93:105-160.
    182. Pendleton R L, Warren S D. Effects of cryptobiotic soil crusts and VA mycorrhizal inoculation on growth of five range-land plant species [A]. In:West,N.E.(ed).Proceedings of the Fifth International Rangeland Congress [C]. Salt Lake City:Society for Range Management,1995: 436-437.
    183. Pierre H, Charles L. Effects of livestock grazing on physical and chemical properties of sandy soils in Sahelian range lands [J]. Journal of Arid Environments,1999,41:231-245.
    184. Powlson D S, Brookes P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation [J]. Soil Biological Biochemistry,1987,19:159-164.
    185. Rao A V, Venkatesward B. Microbial ecology of the soil of Indian Desert [J]. Agriculture Ecosystem and Environment,1983,10(4):498-513.
    186. Russow R, Veste M, Littmann T. Using the natural 15N abundance to access the major nitrogen inputs into the sand dune area of the north-western Negev Desert (Israel) [J]. Isotopes in environmental and Health Studies,2004, (40):57-67.
    187. Sanders W B. Role of Lichen rhizomophs in thallus propagation and substrate colonization [J]. Cryptogam Bot,1994,4:283-289.
    188. Singer M J. Physical properties of arid region soils [A]. Skujins Jed. Semiarid lands and deserts: soils resource and reclamation [M]. NewYork:Marcel Dekker,1991,81-109.
    189. Smith E P. Niche breadth, resource availability, and inference [J]. Ecology,1982,63:1675-1681.
    190. St. Clair L L, Johansen J R, Webb B L. Rapid stabilization of fire-disturbed sites using a soil crust slurry:inoculation studies [J]. Reclamation and Revegetation Research,1986,4:261-269.
    191. Su Y G, Li X R, Cheng Y W, et al. Effects of biological soil crusts on emergence of desert vascular plants in North China [J]. Plant Ecology,2007,191:11-19.
    192. Teixeira F C P, Reinert F, Rumjanek N G, et al. Quantification of the contribution of biological nitrogen fixation to Cratylia mollis using the 15 N natural abundance technique in the semi-arid Caatinga region of Brazil [J]. Soil biology & Bio-chemistry,2006,38:1989-1993.
    193. Thomson J W. American Arctic Lichens I. The Macrolichens [M]. New York:Columbia Univ. Press,1984.
    194. Vance E D, Brookes P C, and Jenkinson D S. An extraction method for measuring soil biomass C [J]. Soil Biology & Biochemistry,1987,19:703-707.
    195. Veluci R M, Neher D A, Weicht T R. Nitrogen Fixation and Leaching of BSC communities in Mesic Temperate Soils [J]. Microbial Ecology,2006,51:189-196.
    196. Venkatesward B, Rao A V. Distribution of microorganism in stabilized and unstabilized sand dunes of the Indian desert [J]. Journal of arid Environment,1981, (4):1302-1311.
    197. West N E. Structure and function of microphytic soil crusts in wildland ecosystem of arid and semi-arid regions [J]. Advances in Ecological Research,1990,20:179-223.
    198. Wu N, Zhang Y M, Downing A. Comparative study of nitrogenase activity in different types of biological soil crusts in the Gurbantunggut Desert, Northwestern China [J]. Journal of Arid Environmens,2009,73:828-833.
    199. Xiao B, Wang Q H, Zhao Y G, et al. Artificial culture of biological soil crusts and its effects on overland flow and infiltration under simulated rainfall [J]. Applied Soil Ecology,2011,48:11-17.
    200. Yang X H, Wang K Q, Wang B R, et al. Afforestation using micro-catchment water harvesting system with micro-phytic crust treatment on the semi-arid Loess Plateau:A preliminary result [J]. Journal of Forestry Research,2005,16(1):9-14.
    201. Yeager C M. Kornosky J L, Housman D C, et al. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuam Desert [J]. Applied and Environment Microbiology,2004,70:973-983.
    202. Yoshimura I. The phytogeographical relationships between the Japanese and North American species of Cladonia [J]. J Hattori Bot. Lab.,1968,31:227-246.
    203. Yoshimura I. Lichen Flora of Japan in Colour [M]. Osaka:Hoikusha Publishing Co. Ltd.,1974: 1-49
    204. Zaady E, Groffman P, Shachak M. Nitrogen fixation in macro-and microphytic patches in the Negev desert [J]. Soil Biology and Biochemistry,1998,30:449-454.
    205. Zhao Y, Xu M, Belnap J. Potential nitrogen fixation activity of different aged biological soil crusts form rehabilitated grasslands of the hilly Loess Plateau, China [J]. Journal of Arid Environments,2010,74:1186-1191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700