用户名: 密码: 验证码:
黄土高原半干旱区复杂地形上大气边界层湍流特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正确认识黄土高原半干旱区大气边界层湍流对理解区域地-气相互作用基本过程及其气候反馈机理、提高数值天气预报和大气污染预测准确性、揭示气候变化背景下的区域干旱化特征方面有重要意义。而复杂的下垫面条件制约了人们对该区域湍流特征的认识。
     为认识黄土高原复杂地形上大气边界层湍流特征,分析了兰州大学半干旱气候与环境观测站(Semi-Arid Climate and Environment Observatory of Lanzhou University,SACOL)的湍流观测资料。浅层土壤热量存储和垂直平流输送是SACOL夏季地表能量不闭合的最主要原因;其他诸如低层空气存储、光合作用固定等因素占10%左右;传感器间距和采样频率等造成涡动相关系统(EC)对湍流热通量估计偏低。这种偏差一方面说明EC也对CO2通量某种程度上低估,另一方面通过WPL修正传递误差影响CO2通量观测精度。在黄土高原半干旱区,白天,强烈的感热输送造成的密度扰动影响强烈,EC观测的CO2通量误差与感热通量有更强的相关性;夜间,CO2浓度和水汽浓度的谱特征一致。
     夜间稳定层结,非平稳运动是超临界理查森数条件下湍流存在的重要原因,导致湍流通量离散性大,偏离平均气流的估计值,湍流表现为强烈的水平速度脉动和相对微弱的垂直速度脉动,呈间歇态。将稳定边界层湍流分为“局地湍流”和“非平稳运动”两种运动形态,尺度分析表明两者的临界尺度在2~4mm。弱稳定情形,局地湍流强度是常值,σ无量纲风速标准差σw/u*、σu/u*和σv/u*分别为1.35、2.54和2.21;微风强稳定情形,非平稳运动在湍流生成和通量输送方面起决定作用。提出一判别非平稳运动的方法,可客观定量分离非平稳运动信号,非平稳运动发生频率随风速U增大而减小,U>3.0m s-1时,非平稳运动消失,非平稳风速在1.0m s-1左右,持续时间不超过20min。不同于平坦均匀站点,在复杂地形上风速是研究非平稳运动应关注的主要因素,依非平稳运动和局地湍流特征,复杂地形上稳定边界层湍流可分为三类:(1)平稳湍流(U>3.0m s-1),相似理论较好成立,Φm,=0.7+1.5ξ;(2)间歇湍流,U在一定范围内(梯度理查森数Ri≤0.3时,1.0~3.0ms-1;Ri>0.3,1.5~3.0ms-1),湍流通量由局地湍流和非平稳运动共同贡献,相似理论能用以描述局地湍流,不能描述非平稳运动;(3)弱风区(Ri≤0.3时,U<1.0ms-1;Ri>0.3,U<1.5m s-1),非平稳运动起决定性作用,相似理论失效。
     边界层低空急流发生时,其剪切作用是夜间湍流主要能量来源,此时非平稳被压制,87.3%的观测是Ri<0.25的弱稳定层结,湍流活动强,平稳性好,湍流在上层产生并向下传递,湍动能输送强度约-3×10-3m3s-3;无低空急流时,多是Ri>0.25的强稳定情形,非平稳运动频发,湍流间歇性强。
A basic understanding of the characteristics of turbulence in the boundary layer and the fluxes between the earth's surface and atmosphere in the semiarid region of the Loess Plateau is of significance for understanding of the land-atmosphere interaction processes and their climate feedback mechanism, improving the accuracy of numerical weather and air pollution forecast and other aspects. However, the complex terrain limits the understanding on the turbulence of this region.
     To gain an insight into the characteristics of turbulence in the boundary layer over the complex terrain of the Loess Plateau, data from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) are analyzed. Vertical advection and soil heat storage are main sources of imbalance and contribute nearly80%of the energy residuum; the composite of the minor surface energy balance terms, including air heat storage, vertical movement of moisture in soil and photosynthesis, jointly account for10%of the residuum. The flux attenuation due to spatial separation of sensors and sampling frequency could not be ignored, which alerts us to the possibility that CO2flux may also be underestimated. On the other hand, the losses of turbulent energy fluxes influence CO2flux derived from open-path analyser via application of the WPL algorithm. In the semiarid region of the Loess Plateau, during the daytime, the strong density effect caused by sensible heat results in CO2flux observation precision strongly dependent on the sensible heat flux. While in the nighttime, the behavior of CO2concentration spectrum is consistent with that of water vapor concentration.
     Non-stationary motions are the important cause of turbulence, resulting in fluxes being scattered, deviating from that estimated by the mean airflow, accompanied by great fluctuations in horizontal velocity but much smaller fluctuations in vertical velocity, and the turbulence is intermittent. Turbulence in a stable boundary layer can be divided into two different forms of movement,"local turbulence" shear generated with small-scale, and "nonstationary motions" with scales just greater than those of the local turbulence, and the scale analysis shows that the critical scale between the two is2-4min. Under weakly satble condition, the standard deviation of u, v, and w normalized by friction velocity u is2.54,2.21and1.35, respectively. The generation of turbulence by non-stationary motions is a dominant factor in turbulence when winds are weak. A method has been proposed to identify and efficiently isolate nonstationary motions from turbulence series, and then the characteristics of non-stationary motions are examined. Nonstationary motions occur more often with decreasing wind speed, and last from a few to20minutes with the nonstationary velocity around1.0m s-1. Unlike site over homogeneous and flat underlying surface where turbulence nonstationarity is a function of stability, over a complex terrain site such as SACOL, the wind speed is a much more significant factor rather than the stability parameter to determine the occurrence frequency of nonstationary motions. Then turbulence is categorized into three regimes based on the behaviors of nonstationary motions and local turbulence. Regime1considers stationary turbulence with a wind speed greater than3.0m s-1, and the Monin-Obukhov similarity theory (MOST) can be used to calculate the turbulence momentum flux. Regime2examines intermittent turbulence where the MOST is competent to evaluate the local turbulence momentum flux, but not nonstationary motions. Regime3involves wind speed that is less than the threshold value, where nonstationary motions are dominant, local turbulence is independent of the mean flow, and where the MOST may well be invalid.
     The presence of low-level jets (LLJs) results in strong turbulence and weak stability with gradient Richardson number (Ri) less than0.25by the strong shear. The turbulence is more active and stationary, transported downward from aloft in the boundary layer, about-3×10-3m3s-3. With the absent of jet activity, synchronous observations show that65.4%are strong stable stratification of Ri>0.3, and non-stationary motions are more frequent.
引文
[1]吕达仁.我国大气物理研究进展[J].物理,1999,28(11):654-661.
    [2]张宏升,刘艳华,李富余,等.大气边界层探测的意义与作用[J].气象水文海洋仪器,2002(2):20-23.
    [3]刘熙明,胡非.大气边界层的研究——从均匀到非均匀[J].气象与减灾研究,2007,130(2):44-51
    [4]Zhang L, Chen C, Murlis J. Study on winter air pollution control in Lanzhou, China[J]. Water, Air, and Soil Pollution,2001,127(1-4):351-372.
    [5]Holtslag B. Preface:GEWEX Atmospheric Boundary-layer Study (GABLS) on stable bound-ary layers[J]. Boundary-Layer Meteorology,2006,118(2):243-246.
    [6]Sorbjan Z, Grachev A A. An evaluation of the flux-gradient relationship in the stable boundary layer[J]. Boundary-Layer Meteorology,2010,135(3):385-405.
    [7]Sorbjan Z.2012. A study of the stable boundary layer based on a single-column K-theory model. Boundary-Layer Meteorol 142:33-53
    [8]张强,王胜.关于黄土高原陆面过程及其观测试验研究[J].地球科学进展,2008,23(2):167-173.
    [9]张强,王胜,张杰,等.干旱区陆面过程和大气边界层研究进展[J].地球科学进展,2009,24(11):1185-1194.
    [10]赵鸣.边界层和陆面过程对中国暴雨影响研究的进展[J].暴雨灾害,2008,27(2):186-190.
    [11]胡隐樵.边界层气象学[J].地球科学进展,1991,6(6):57.59.
    [12]冯健武,刘辉志,王雷,等.半干旱区不同下垫面地表粗糙度和湍流通量整体输送系数变化特征[J].中国科学:地球科学,2012,42(1):24-33.
    [13]Vickers D, Mahrt L. A solution for flux contamination by mesoscale motions with very weak turbulence[J]. Boundary-Layer Meteorology,2006,118(3):431-447.
    [14]张镭.城市大气气溶胶与边界层相互作用研究[D].兰州大学博士论文,2001.
    [15]曹贤洁.兰州地区气溶胶辐射特性观测研究[D].兰州大学博士论文,2010.
    [16]鲍婧.黄土高原半干旱区近地层陆气相互作用研究[D].兰州大学博士论文,2012.
    [17]叶笃正,符淙斌,董文杰,等.全球变化科学领域的若干研究进展[J].大气科学,2003,27(4):435-450.
    [18]符淙斌,马柱国.全球变化与区域干旱化[J].大气科学,2008,32(4):752-760.
    [19]Monin A S, Obukhov A M. Basic laws of turbulent mixing in the surface layer of the atmos-phere[J]. Contrib. Geophys. Inst. Acad. Sci. USSR,1954,151:163-187.
    [20]Businger J A, Wyngaard J C, Izumi Y, et al. Flux-profile relationships in the atmospheric surface layer[J]. Journal of the Atmospheric Sciences,1971,28(2):181-189.
    [21]Wyngaard J C, Cote O R, Izumi Y. Local free convection, similarity, and the budgets of shear stress and heat flux[J]. Journal of the Atmospheric Sciences,1971,28(7):1171-1182.
    [22]Dyer A J, Bradley E F. An alternative analysis of flux-gradient relationships at the 1976 ITCE[J]. Boundary-Layer Meteorology,1982,22(1):3-19.
    [23]Sorbjan Z. On similarity in the atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1986,34(4):377-397.
    [24]Swinbank W C. The Measurement of Vertical Transfer of Heat and Water Vapor by Eddies in the Lower Atmosphere[J]. Journal of Atmospheric Sciences,1951,8:135-145.
    [25]Di Marco C, Skiba U, Weston K, et al. Field scale N2O flux measurements from grassland using eddy covariance[J]. Water, Air, & Soil Pollution:Focus,2005,4(6):143-149.
    [26]Reth S, Gockede M, Falge E. CO2 efflux from agricultural soils in Eastern Germany-comparison of a closed chamber system with eddy covariance measurements[J]. Theoretical and Applied Climatology,2005,80(2-4):105-120.
    [27]Rebmann C, Gockede M, Foken T, et al. Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling[J]. Theoretical and Applied Climatology,2005,80(2-4):121-141.
    [28]Baldocchi D, Falge E, Gu L, et al. FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society,2001,82(11):2415-2434.
    [29]Yu G R, Wen X F, Sun X M, et al. Overview of ChinaFLUX and evaluation of its eddy covariance measurement[J]. Agricultural and Forest Meteorology,2006,137(3):125-137.
    [30]Yu G, Fu Y, Sun X, et al. Recent progress and future directions of ChinaFLUX[J]. Science in China Series D:Earth Sciences,2006,49(2):1-23.
    [31]马耀明,李茂善,马伟强,等.西北干旱区及高原上卫星遥感非均匀地表区域能量通量研究[J].干旱气象,2003,21(3):34-42.
    [32]Zhang L, Lemeur R, Goutorbe J P. A one-layer resistance model for estimating regional evapotranspiration using remote sensing data[J]. Agricultural and Forest Meteorology,1995, 77(3):241-261.
    [33]Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation[J]. Journal of hydrology,1998,212:198-212.
    [34]王开存,周秀骥,李维亮,等.利用卫星遥感资料反演感热和潜热通量的研究综述[J].地球科学进展,2005,20(1).
    [35]蒋维楣,苗世光.大涡模拟与大气边界层研究——30年回顾与展望[J].自然科学进展,2004,14(1):11-19.
    [36]Moeng C H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence[J]. Journal of the Atmospheric Sciences,1984,41(13):2052-2062.
    [37]Letzel M O, Raasch S. Large eddy simulation of thermally induced oscillations in the convective boundary layer[J]. Journal of the Atmospheric Sciences,2003,60(18):2328-2341.
    [38]Maronga B, Raasch S. Large-eddy simulations of surface heterogeneity effects on the con-vective boundary layer during the LITFASS-2003 experiment[J]. Boundary-Layer Meteorology,2013,146:17-44.
    [39]张强,胡隐樵.大气边界层物理学的研究进展和面临的科学问题[J].地球科学进展,2001,16(4):526-532.
    [40]张强.大气边界层气象学研究综述[J].干旱气象,2003,21(3):74-78.
    [41]胡非,洪钟祥,雷孝恩.大气边界层和大气环境研究进展[J].大气科学,2003,27(4):712-728.
    [42]刘式达,梁福明,刘式适,等.大气湍流[M].北京大学出版社,2008.
    [43]蒋维楣,孙鉴泞,曹文俊,等.空气污染气象学教程[M].气象出版社,2004.
    [44]Taylor G I. Eddy motion in the atmosphere[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1915,215:1-26.
    [45]Richardson L F. The supply of energy from and to atmospheric eddies[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,1920,97(686):354-373.
    [46]Taylor G I. Statistical theory of turbulence[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1935,151(873):421-444.
    [47]De Karman T, Howarth L. On the statistical theory of isotropic turbulence[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1938,164(917): 192-215.
    [48]Priestley C H B, Swinbank W C. Vertical transport of heat by turbulence in the atmosphere[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1947,189(1019):543-561.
    [49]Merry M, Panofsky H A. Statistics of vertical motion over land and water[J]. Quarterly Journal of the Royal Meteorological Society,1976,102(431):255-260.
    [50]Mellor G L, Yamada T. A hierarchy of turbulence closure models for planetary boundary layers[J]. Journal of the Atmospheric Sciences,1974,31(7):1791-1806.
    [51]Dyer A J, Hicks B B. Flux-gradient relationships in the constant flux layer[J]. Quarterly Journal of the Royal Meteorological Society,1970,96(410):715-721.
    [52]Dyer A J. A review of flux-profile relationships[J]. Boundary-Layer Meteorology,1974,7(3): 363-372.
    [53]Sorbjan Z. On similarity in the atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1986,34(4):377-397.
    [54]Janjic Z I. The step-mountain eta coordinate model:Further developments of the convection, viscous sublayer, and turbulence closure schemes[J]. Monthly Weather Review,1994,122(5): 927-945.
    [55]Grachev A A, Andreas E L, Fairall C W, et al. SHEBA flux-profile relationships in the stable atmospheric boundary layer[J]. Boundary-Layer Meteorology,2007,124(3):315-333.
    [56]Shou Y X, Zhang D L. Impact of environmental flows on the daytime urban boundary layer structures over the Baltimore metropolitan region[J]. Atmospheric Science Letters,2010, 11(1):1-6.
    [57]Vincent C L, Larsen X G, Larsen S E, et al. Cross-spectra over the sea from observations and mesoscale modelling[J]. Boundary-Layer Meteorology,2013,146(2):297-318.
    [58]Obukhov A M. Turbulentnost'v temperaturnoj-neodnorodnoj atmosphere[J]. Trudy Inst. Theor. Geofiz. AN SSSR,1946(1):95-115.
    [59]Obukhov A M. Turbulence in an atmosphere with a non-uniform temperature[J]. Boundary-Layer Meteorology,1971,2(1):7-29.
    [60]Businger J A, Yaglom A M. Introduction to Obukhov's paper on'turbulence in an atmosphere with a non-uniform temperature'[J]. Boundary-Layer Meteorology,1971,2(1):3-6.
    [61]赵鸣,苗曼倩,王彦昌,等.边界层气象学教程[M].气象出版社,1991.
    [62]Businger J A. A note on the Businger-Dyer profiles[M]//Topics in Micrometeorology. A Festschrift for Arch Dyer. Springer Netherlands,1988:145-151.
    [63]Swinbank W C. The exponential wind profile[J]. Quarterly Journal of The Royal Meteorological Society,1964,90(384):119-135.
    [64]Swinbank W C. A comparison between predictions of dimensional analysis for the constant-flux layer and observations in unstable conditions[J]. Quarterly Journal of The Royal Meteorological Society,1968,94(402):460-467.
    [65]Webb E K. Profile relationships:The log-linear range, and extension to strong stability[J]. Quarterly Journal of the Royal Meteorological Society,1970,96(407):67-90.
    [66]Dyer A J, Hicks B B. Flux---gradient relationships in the constant flux layer[J]. Quarterly Journal of the Royal Meteorological Society,1970,96(410):715-721.
    [67]Hogstrom U L F. Review of some basic characteristics of the atmospheric surface layer[J]. Boundary-Layer Meteorology,1996,78(3-4):215-246.
    [68]Nieuwstadt F T M. The turbulent structure of the stable, nocturnal boundary layer[J]. Journal of the Atmospheric Sciences,1984,41(14):2202-2216.
    [69]Shao Y, Hacker J M. Local similarity relationships in a horizontally inhomogeneous boundary layer[J]. Boundary-Layer Meteorology,1990,52(1-2):17-40.
    [70]Johansson C, Smedman A S, Hogstrom U, et al. Critical test of the validity of Monin-Obukhov similarity during convective conditions[J]. Journal of the Atmospheric Sciences, 2001,58(12):1549-1566.
    [71]Businger J A. Reflections on boundary-layer problems of the last 50 years[J]. Boundary-Layer Meteorology,2005,116(2):161-173.
    [72]Garratt J R, Hicks B B. Micrometeorological and PBL experiments in Australia[J]. Boundary-Layer Meteorology,1990,50(1-4):11-29.
    [73]Yaglom A M. Alexander Mikhailovich Obukhov,1918-1989[J]. Boundary-Layer Meteorolo-gy,1990,53(1):v-xi.
    [74]Hogstrom U L F. Non-dimensional wind and temperature profiles in the atmospheric surface layer:A re-evaluation[J]. Boundary-Layer Meteorology,1988,42(1-2):55-78.
    [75]Bertin F, Barat J, Wilson R. Energy dissipation rates, eddy diffusivity, and the Prandtl number: An in situ experimental approach and its consequences on radar estimate of turbulent parameters[J]. Radio Science,1997,32(2):791-804.
    [76]Mahrt L, Vickers D. Boundary-layer adjustment over small-scale changes of surface heat flux[J]. Boundary-Layer Meteorology,2005,116(2):313-330.
    [77]Uttal T, Curry J A, Mcphee M G, et al. Surface heat budget of the Arctic Ocean[J]. Bulletin of the American Meteorological Society,2002,83(2):255-275.
    [78]Poulos G S, Blumen W, Fritts D C, et al. CASES-99:A comprehensive investigation of the stable nocturnal boundary layer[J]. Bulletin of the American Meteorological Society,2002, 83(4):555-581.
    [79]Banta R M, Newsom R K, Lundquist J K, et al. Nocturnal low-level jet characteristics over Kansas during CASES-99[J]. Boundary-Layer Meteorology,2002,105(2):221-252.
    [80]Strang E J, Fernando H J S. Vertical mixing and transports through a stratified shear layer[J]. Journal of Physical Oceanography,2001,31(8):2026-2048.
    [81]Ohya Y. Wind-tunnel study of atmospheric stable boundary layers over a rough surface[J]. Boundary-Layer Meteorology,2001,98(1):57-82.
    [82]Rehmann C R, Koseff J R. Mean potential energy change in stratified grid turbulence[J]. Dynamics of Atmospheres and Oceans,2004,37(4):271-294.
    [83]Zilitinkevich S S, Esau I N. Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer[J]. Boundary-Layer Meteorology,2007, 125(2):193-205.
    [84]Zilitinkevich S S, Elperin T, Kleeorin N, et al. Energy-and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I:steady-state, homogeneous regimes[J]. Boundary-Layer Meteorology,2007,125(2):167-191.
    [85]Zilitinkevich S S, Elperin T, Kleeorin N, et al. Turbulence energetics in stably stratified geophysical flows:Strong and weak mixing regimes[J]. Quarterly Journal of the Royal Meteorological Society,2008,134(633):793-799.
    [86]Sukoriansky S, Galperin B, Staroselsky I. A quasinormal scale elimination model of turbulent flows with stable stratification[J]. Physics of Fluids,2005,17:085107.
    [87]Bocquet F, Balsley B, Tjernstrom M, et al. Comparing estimates of turbulence based on near-surface measurements in the nocturnal stable boundary layer[J]. Boundary-Layer Meteorology,2011,138(1):43-60.
    [88]Alexakis A. Stratified shear flow instabilities at large Richardson numbers[J]. Physics of Fluids,2009,21:054108.
    [89]梁捷宁,张镭,鲍婧,等.黄土高原复杂地形受中尺度运动影响的稳定边界层湍流特征[J].大气科学,2013,37(1):113-123.
    [90]胡非.湍流、间歇性与大气边界层[M].科学出版社,1995.
    [91]Anquetin S, Guilbaud C, Chollet J P. The formation and destruction of inversion layers within a deep valley[J]. Journal of Applied Meteorology,1998,37(12):1547-1560.
    [92]Belusic D, Mahrt L. Estimation of length scales from mesoscale networks[J]. Tellus A,2008, 60(4):706-715.
    [93]Mahrt L. Variability and maintenance of turbulence in the very stable boundary layer[J]. Boundary-Layer Meteorology,2010,135(1):1-18.
    [94]Zilitinkevich S S, Elperin T, Kleeorin N, et al. Energy-and flux-budget turbulence closure model for stably stratified flows. Part Ⅱ:the role of internal gravity waves[J]. Boundary-Layer Meteorology,2009,133(2):139-164.
    [95]Foken T.50 years of the Monin-Obukhov similarity theory[J]. Boundary-Layer Meteorology, 2006,119(3):431-447.
    [96]Raupach M R, Thorn A S, Edwards I. A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces[J]. Boundary-Layer Meteorology,1980,18(4):373-397.
    [97]Garratt J R. Surface influence upon vertical profiles in the atmospheric near-surface layer[J]. Quarterly Journal of the Royal Meteorological Society,1980,106(450):803-819.
    [98]Harman I N. The role of roughness sublayer dynamics within surface exchange schemes[J]. Boundary-Layer Meteorology,2012,142(1):1-20.
    [99]Raupach M R, Finnigan J J, Brunei Y. Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy[J]. Boundary-Layer Meteorology,1996,78(3-4):351-382.
    [100]Segalini A, Alfredsson P H. Techniques for the Eduction of Coherent Structures from Flow Measurements in the Atmospheric Boundary Layer[J]. Boundary-Layer Meteorology,2012, 143(3):433-450.
    [101]Zeeman M J, Eugster W, Thomas C K. Concurrency of coherent structures and conditionally sampled daytime sub-canopy respiration[J]. Boundary-Layer Meteorology,2013,146(1): 1-15.
    [102]Laubach J, McNAUGHTON K G, Wilson J D. Heat and water vapour diflfusivities near the base of a disturbed stable internal boundary layer[J]. Boundary-Layer Meteorology,2000, 94(1):23-63.
    [103]Mahrt L, Moore E, Vickers D, et al. Dependence of turbulent and mesoscale velocity varian-ces on scale and stability [J]. Journal of Applied Meteorology,2001,40(3):628-641.
    [104]McNaughton K G, Brunet Y. Townsend's hypothesis, coherent structures and Monin-Obukhov similarity[J]. Boundary-Layer Meteorology,2002,102(2):161-175.
    [105]McNaughton K G. On the kinetic energy budget of the unstable atmospheric surface layer[J]. Boundary-Layer Meteorology,2006,118(1):83-107.
    [106]Wang J, Wang W, Ao Y, et al. Turbulence flux measurements under complicated conditions [J]. Advances in Earth Science,2007,8:003.
    [107]Cuxart J, Yague C, Morales G, et al. Stable atmospheric boundary-layer experiment in Spain (SABLES 98):a report[J]. Boundary-Layer Meteorology,2000,96(3):337-370.
    [108]Thomas C, Martin J G, Goeckede M, et al. Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series[J]. Agricultural and Forest Meteorology,2008,148(8):1210-1229.
    [109]Grachev A A, Fairall C W, Persson P O G, et al. Stable boundary-layer scaling regimes:The SHEBA data[J]. Boundary-Layer Meteorology,2005,116(2):201-235.
    [110]黄妙芬.地表通量研究进展[J].干旱区地理,2003,26(2).
    [111]王介民.陆面过程实验和地气相互相用研究——从HEIFE到[MGRASS和GAME-Tibet/TIPEX[J]高原气象,1999,18(3):280-294.
    [112]Wang K, Dickinson R E. A review of global terrestrial evapotranspiration:Observation, mo-deling, climatology, and climatic variability[J]. Reviews of Geophysics,2012,50(2).
    [113]Millward-Hopkins J T, Tomlin A S, Ma L, et al. Aerodynamic parameters of a UK city derived from morphological data[J]. Boundary-Layer Meteorology,2013,146(3):447-468.
    [114]Essery R L H, Best M J, Betts R A, et al. Explicit representation of subgrid heterogeneity in a GCM land surface scheme[J]. Journal of Hydrometeorology,2003,4(3):530-543.
    [115]Oleson K W, Bonan G B, Feddema J, et al. An urban parameterization for a global climate model. Part Ⅰ:Formulation and evaluation for two cities[J]. Journal of Applied Meteorology and Climatology,2008,47(4):1038-1060.
    [116]刘树华,黄子琛.空气动力学方法在湍流通量计算中的误差分析[J].气象,1995,21(3):3-6.
    [117]Sun J, Massman W, Grantz D A. Aerodynamic variables in the bulk formulation of turbulent fluxes[J]. Boundary-Layer Meteorology,1999,91(1):109-125.
    [118]Bowen I S. The ratio of heat losses by conduction and by evaporation from any water surface[J]. Physical review,1926,27(6):779.
    [119]Angus D E, Watts P J. Evapotranspiration-How Good is the Bowen Ratio Method[J]. Agricultural Water Management,1984,8(1-3).
    [120]Shuttleworth W J. Putting the'vap'into evaporation[J]. Hydrology and Earth System Sciences Discussions,2007,11(1):210-244.
    [121]Wiernga J. Representative roughness parameters for homogeneous terrain[J]. Boundary-Layer Meteorology,1993,63(4):323-363.
    [122]Alfieri J G, Blanken P D, Smith D, et al. Concerning the measurement and magnitude of heat, water vapor, and carbon dioxide exchange from a semiarid grassland[J]. Journal of Applied Meteorology and Climatology,2009,48(5):982-996.
    [123]Wang K, Li Z, Cribb M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI:A new method to determine the Priestley-Taylor parameter[J]. Remote Sensing of Environment,2006,102(3):293-305.
    [124]Wang K, Liang S. Evaluation of ASTER and MODIS land surface temperature and emiss-ivity products using long-term surface longwave radiation observations at SURFRAD sites[J]. Remote Sensing of Environment,2009,113(7):1556-1565.
    [125]Penman H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1948, 193(1032):120-145.
    [126]Beven K. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates [J]. Journal of Hydrology,1979,44(3):169-190.
    [127]Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of forests:the EUROFLUX methodology[J]. Advances in Ecological Research,1999,30: 113-175.
    [128]Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites[J]. Agricu-ltural and Forest Meteorology,2002,113(1):223-243.
    [129]Franssen H J, Stockli R, Lehner I, et al. Energy balance closure of eddy-covariance data:A multisite analysis for European FLUXNET stations[J]. Agricultural and Forest Meteorology, 2010,150(12):1553-1567.
    [130]于贵瑞,张雷明,孙晓敏,等.亚洲区域陆地生态系统碳通量观测研究进展[J].中国科学:D辑,2004,34(Ⅱ):15-29.
    [131]Finnigan J J, Clement R, Malhi Y, et al. A re-evaluation of long-term flux measurement tech-niques part Ⅰ:averaging and coordinate rotation[J]. Boundary-Layer Meteorology,2003, 107(1):1-48.
    [132]Horst T W, Lenschow D H. Attenuation of scalar fluxes measured with spatially-displaced sensors[J]. Boundary-Layer Meteorology,2009,130(2):275-300.
    [133]Nordbo A, Katul G. A Wavelet-Based Correction Method for Eddy-Covariance High-Fre- quency Losses in Scalar Concentration Measurements[J]. Boundary-Layer Meteorology, 2013,146(1):81-102.
    [134]Runkle B R K, Wille C, Gazovic M, et al. Attenuation correction procedures for water vapour fluxes from closed-path eddy-covariance systems[J]. Boundary-Layer Meteorology, 2012,142(3):401-423.
    [135]Gockede M, Foken T, Aubinet M, et al. Quality control of CarboEurope flux data-Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems[J]. Biogeosciences,2008,5(2):433-450.
    [136]Massman W J, Lee X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges[J]. Agricultural and Forest Meteorology,2002, 113(1):121-144.
    [137]Moreira G A A, Dos Santos A A C, Do Nascimento C A M, et al. Numerical study of the neutral atmospheric boundary layer over complex terrain[J]. Boundary-Layer Meteorology, 2012,143(2):393-407.
    [138]Kang S L, Lenschow D, Sullivan P. Effects of Mesoscale Surface Thermal Heterogeneity on Low-Level Horizontal Wind Speeds[J]. Boundary-Layer Meteorology,2012,143(3): 409-432.
    [139]Mauder M, Foken T, Clement R, et al. Quality control of CarboEurope flux data? Part 2: Inter-comparison of eddy-covariance software[J]. Biogeosciences,2008,5(2):451-462.
    [140]Solignac P A, Brut A, Selves J L, et al. Uncertainty analysis of computational methods for deriving sensible heat flux values from scintillometer measurements [J]. Atmospheric Measurement Techniques,2009 (2):741-753.
    [141]Chehbouni A, Watts C, Lagouarde J P, et al. Estimation of heat and momentum fluxes over complex terrain using a large aperture scintillometer[J]. Agricultural and Forest Meteorology,2000,105(1):215-226.
    [142]Meijninger W M L, Hartogensis O K, Kohsiek W, et al. Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface-Flevoland field experiment[J]. Boundary-Layer Meteorology,2002,105(1):37-62.
    [143]Hartogensis O K, Watts C J, Rodriguez J C, et al. Derivation of an effective height for scintillometers:La Poza experiment in Northwest Mexico[J]. Journal of Hydrometeorology, 2003,4(5):915-928.
    [144]Obukhov A M. Structure of temperature and velocity fields under conditions of free convec-tion[J]. Works Inst. Theor. Geophys. Acad. Sci. USSR,1960,1:95-115.
    [145]Hoedjes J C B, Chehbouni A, Ezzahar J, et al. Comparison of large aperture scintillometer and eddy covariance measurements:can thermal infrared data be used to capture footprint-induced differences?[J]. Journal of Hydrometeorology,2007,8(2):144-159.
    [146]Von Randow C, Kruijt B, Holtslag A A M, et al. Exploring eddy-covariance and large- aperture scintillometer measurements in an Amazonian rain forest[J]. Agricultural and Forest Meteorology,2008,148(4):680-690.
    [147]Lagouarde J P, Bonnefond J M, Kerr Y H, et al. Integrated sensible heat flux measurements of a two-surface composite landscape using scintillometry[J]. Boundary-Layer Meteorology, 2002,105(1):5-35.
    [148]Gockede M, Rebmann C, Foken T. A combination of quality assessment tools for eddy cov-ariance measurements with footprint modelling for the characterisation of complex sites[J]. Agricultural and Forest Meteorology,2004,127(3):175-188.
    [149]Leclerc M Y, Meskhidze N, Finn D. Comparison between measured tracer fluxes and foot-print model predictions over a homogeneous canopy of intermediate roughness[J]. Agricultural and Forest Meteorology,2003,117(3):145-158.
    [150]Vicent C L, Larsen X G, Larsen S E, et al. Cross-spectra over the sea from observations and mesoscale modeling[J]. Boundary-Layer Meteorology,2013,146:297-318.
    [151]Karipot A, Leclerc M Y, Zhang G, et al. Influence of nocturnal low-level jet on turbulence structure and CO2 flux measurements over a forest canopy[J]. Journal of Geophysical Research,2008,113(D10):D10102.
    [152]Finnigan J. A note on wave-turbulence interaction and the possibility of scaling the very sta-ble boundary layer[J]. Boundary-Layer Meteorology,1999,90(3):529-539.
    [153]Smith S, Baumgardner J, Mendillo M. Evidence of mesospheric gravity-waves generated by orographic forcing in the troposphere[J]. Geophysical Research Letters,2009,36(8).
    [154]Valkonen T, Vihma T, Kirkwood S, et al. Fine-scale model simulation of gravity waves generated by Basen nunatak in Antarctica[J]. Tellus A,2010,62(3):319-332.
    [155]Nikurashin M, Vallis G K, Adcroft A. Routes to energy dissipation for geostrophic flows in the Southern Ocean[J]. Nature Geoscience,2012,6(1):48-51.
    [156]Anderson P S. Fine-scale structure observed in a stable atmospheric boundary layer by sodar and kite-borne tethersonde[J]. Boundary-Layer Meteorology,2003,107(2):323-351.
    [157]Fritts D C, Nappo C, Riggin D M, et al. Analysis of ducted motions in the stable nocturnal boundary layer during CASES-99[J]. Journal of the Atmospheric Sciences,2003,60(20): 2450-2472.
    [158]Mahrt L. Weak-wind mesoscale meandering in the nocturnal boundary layer[J]. Environme-ntal Fluid Mechanics,2007,7(4):331-347.
    [159]Caughey S J, Wyngaard J C, Kaimal J C. Turbulence in the evolving stable boundary layer [J]. Journal of Atmospheric Sciences,1979,36:1041-1052.
    [160]Grant A L M, Mason P J. Observations of boundary-layer structure over complex terrain[J]. Quarterly Journal of the Royal Meteorological Society,1990,116(491):159-186.
    [161]Hunt J C R, Tampieri F, Weng W S, et al. Air flow and turbulence over complex terrain:a colloquium and a computational workshop[J]. Journal of Fluid Mechanics,1991,227: 667-688.
    [162]Kossmann M, Vogtlin R, Corsmeier U, et al. Aspects of the convective boundary layer structure over complex terrain[J]. Atmospheric Environment,1998,32(7):1323-1348.
    [163]Kalthoff N, Binder H J, Kossmann M, et al. Temporal evolution and spatial variation of the boundary layer over complex terrain[J]. Atmospheric Environment,1998,32(7):1179-1194.
    [164]Castelli S T, Ferrero E, Anfossi D. Turbulence closures in neutral boundary layer over com-plex terrain[J]. Boundary-Layer Meteorology,2001,100(3):405-419.
    [165]Carvalho J C, Anfossi D, Trini Castelli S, et al. Application of a model system for the study of transport and diffusion in complex terrain to the TRACT experiment[J]. Atmospheric Environment,2002,36(7):1147-1161.
    [166]Martins C A, Moraes O L L, Acevedo O C, et al. Turbulence intensity parameters over a very complex terrain[J]. Boundary-Layer Meteorology,2009,133(1):35-45.
    [167]Panofsky H A. Atmospheric turbulence[R]. Sandia Corp., Albuquerque, N. Mex.,1959.
    [168]Founda D, Tombrou M, Lalas D P, et al. Some measurements of turbulence characteristics over complex terrain[J]. Boundary-Layer Meteorology,1997,83(2):221-245.
    [169]Al-Jiboori M H, Yumao X, Yongfu Q. Turbulence characteristics over complex terrain in west China[J]. Boundary-Layer Meteorology,2001,101(1):109-126.
    [170]Moraes O L L, Acevedo O C, Degrazia G A, et al. Surface layer turbulence parameters over a complex terrain[J]. Atmospheric Environment,2005,39(17):3103-3112.
    [171]Smedman A S. Observations of a multi-level turbulence structure in a very stable atmos-pheric boundary layer[J]. Boundary-Layer Meteorology,1988,44(3):231-253.
    [172]Cuxart J, Yague C, Morales G, et al. Stable atmospheric boundary-layer experiment in Spain (SABLES 98):a report[J]. Boundary-Layer Meteorology,2000,96(3):337-370.
    [173]Yague C, Viana S, Maqueda G, et al. Influence of stability on the flux-profile relationships for wind speed, Φm, and temperature, Φh, for the stable atmospheric boundary layer[J]. Nonlinear Processes in Geophysics,2006,13(2):185-203.
    [174]Nakamura R, Mahrt L. A study of intermittent turbulence with CASES-99 tower measurem-ents[J]. Boundary-Layer Meteorology,2005,114(2):367-387.
    [175]Hogstrom U, Hunt J C R, Smedman A S. Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer[J]. Boundary-Layer Meteorology, 2002,103(1):101-124.
    [176]Grachev A A, Andreas E L, Fairall C W, et al. The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer[J]. Boundary-Layer Meteorology,2013,147(1):51-82.
    [177]Mahrt L, Richardson S, Seaman N, et al. Turbulence in the nocturnal boundary layer with light and variable winds[J]. Quarterly Journal of the Royal Meteorological Society,2012, 138(667):1430-1439.
    [178]Banta R M, Pichugina Y L, Brewer W A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet[J]. Journal of the Atmospheric Sciences,2006,63(11):2700-2719.
    [179]Steeneveld G J, Nappo C J, Holtslag A A M. Orographic wave drag as a possible explanation for intermittent behaviour in stable boundary layers over land[C]//10th EMS Annual Meeting,10th European Conference on Applications of Meteorology (ECAM) Abstracts, held Sept.13-17,2010 in Zurich, Switzerland. http://meetings. copernicus. org/ems2010/, id. EMS2010-101.2010,1:101.
    [180]Fritts D C, Rastogi P K. Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere:Theory and observations[J]. Radio Science,1985, 20(6):1247-1277.
    [181]Cuxart J, Morales G, Terradellas E, et al. Study of coherent structures and estimation of the pressure transport terms for the nocturnal stable boundary layer[J]. Boundary-Layer Meteorology,2002,105(2):305-328.
    [182]Banta R M, Mahrt L, Vickers D, et al. The very stable boundary layer on nights with weak low-level jets[J]. Journal of the Atmospheric Sciences,2007,64(9):3068-3090.
    [183]Mahrt L, Thomas C K, Prueger J H. Space-time structure of mesoscale motions in the stable boundary layer[J]. Quarterly Journal of the Royal Meteorological Society,2009,135(638): 67-75.
    [184]Acevedo O C, Mahrt L. Systematic vertical variation of mesoscale fluxes in the nocturnal boundary layer[J]. Boundary-Layer Meteorology,2010,135(1):19-30.
    [185]Miyake M, Stewart R W, Burling R W, et al. Comparison of acoustic instruments in an atmospheric turbulent flow over water[J]. Boundary-Layer Meteorology,1971,2(2): 228-245.
    [186]Tsvang L R, Koprov B M, Zubkovskii S L, et al. A comparison of turbulence measurements by different instruments; Tsimlyansk field experiment 1970[J]. Boundary-Layer Meteorology,1973,3(4):499-521.
    [187]Tsvang L R, Zubkovskii S L, Kader B A, et al. International turbulence comparison experi-ment (ITCE-81)[J]. Boundary-Layer Meteorology,1985,31(4):325-348.
    [188]McCaughey J H. Energy balance storage terms in a mature mixed forest at Petawawa, Onta-rio-a case study[J]. Boundary-Layer Meteorology,1985,31(1):89-101.
    [189]Verma S B, Baldocchi D D, Anderson D E, et al. Eddy fluxes of CO2, water vapor, and sens-ible heat over a deciduous forest[J]. Boundary-Layer Meteorology,1986,36(1-2):71-91.
    [190]李正泉,于贵瑞,温学发,等.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J].中国科学:D辑,2004,34(Ⅱ):46-56.
    [191]Mahrt L. Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric and Oceanic Technology,1998,15(2):416-429.
    [192]Goldstein A H, Hultman N E, Fracheboud J M, et al. Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA)[J]. Agricultural and Forest Meteorology,2000,101(2):113-129.
    [193]Wilson K B, Baldocchi D D. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America[J]. Agricultural and Forest Meteorology,2000,100(1):1-18.
    [194]Mahrt L. Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric and Oceanic Technology,1998,15(2):416-429.
    [195]Koitzsch R, Dzingel M, Foken T, et al. Probleme der experimentellen Erfassung des Energi-eaustausches uber Winterweizen[J]. Zeitschrift fur Meteorologie,1988,38(3):150-155.
    [196]Halldin S. Radiation measurements in integrated terrestrial experiments[M]//Vegetation, Water, Humans and the Climate. Springer Berlin Heidelberg,2004:167-171.
    [197]Moore C J. Frequency response corrections for eddy correlation systems[J]. Boundary-Layer Meteorology,1986,37(1-2):17-35.
    [198]Heusinkveld B G, Jacobs A F G, Holtslag A A M, et al. Surface energy balance closure in an arid region:role of soil heat flux[J]. Agricultural and Forest Meteorology,2004,122(1): 21-37.
    [199]Liebethal C, Foken T. Evaluation of six parameterization approaches for the ground heat flux[J]. Theoretical and Applied Climatology,2007,88(1-2):43-56.
    [200]Finnigan J J. A re-evaluation of long-term flux measurement techniques Part II:coordinate systems[J]. Boundary-Layer Meteorology,2004,113(1):1-41.
    [201]Kanda M, Inagaki A, Letzel M O, et al. LES study of the energy imbalance problem with eddy covariance fluxes[J]. Boundary-Layer Meteorology,2004,110(3):381-404.
    [202]Schmid H P. Experimental design for flux measurements:matching scales of observations and fluxes[J]. Agricultural and Forest Meteorology,1997,87(2):179-200.
    [203]Foken T. The energy balance closure problem:An overview[J]. Ecological Applications, 2008,18(6):1351-1367.
    [204]Panin G N, Tetzlaff G, Raabe A. Inhomogeneity of the Land Surface and Problems in the Parameterization of Surface Fluxes in Natural Conditions[J]. Theoretical and Applied Climatology,1998,60(1-4):163-178.
    [205]Inagaki A, Letzel M O, Raasch S, et al. Impact of surface heterogeneity on energy imbalance: A study using LES[J]. Journal of the Meteorological Society of Japan. Ser. Ⅱ,2006,84(1): 187-198.
    [206]Foken T, Wimmer F, Mauder M, et al. Some aspects of the energy balance closure probl-em[J]. Atmospheric Chemistry and Physics,2006,6:4395-4402.
    [207]Mauder M, Jegede O O, Okogbue E C, et al. Surface energy balance measurements at a tropical site in West Africa during the transition from dry to wet season[J]. Theoretical and Applied Climatology,2007,89(3-4):171-183.
    [208]Oncley S P, Foken T, Vogt R, et al. The Energy Balance Experiment EBEX-2000. Part Ⅰ: overview and energy balance. Boundary-Layer Meteorology,2007,123:1-28
    [209]梁捷宁,张镭,张武,等.黄土高原半干旱区地表能量不闭合及其对二氧化碳通量的影响[J].物理学报,2013,62(9):099203.
    [210]Mauder M, Oncley S P, Vogt R, et al. The energy balance experiment EBEX-2000. Part Ⅱ: Intercomparison of eddy-covariance sensors and post-field data processing methods. Boundary-Layer Meteorology,2007,123:29-54
    [211]Barcza Z, Kern A, Haszpra L, et al. Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis[J]. Agricultural and Forest Meteorology,2009,149(5):795-807.
    [212]Wang W. The influence of topography on single-tower-based carbon flux measurements under unstable conditions:a modeling perspective[J]. Theoretical and Applied Climatology, 2010,99(1-2):125-138.
    [213]Huang J, Lee X, Patton E G. A modelling study of flux imbalance and the influence of entrainment in the convective boundary layer[J]. Boundary-Layer Meteorology,2008, 127(2):273-292.
    [214]Mauder M, Desjardins R L, Pattey E, et al. An attempt to close the daytime surface energy balance using spatially-averaged flux measurements[J]. Boundary-Layer Meteorology,2010, 136(2):175-191.
    [215]Kochendorfer J, Meyers T P, Frank J, et al. How well can we measure the vertical wind speed? Implications for fluxes of energy and mass[J]. Boundary-Layer Meteorology,2012, 145(2):383-398.
    [216]苏从先.关于层结大气中近地层湍流交换的基本规律[J].气象学报,1959,30(1):114-118.
    [217]胡隐樵.黑河实验(HEIFE)能量平衡和水汽输送研究进展[J].地球科学进展,1994,9(4).
    [218]张强,胡隐樵,赵鸣.绿洲与荒漠相互影响下大气边界层特征的模拟[J].南京气象学院学报,1998,21(1):104-113.
    [219]陈长和等.复杂地形上大气边界层和大气扩散的研究[M].气象出版社,1993.
    [220]Lu D. Inner Mongolia semi-arid grassland soil-vegetation-atmosphere interaction (IMG-RASS)[J]. Global Change News Letter,1997,31:4-5.
    [221]Lu D, Chen Z, Chen J. Composite study on Inner Mongolia semi-arid grassland soil-vegetation-atmosphere interaction (IMGRASS)[J]. Earth Science Frontiers,2002,9(2): 295-306.
    [222]马耀明,姚檀栋,王介民.青藏高原能量和水循环试验研究[J].高原气象,2006,25(2):344-351.
    [223]马耀明,姚檀栋,王介民,等.青藏高原复杂地表能量通量研究[J].地球科学进展,2006,21(12):1215-1223.
    [224]左洪超,胡隐樵,吕世华,等.青藏高原安多地区干,湿季的转换及其边界层特征[J].自然科学进展,2004,14(5):535-540.
    [225]张雁.能量与水分循环——气候研究的热点[J].气象,2001,27(9):9-17.
    [226]张强,黄荣辉,卫国安.西北干旱区陆面过程观测野外试验(NWC-ALIEX)及其研究进展[J].地球科学进展,2005,20(4):427-441.
    [227]胡非,洪钟祥,陈家宜,等.白洋淀地区非均匀大气边界层的综合观测研究——实验介绍及近地层微气象特征分析[J].大气科学,2006,30(5):883-893.
    [228]于贵瑞,伏玉玲,孙晓敏,等.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J].中国科学:D辑,2006,36(A01):1-21.
    [229]于贵瑞,张雷明,孙晓敏,等.亚洲区域陆地生态系统碳通量观测研究进展[J].中国科学:D辑,2004,34(A02):15-29.
    [230]Huang J, Guan X, Ji F. Enhanced cold-season warming in semi-arid regions[J]. Atmospheric Chemistry and Physics,2012,12(12):5391-5398.
    [231]黄建平,季明霞,刘玉芝,等.干旱半干旱区气候变化研究综述[J].气候变化研究进展,2013,9(1):9-14.
    [l]解静.黄土高原半干旱区草地生态系统碳交换的观测研究[D].兰州大学博士论文,2010.
    [2]Huang J, Zhang W, Zuo J, et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Advances in Atmospheric Sciences,2008, 25(6):906-921.
    [3]王瑾,张镭,王腾蛟,等.兰州附近山谷典型日环流特征对比分析[J].干旱气象,2012,30(2).
    [4]鲍婧.黄土高原半干旱区近地层陆气相互作用研究[D].兰州大学博士论文,2012.
    [5]左金清,王介民,黄建平,等.半干旱草地地表土壤热通量的计算及其对能量平衡的影响[J].高原气象,2010,29(4):840-848.
    [6]黄妙芬.地表通量研究进展[J].干旱区地理,2003,26(2):159-165.
    [7]Baldocchi D, Falge E, Gu L, et al. FLUXNET:a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux. densities[J]. Bulletin of the American Meteorological Society,2001,82(11):2415-2434.
    [8]王春林,周国逸,王旭,等.复杂地形条件下涡度相关法通量测定修正方法分析[J].中国农业气象,2007,28(3):233-240.
    [9]Houghton R A, Davidson E A, Woodwell G M. Missing sinks, feedbacks, and understanding the role of terrestrial[J]. Global Biogeochemical Cycles,1998,12(1):25-34.
    [10]Schmid H P, Grimmond C S B, Cropley F, et al. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States[J]. Agricultural and Forest Meteorology,2000,103(4):357-374.
    [11]Berbigier P, Bonnefond J M, Mellmann P. CO2 and water vapour fluxes for 2 years above Euroflux forest site[J]. Agricultural and Forest Meteorology,2001,108(3):183-197.
    [12]于贵瑞,张雷明,孙晓敏,等.亚洲区域陆地生态系统碳通量观测研究进展[J].中国科学:D辑,2004,34(Ⅱ):15-29.
    [13]朱治林,孙晓敏,温学发,等.中国通量网(ChinaFLUX)夜间CO2涡度相关通量数据处理方法研究[J].中国科学D辑,2006,36(增刊Ⅰ):34-44.
    [14]谌志刚,卞林根,陆龙骅,等.涡度相关仪倾斜订正方法的比较及应用[J].气象科技,2008,36(3):355-359.
    [15]卢俐,刘绍民,孙敏章,等.大孔径闪烁仪研究区域地表通量的进展[J].地球科学进展,2005,20(9):932-938.
    [16]Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1980,106(447):85-100.
    [17]Garratt J R. Limitations of the eddy-correlation technique for the determination of turbulent fluxes near the surface[J]. Boundary-Layer Meteorology,1975,8(3-4):255-259.
    [18]Moncrieff J B, Massheder J M, De Bruin H, et al. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide[J]. Journal of Hydrology,1997, 188:589-611.
    [19]Running S W, Baldocchi D D, Turner D P, et al. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data[J]. Remote Sensing of Environment,1999,70(1):108-127.
    [20]Wohlfahrt G, Anfang C, Bahn M, et al. Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling[J]. Agricultural and Forest Meteorology,2005,128(3):141-162.
    [21]Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future[J]. Global Change Biology,2003,9(4): 479-492.
    [22]Paw U K T, Baldocchi D D, Meyers T P, et al. Correction of eddy-covariance measurements incorporating both advective effects and density fluxes[J]. Boundary-Layer Meteorology, 2000,97(3):487-511.
    [23]Munger J W, Loescher H W. Guidelines for making eddy covariance flux measurements[J]. Ameriflux (PDF text available at http://forestry.state.nv.us/hearings/past/springetal/browse-abledocs/Exhibits%5CSNWA%20Exhibits/SNWA_Exh_330_Munger%20and%20Loescher, %202006.pdf).
    [24]Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data[J]. Journal of Atmospheric and Oceanic Technology,1997,14(3):512-526.
    [25]Serrano-Ortiz P, Kowalski A S, Domingo F, et al. Consequences of uncertainties in CO2 density for estimating net ecosystem CO2 exchange by open-path eddy covariance[J]. Boundary-Layer Meteorology,2008,126(2):209-218.
    [26]Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms[J]. Boun-dary-Layer Meteorology,2001,99(1):127-150.
    [27]王介民,刘辉志,胡泽勇.涡动相关通量观测指导手册.
    [28]Kaimal J C, Finnigan J J. Atmospheric boundary layer flows:their structure and measure-ment[M]. USA, Oxford University Press,1994.
    [29]Finnigan J J, Clement R, Malhi Y, et al. A re-evaluation of long-term flux measurement techniques part I:averaging and coordinate rotation[J]. Boundary-Layer Meteorology,2003, 107(1):1-48.
    [30]Schotanus P, Nieuwstadt F T M, Bruin H A R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes[J]. Boundary-Layer Meteorology, 1983,26(1):81-93.
    [31]Leuning R, Cleugh H A, Zegelin S J, et al. Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia:measurements and comparison with MODIS remote sensing estimates[J]. Agricultural and Forest Meteorology,2005,129(3): 151-173.
    [32]Serrano-Ortiz P, Kowalski A S, Domingo F, et al. Consequences of uncertainties in CO2 density for estimating net ecosystem CO2 exchange by open-path eddy covariance[J]. Boundary-Layer Meteorology,2008,126(2):209-218.
    [33]Ono K, Miyata A, Yamada T. Apparent downward CO2 flux observed with open-path eddy covariance over a non-vegetated surface[J]. Theoretical and Applied Climatology,2008, 92(3):195-208.
    [34]梁捷宁,张镭,鲍婧,等.黄土高原复杂地形受中尺度运动影响的稳定边界层湍流特征[J].大气科学,2013,37(1):113-123.
    [35]Massman W J, Lee X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges[J]. Agricultural and Forest Meteorology,2002,113(1): 121-144.
    [36]朱治林,孙晓敏,袁国富,等.非平坦下垫面涡度相关通量的校正方法及其在ChinaFLUX中的应用[J].中国科学D辑,2004,34:37-45.
    [37]杨胜朋,吕世华,陈玉春,等.山地复杂下垫面湍流特征观测分析[J].高原气象,2008,27(002):272-278.
    [38]Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology,2002,113(1):223-243.
    [39]李正泉,于贵瑞,温学发,等.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J].中国科学:D辑,2004,34(11):46-56.
    [40]Lavigne M B, Ryan M G, Anderson D E, et al. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites[J]. Journal of Geophysical Research,1997,102(D24): 28977-28,985.
    [41]温学发,于贵瑞,孙晓敏.基于涡度相关技术估算植被/大气间净CO2交换量中的不确定性[J].地球科学进展,2004,19(4):658-663.
    [42]于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法[M].高等教育出版社,2006.
    [1]王介民,王维真,奥银焕,等.复杂条件下湍流通量的观测与分析[J].地球科学进展,2007,22(8):791-797.
    [2]Baldocchi D, Falge E, Gu L, et al. FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society,2001,82(11):2415-2434.
    [3]Finnigan J J, Clement R, Malhi Y, et al. A re-evaluation of long-term flux measurement tech-niques part Ⅰ:averaging and coordinate rotation[J]. Boundary-Layer Meteorology,2003, 107(1):1-48.
    [4]Oncley S P, Foken T, Vogt R, et al. The energy balance experiment EBEX-2000. Part Ⅰ:over-view and energy balance[J]. Boundary-Layer Meteorology,2007,123(1):1-28.
    [5]Mauder M, Oncley S P, Vogt R, et al. The energy balance experiment EBEX-2000. Part Ⅱ: Intercomparison of eddy-covariance sensors and post-field data processing methods[J]. Boundary-Layer Meteorology,2007,123(1):29-54.
    [6]Miyake M, Stewart R W, Burling R W, et al. Comparison of acoustic instruments in an atmos-pheric turbulent flow over water[J]. Boundary-Layer Meteorology,1971,2(2):228-245.
    [7]Tsvang L R, Koprov B M, Zubkovskii S L, et al. A comparison of turbulence measurements by different instruments; Tsimlyansk field experiment 1970[J]. Boundary-Layer Meteorology, 1973,3(4):499-521.
    [8]Dyer A J, Garratt J R, Francey R J, et al. An international turbulence comparison experiment (ITCE 1976)[J]. Boundary-Layer Meteorology,1982,24(2):181-209.
    [9]Tsvang L R, Zubkovskii S L, Kader B A, et al. International turbulence comparison experi-ment (ITCE-81)[J]. Boundary-Layer Meteorology,1985,31(4):325-348.
    [10]McCaughey J H. Energy balance storage terms in a mature mixed forest at Petawawa, Ontario-a case study[J]. Boundary-Layer Meteorology,1985,31(1):89-101.
    [11]Verma S B, Baldocchi D D, Anderson D E, et al. Eddy fluxes of CO2, water vapor, and sensible heat over a deciduous forest[J]. Boundary-Layer Meteorology,1986,36(1-2):71-91.
    [12]李正泉,于贵瑞,温学发,等.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J].中国科学:D辑,2004,34(Ⅱ):46-56.
    [13]Wilson K B, Hanson P J, Baldocchi D D. Factors controlling evaporation and energy partit-ioning beneath a deciduous forest over an annual cycle[J]. Agricultural and Forest Meteorology,2000,102(2):83-103.
    [14]Schmid H P, Grimmond C S B, Cropley F, et al. Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States[J]. Agricultural and Forest Meteorology,2000,103(4):357-374.
    [15]Oliphant A J, Grimmond C S B, Zutter H N, et al. Heat storage and energy balance fluxes for a temperate deciduous forest[J]. Agricultural and Forest Meteorology,2004,126(3):185-201.
    [16]王介民,王维真,刘绍民,等.近地层能量平衡闭合问题—综述及个例分析[J].地球科学进展,2009,24(7):705-714.
    [17]Twine T E, Kustas W P, Norman J M, et al. Correcting eddy-covariance flux underestimates over a grassland[J]. Agricultural and Forest Meteorology,2000,103(3):279-300.
    [18]Halldin S. Radiation measurements in integrated terrestrial experiments[M]//Vegetation, Water, Humans and the Climate. Springer Berlin Heidelberg,2004:167-171.
    [19]Moore C J. Frequency response corrections for eddy correlation systems[J]. Boundary-Layer Meteorology,1986,37(1-2):17-35.
    [20]Heusinkveld B G, Jacobs A F G, Holtslag A A M, et al. Surface energy balance closure in an arid region:role of soil heat flux[J]. Agricultural and Forest Meteorology,2004,122(1): 21-37.
    [21]Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of forests:the EUROFLUX methodology[J]. Advances in Ecological Research,1999,30: 113-175.
    [22]Mauder M, Oncley S P, Vogt R, et al. The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods. Boundary-Layer Meteorology,2007,123:29-54
    [23]Stannard D I, Blanford J H, Kustas W P, et al. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon'90 experiment[J]. Water Resources Research, 1994,30(5):1227-1239.
    [24]Barcza Z, Kern A, Haszpra L, et al. Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis[J]. Agricultural and Forest Meteorology,2009,149(5):795-807.
    [25]Wang W. The influence of topography on single-tower-based carbon flux measurements under unstable conditions:a modeling perspective[J]. Theoretical and Applied Climatology, 2010,99(1-2):125-138.
    [26]Huang J, Lee X, Patton E G. A modelling study of flux imbalance and the influence of entrainment in the convective boundary layer[J]. Boundary-Layer Meteorology,2008,127(2): 273-292.
    [27]Mauder M, Desjardins R L, Pattey E, et al. An attempt to close the daytime surface energy balance using spatially-averaged flux measurements[J]. Bounaary-Layer Mereteorology,2010, 136(2):175一191.
    28]Foken T,Wimmer F,Mauder M,et al.Some aspects of the energy balance closure problem[J]. Atmospheric Chemistry and Physics,2006,6:4395-4402.
    [29]Wilson K,Goldstein A,Falge E,et al.Energy balance closure at FLUXNET sites[J].Agricul-tural and Forest Meteorology,2002,113(1):223-243.
    [30]Kochendorfer J,Meyers T P,Frank J,et al.How well can we measure the vertical wind speed? Implications for fluxes of energy and mass[J].Boundary-Layer Meteorology,2012,145(2): 383-398.
    [31]刘熙明,胡非,姜金华,等.白洋淀水陆不均匀地区能量平衡特征分析[J].大气科学,2008,32(6):1411-1418.
    [32]王春林,周国逸,王旭,等.鼎湖山针阔叶混交林生态系统能量平衡分析[J].热带气象 学报,2007,23(6):643-651.
    [33]王成刚,孙鉴泞,胡非,等.城市水泥下垫面能量平衡特征的观测与分析[J].南京大学学报:自然科学版,2007,43(3):270-279.
    [34]杨兴国,张强,王润元,等.陇中黄土高原夏季地表能量平衡观测研究[J].高原气象, 2004,23(6):828-834.
    [35]马耀明,姚檀栋,王介民,等.青藏高原复杂地表能量通量研究[J].地球科学进展,2006, 21(12):1215-1223.
    [36]Verma S B,Kim J,Clement R J.Momentum,water vapor,and carbon dioxide exchange at a centrally located prairie site during FIFE[J].Journal of Geophysical Research:Atmospheres (1984-2012),1992,97(D17):18629-18639.
    [37]Lee X,Black T A.Atmospheric turbulence within and above a Douglas-fir stand.Part Ⅱ: Eddy fluxes of sensible heat and water vapour[J].Boundary-Layer Meteorology,1993,64(4): 369-389.
    [38]Foken T,Gerstmann W,Richter S H,et al.Study of the energy exchange processes over different types of surfaces during TARTEX-90[J].Deutscher Wetterdienst,Forschung und Entwicklung,Arbeitsergebnisse,1993,4:34.
    [39]Panin G N,Tetzlaff G,Raabe A.Inhomogeneity of the Land Surface and Problems in the Parameterization of Surface Fluxes in Natural Conditions[J].Theoretical and Applied Climatology,1998,60(1-4):163-178.
    [40]Foken T,Jegede O O,Weisensee U,et al.Results of the LINEX-96/2 Experiment[J].1997.
    [41]Beyrich F,Richter S H,Weisensee U,et al.Experimental determination of turbulent fluxes over the heterogeneous LITFASS area:Selected results from the LITFASS-98 experiment[J]. Theoretical and Applied Climatology,2002,73(1-2):19-34.
    [42]周德刚,黄荣辉.在观测质量控制下戈壁下垫面的湍流输送特征[J].中国科学:地球科学,2010(8):1068-1078.
    [43]王介民.再论近地面能量平衡闭合问题.2009,兰州.
    [44]刘辉志,董文杰,符淙斌,等.半干旱地区吉林通榆“干旱化和有序人类活动”长期观测实验[J].气候与环境研究,2004,9(2):378-389.
    [45]王慧,胡泽勇,马伟强,等.鼎新戈壁下垫面近地层小气候及地表能量平衡特征季节变化分析[J].大气科学,2008,32(6):1458-1470.
    [46]Leuning R, Cleugh H A, Zegelin S J, et al. Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia:measurements and comparison with MODIS remote sensing estimates[J]. Agricultural and Forest Meteorology,2005,129(3): 151-173.
    [47]Kristensen L, Mann J, Oncley S P, et al. How close is close enough when measuring scalar fluxes with displaced sensors?[J]. Journal of Atmospheric and Oceanic Technology,1997, 14(4):814-821.
    [48]Wyngaard J C. Flow-distortion effects on scalar flux measurements in the surface layer: Implications for sensor design[J]. Boundary-Layer Meteorology,1988,42(1-2):19-26.
    [49]Amiro B D. Drag coefficients and turbulence spectra within three boreal forest canopies[J]. Boundary-Layer Meteorology,1990,52(3):227-246.
    [50]Blanken P D. Turbulent flux measurements above and below the overstory of a boreal aspen forest[J]. Boundary-Layer Meteorology,1998,89(1):109-140.
    [51]温学发,于贵瑞,孙晓敏,等.复杂地形条件下森林植被湍流通量测定分析[J].2004.
    [52]Horst T W. A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors[J]. Boundary-Layer Meteorology,1997,82(2):219-233.
    [53]Horst T W. Attenuation of scalar fluxes measured with displaced sensors[C]//EGS-AGU-EUG Joint Assembly.2003,1:1325.
    [54]Horst T W, Kleissl J, Lenschow D H, et al. HATS:Field Observations to Obtain Spatially Filtered Turbulence Fields from Crosswind Arrays of Sonic Anemometers in the Atmospheric Surface Layer[J]. Journal of the Atmospheric Sciences,2004,61(13):1566-1581.
    [55]Lee X, Black T A. Relating eddy correlation sensible heat flux to horizontal sensor separation in the unstable atmospheric surface layer[J]. Journal of Geophysical Research:Atmospheres (1984-2012),1994,99(D9):18545-18553.
    [56]走金清,工介民,黄建平,等.半干早草地地表土壤热通量的计算及其对能量平衡的影 响[J].高原气象,2010,29(4):840-848.
    [57]Ochsner T E, Sauer T J, Horton R. Soil heat storage measurements in energy balance studies [J]. Agronomy journal,2007,99(1):311-319.
    [58]张强,李宏宇.黄土高原地表能量不闭合度与垂直感热平流的关系[J].物理学报,2010,59(8):5888-5895.
    [59]Mahrt L. Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric and Oceanic Technology,1998,15(2):416-429.
    [60]Lee X. On micrometeorological observations of surface-air exchange over tall vegetation[J]. Agricultural and Forest Meteorology,1998,91(1):39-49.
    [1]温学发,于贵瑞,孙晓敏.基于涡度相关技术估算植被/大气间净CO2交换量中的不确定性[J].地球科学进展,2004,19(4):658-663.
    [2]Running S W, Baldocchi D D, Turner D P, et al. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data[J]. Remote Sensing of Environment,1999,70(1):108-127.
    [3]Geider R J, Delucia E H, Falkowski P G, et al. Primary productivity of planet earth:biological determinants and physical constraints in terrestrial and aquatic habitats[J]. Global Change Biology,2001,7(8):849-882.
    [4]Goulden M L, Munger J W, FAN S M, et al. Measurements of carbon sequestration by long-term eddy covariance:Methods and a critical evaluation of accuracy [J]. Global change biology, 1996,2(3):169-182.
    [5]Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future[J]. Global Change Biology,2003,9(4): 479-492.
    [6]Amiro B D, Barr A G, Black T A, et al. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada[J]. Agricultural and Forest Meteorology,2006, 136(3):237-251.
    [7]Baldocchi D.'Breathing'of the terrestrial biosphere:lessons learned from a global network of carbon dioxide flux measurement systems[J]. Australian Journal of Botany,2008,56(1):1-26.
    [8]Vickers D, Thomas C K, Martin J G, et al. Self-correlation between assimilation and res-piration resulting from flux partitioning of eddy-covariance CO2 fluxes[J]. Agricultural and forest meteorology,2009,149(9):1552-1555.
    [9]Lasslop G, Reichstein M, Papale D, et al. Separation of net ecosystem exchange into assimil-ation and respiration using a light response curve approach:critical issues and global evaluation[J]. Global Change Biology,2010,16(1):187-208.
    [10]Baldocchi D, Falge E, Gu L, et al. FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society,2001,82(11):2415-2434.
    [11]李正泉,于贵瑞,温学发,等.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J].中国科学:D辑,2004,34(Ⅱ):46-56.
    [12]米娜岫,于责瑞,温学发,等.中国通量观测网络(ChinaFLUX)通量观测空间代表性初步研究[J].2006.
    [13]Oncley S P, Foken T, Vogt R, et al. The Energy Balance Experiment EBEX-2000. Part Ⅰ: overview and energy balance. Boundary-Layer Meteorology,2007,123:1-28
    [14]Wilson K B, Hanson P J, Baldocchi D D. Factors controlling evaporation and energy balance partitioning beneath a deciduous forest over an annual cycle. Agricultural and Forest Meteorology,2000,102:83-103
    [15]Twine T E, Kustas W P, Norman J M, et al. Correcting eddy-covariance flux underestimates over a grassland[J]. Agricultural and Forest Meteorology,2000,103(3):279-300.
    [16]Mauder M, Desjardins R L, MacPherson I. Scale analysis of airborne flux measurements over heterogeneous terrain in a boreal ecosystem[J]. Journal of Geophysical Research:Atmosp-heres (1984-2012),2007,112(D13).
    [17]Griffis T J, Black T A, Morgenstern K, et al. Ecophysiological controls on the carbon balan-ces of three southern boreal forests. Agricultural and Forest Meteorology,2003,117:53-71
    [18]Liu H P, Randerson J T, Lindfors J, et al. Consequences of incomplete surface energy balance closure for CO2 fluxes from open-path CO2/H2O infrared gas analysers. Boundary-Layer Meteorology,2006,120:65-85.
    [19]王瑾,张镭,王腾蛟,等.兰州附近山谷典型日环流特征对比分析[J].干旱气象,2012,30(2):169-177.
    [20]Finnigan J J, Clement R, Malhi Y, et al. A re-evaluation of long-term flux measurement tech-niques part Ⅰ:averaging and coordinate rotation[J]. Boundary-Layer Meteorology,2003, 107(1):1-48.
    [21]Horst T W. A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors[J]. Boundary-Layer Meteorology,1997,82(2):219-233.
    [22]Horst T W, Kleissl J, Lenschow D H, et al. HATS:Field Observations to Obtain Spatially Filtered Turbulence Fields from Crosswind Arrays of Sonic Anemometers in the Atmospheric Surface Layer*[J]. Journal of the Atmospheric Sciences,2004,61(13):1566-1581.
    [23]陈家宜,范邵华,赵传峰,等.涡旋相关法测定湍流通量偏低的研究.大气科学,2006,30(3):423-432
    [24]郑泽梅,于贵瑞,孙晓敏,等.涡度相关法和静态箱/气相色谱法在生态系统呼吸观测中的比较[J].应用生态学报,2008,19(2):290-298.
    [25]Zhu Z L, Sun X M, Zhang R H. Statistical analysis and comparative study of energy balance components estimated using micrometeorological techniques during HUBEX/IOP 1998/99. Advances in Atmospheric Sciences,2003,20 (2):285-291
    [26]Kochendorfer J, Meyers T P, Frank J, et al. How well can we measure the vertical wind speed? Implications for fluxes of energy and mass[J]. Boundary-Layer Meteorology,2012,145(2): 383-398.
    [27]Ono K, Miyata A, Yamada T. Apparent downward CO2 flux observed with open-path eddy covariance over a non-vegetated surface[J]. Theoretical and Applied Climatology,2008, 92(3-4):195-208.
    [28]Perez P J, Castellvi F, Ibanez M, et al. Assessment of reliability of Bowen ratio method for partitioning fluxes[J]. Agricultural and Forest Meteorology,1999,97(3):141-150.
    [29]Cava D, Katul G G. The effects of thermal stratification on clustering properties of canopy turbulence[J]. Boundary-Layer Meteorology,2009,130(3):307-325.
    [30]Lenschow D H, Sun J. The spectral composition of fluxes and variances over land and sea out to the mesoscale[J]. Boundary-Layer Meteorology,2007,125(1):63-84.
    [31]Mauder M, Desjardins R L, Pattey E, et al. An attempt to close the daytime surface energy balance using spatially-averaged flux measurements[J]. Boundary-Layer Meteorology,2010, 136(2):175-191.
    [32]Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1980,106(447):85-100.
    [1]Lange B, Larsen S, H(?)jstrup J, et al. The influence of thermal effects on the wind speed profile of the coastal marine boundary layer[J]. Boundary-Layer Meteorology,2004,112(3):587-617.
    [2]Atlaskin E, Vihma T. Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland[J]. Quarterly Journal of the Royal Meteorological Society,2012,138(667):1440-1451.
    [3]Sorbjan Z. A study of the stable boundary layer based on a single-column K-theory model[J]. Boundary-Layer Meteorology,2012,142(1):33-53.
    [4]Mahrt L. Weak-wind mesoscale meandering in the nocturnal boundary layer[J]. Environmental Fluid Mechanics,2007,7(4):331-347.
    [5]Hogstrom U, Hunt J C R, Smedman A S. Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer[J]. Boundary-Layer Meteorology,2002, 103(1):101-124.
    [6]Grachev A A, Andreas E L, Fairall C W, et al. The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer[J]. Boundary-Layer Meteorology,2013,147(1):51-82.
    [7]Mahrt L, Richardson S, Seaman N, et al. Turbulence in the nocturnal boundary layer with light and variable winds[J]. Quarterly Journal of the Royal Meteorological Society,2012,138(667): 1430-1439.
    [8]Yagiie C, Viana S, Maqueda G, et al. Influence of stability on the flux-profile relationships for wind speed, Φm, and temperature, Φh, for the stable atmospheric boundary layer[J]. Nonlinear Processes in Geophysics,2006,13(2):185-203.
    [9]Sterk H A M, Steeneveld G J, Holtslag A A M. The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice[J]. Journal of Geophysical Research:Atmospheres,2013,118(3):1199-1217.
    [10]Rodriguez A, Sanchez-Arcilla A, Redondo J M, et al. Pollutant dispersion in the nearshore region:Modelling and measurements[J]. Water Science and Technology,1995,32(9): 169-178.
    [11]Hu X M, Klein P M, Xue M, et al. Enhanced vertical mixing associated with a nocturnal cold front passage and its impact on near-surface temperature and ozone concentration[J]. Journal of Geophysical Research:Atmospheres,2013,118(7):2714-2728.
    [12]Cuxart J, Yague C, Morales G, et al. Stable atmospheric boundary-layer experiment in Spain (SABLES 98):a report[J]. Boundary-Layer Meteorology,2000,96(3):337-370.
    [13]Nakamura R, Mahrt L. A study of intermittent turbulence with CASES-99 tower measurem-ents[J]. Boundary-Layer Meteorology,2005,114(2):367-387.
    [14]Sorbjan Z, Grachev A A. An evaluation of the flux-gradient relationship in the stable boundary-layer[J]. Boundary-Layer Meteorology,2010,135(3):385-405.
    [15]王介民,王维真,奥银焕,等.复杂条件下湍流通量的观测与分析[J].地球科学进展,2007,22(8):791-797.
    [16]缪启龙,温雅婷,何清,等.沙漠腹地春夏季近地层大气湍流特征观测分析[J].中国沙漠,2010,30(1):167-174.
    [17]刘辉志,冯健武,邹捍,等.青藏高原珠峰绒布河谷地区近地层湍流输送特征[J].高原气象,2007,26(6):1151-1161.
    [18]Mahrt L. Variability and maintenance of turbulence in the very stable boundary layer[J]. Boundary-Layer Meteorology,2010,135(1):1-18.
    [19]Salmond J A, McKendry I G. A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality[J]. Progress in Physical Geography,2005,29(2): 171-188.
    [20]Mahrt L. Computing turbulent fluxes near the surface:needed improvements[J]. Agricultural and Forest Meteorology,2010,150(4):501-509.
    [21]Muschinski A, Frehlich R G, Balsley B B. Small-scale and large-scale intermittency in the nocturnal boundary layer and the residual layer[J]. Journal of Fluid Mechanics,2004,515: 319-351.
    [22]Conangla L, Cuxart J, Soler M R. Characterisation of the nocturnal boundary layer at a site in northern Spain[J]. Boundary-Layer Meteorology,2008,128(2):255-276.
    [23]Vindel J M, Yague C. Intermittency of turbulence in the atmospheric boundary layer:scaling exponents and stratification influence[J]. Boundary-Layer Meteorology,2011,140(1):73-85.
    [24]Mahrt L, Thomas C, Richardson S, et al. Non-stationary generation of weak turbulence for very stable and weak-wind conditions[J]. Boundary-Layer Meteorology,2013,147(2): 179-199.
    [25]胡非.湍流、间歇性与大气边界层[M].科学出版社,1995.
    [26]Finnigan J. A note on wave-turbulence interaction and the possibility of scaling the very stable boundary layer[J]. Boundary-Layer Meteorology,1999,90(3):529-539.
    [27]Sorbjan Z, Czerwinska A. Statistics of turbulence in the stable boundary layer affected by gravity waves[J]. Boundary-Layer Meteorology,2013,148(1):73-91.
    [28]Anderson P S. Fine-scale structure observed in a stable atmospheric boundary layer by sodar and kite-borne tethersonde[J]. Boundary-layer meteorology,2003,107(2):323-351.
    [29]Fritts D C, Nappo C, Riggin D M, et al. Analysis of ducted motions in the stable nocturnal boundary layer during CASES-99[J]. Journal of the Atmospheric Sciences,2003,60(20).
    [30]Banta R M. Stable-boundary-layer regimes from the perspective of the low-level jet[J]. Acta Geophysica,2008,56(1):58-87.
    [31]Karipot A, Leclerc M Y, Zhang G, et al. Influence of nocturnal low-level jet on turbulence structure and CO2 flux measurements over a forest canopy[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2008,113(D10).
    [32]梁捷宁,张镭,田鹏飞,等.黄土高原复杂地形上边界层低空急流对近地层湍流的影响[J].地球物理学报,57(5):1387-1398.
    [33]Anfossi D, Oettl D, Degrazia G, et al. An analysis of sonic anemometer observations in low wind speed conditions[J]. Boundary-Layer Meteorology,2005,114(1):179-203.
    [34]Mahrt L. Mesoscale wind direction shifts in the stable boundary-layer[J]. Tellus A,2008, 60(4):700-705.
    [35]Tjernstrom M, Mauritsen T. Mesoscale variability in the summer Arctic boundary layer[J]. Boundary-Layer Meteorology,2009,130(3):383-406.
    [36]Salmond J A. Wavelet analysis of intermittent turbulence in a very stable nocturnal boundary layer:implications for the vertical mixing of ozone[J]. Boundary-Layer Meteorology,2005, 114(3):463-488.
    [37]Klipp C L, Mahrt L. Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer[J]. Quarterly Journal of the Royal Meteorological Society,2004, 130(601):2087-2103.
    [38]Mahrt L. Nocturnal boundary-layer regimes[J]. Boundary-Layer Meteorology,1998,88(2): 255-278.
    [39]Coulter R L, Doran J C. Spatial and temporal occurrences of intermittent turbulence during CASES-99[J]. Boundary-Layer Meteorology,2002,105(2):329-349.
    [40]Van de Wiel B J H, Moene A F, Hartogensis O K, et al. Intermittent turbulence in the stable boundary layer over land. Part Ⅲ:A classification for observations during CASES-99[J]. Journal of the Atmospheric Sciences,2003,60(20):2509-2522.
    [41]Bertin F, Barat J, Wilson R. Energy dissipation rates, eddy diffusivity, and the Prandtl number: An in situ experimental approach and its consequences on radar estimate of turbulent parameters[J]. Radio Science,1997,32(2):791-804.
    [42]Rehmann C R, Koseff J R. Mean potential energy change in stratified grid turbulence[J]. Dynamics of Atmospheres and Oceans,2004,37(4):271-294.
    [43]Zilitinkevich S S, Esau I N. Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer[J]. Boundary-Layer Meteorology,2007, 125(2):193-205.
    [44]Sukoriansky S, Galperin B, Staroselsky I. A quasinormal scale elimination model of turbulent flows with stable stratification[J]. Physics of fluids,2005,17:085107.
    [45]Galperin B, Sukoriansky S, Anderson P S. On the critical Richardson number in stably stratified turbulence[J]. Atmospheric Science Letters,2007,8(3):65-69.
    [46]Vickers D, Mahrt L. A solution for flux contamination by mesoscale motions with very weak turbulence[J]. Boundary-Layer Meteorology,2006,118(3):431-447.
    [47]Howell J F, Mahrt L. Multiresolution flux decomposition[J]. Boundary-Layer Meteorology, 1997,83(1):117-137.
    [48]Mahrt L. Variability and maintenance of turbulence in the very stable boundary layer[J]. Boundary-Layer Meteorology,2010,135(1):1-18.
    [49]Hiscox A L, Miller D R, Nappo C J. Plume meander and dispersion in a stable boundary layer[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2010,115(D21).
    [1]Bocquet F, Balsley B, Tjernstrom M, et al. Comparing estimates of turbulence based on near-surface measurements in the nocturnal stable boundary layer[J]. Boundary-Layer Meteorology,2011,138(1):43-60.
    [2]Zilitinkevich S S, Elperin T, Kleeor in N, et al. Energy-and flux-budget (EFB) turbulence closure model for stably stratified flows. Part Ⅰ:steady-state, homogeneous regimes[J]. Boundary-Layer Meteorology,2007,125(2):167-191.
    [3]Nappo C J, Hiscox A L, Miller D R. A Note on Turbulence Stationarity and Wind Persistence Within the Stable Planetary Boundary Layer[J]. Boundary-Layer Meteorology,2010,136(1): 165-174.
    [4]张宏升,朱好,彭艳,等.沙尘天气过程沙地下垫面沙尘通量的获取与分析研究[J].气象学报,2007,65(5).
    [5]Chu C R, Parlange M B, Katul G G, et al. Probability density functions of turbulent velocity and temperature in the atmospheric surface layer[J]. Water Resources Research,1996,32(6): 1681-1688.
    [6]Pahlow M, Parlange M B, Porte-Agel F. On Monin-Obukhov similarity in the stable atmos-pheric boundary layer[J]. Boundary-Layer Meteorology,2001,99(2):225-248.
    [7]Martins C A, Moraes O L L, Acevedo O C, et al. Turbulence intensity parameters over a very complex terrain[J]. Boundary-Layer Meteorology,2009,133(1):35-45.
    [8]Hogstrom U. Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions[J]. Journal of the Atmospheric Sciences, 1990,47(16): 1949-1972.
    [1]Sorbjan Z, Grachev A A. An evaluation of the flux-gradient relationship in the stable boundary layer[J]. Boundary-Layer Meteorology,2010,135(3):385-405.
    [2]Mahrt L. The influence of nonstationarity on the turbulent flux-gradient relationship for stable stratification[J]. Boundary-Layer Meteorology,2007,125(2):245-264.
    [3]Mahrt L. Variability and maintenance of turbulence in the very stable boundary layer[J]. Boundary-Layer Meteorology,2010,135(1):1-18.
    [4]Pahlow M, Parlange M B, Porte-Agel F. On Monin-Obukhov similarity in the stable atmospheric boundary layer[J]. Boundary-Layer Meteorology,2001,99(2):225-248.
    [5]Businger J A. Reflections on boundary-layer problems of the last 50 years[J]. Boundary-Layer Meteorology,2005,116(2):161-173.
    [6]Chenge Y, Brutsaert W. Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer[J]. Boundary-Layer Meteorology,2005,114(3):519-538.
    [7]Foken T.50 years of the Monin-Obukhov similarity theory[J]. Boundary-Layer Meteorology, 2006,119(3):431-447.
    [8]Nappo C J, Hiscox A L, Miller D R. A note on turbulence stationarity and wind persistence within the stable planetary boundary layer[J]. Boundary-Layer Meteorology,2010,136(1): 165-174.
    [9]Rodriguez A, Sanchez-Arcilla A, Redondo J M, et al. Pollutant dispersion in the nearshore region:Modelling and measurements[J]. Water Science and Technology,1995,32(9):169-178.
    [10]Hu X M, Klein P M, Xue M, et al. Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration[J]. Atmospheric Environment,2013,70:123-130.
    [11]Caughey S J, Wyngaard J C, Kaimal J C. Turbulence in the evolving stable boundary layer[J]. Journal of the Atmospheric Sciences,1979,36(6):1041-1052.
    [12]Moraes O L L, Acevedo O C, Da Silva R, et al. Nocturnal surface-layer characteristics at the bottom of a valley[J]. Boundary-Layer Meteorology,2004,112(1):159-177.
    [13]Anquetin S, Guilbaud C, Chollet J P. The formation and destruction of inversion layers within a deep valley[J]. Journal of Applied Meteorology,1998,37(12):1547-1560.
    [14]Lin Y L. Mesoscale dynamics[M]. Cambridge University Press,2007.
    [15]Kang S L, Lenschow D, Sullivan P. Effects of Mesoscale Surface Thermal Heterogeneity on Low-Level Horizontal Wind Speeds[J]. Boundary-Layer Meteorology,2012,143(3): 409-432.
    [16]Coulter R L, Doran J C. Spatial and temporal occurrences of intermittent turbulence during CASES-99[J]. Boundary-layer meteorology,2002,105(2):329-349.
    [17]Mahrt L. Mesoscale wind direction shifts in the stable boundary-layer[J]. Tellus A,2008, 60(4):700-705.
    [18]Mahrt L. Vertical structure and turbulence in the very stable boundary layer[J]. Collections, 1985.
    [19]Vickers D, Mahrt L. A solution for flux contamination by mesoscale motions with very weak turbulence[J]. Boundary-Layer Meteorology,2006,118(3):431-447.
    [20]Mahrt L. Weak-wind mesoscale meandering in the nocturnal boundary layer[J]. Environmental Fluid Mechanics,2007,7(4):331-347.
    [21]Tjernstrom M, Mauritsen T. Mesoscale variability in the summer Arctic boundary layer[J]. Boundary-Layer Meteorology,2009,130(3):383-406.
    [22]Hanna S R. Spectra of concentration fluctuations:The two time scales of a meandering plume[J]. Atmospheric Environment (1967),1986,20(6):1131-1137.
    [23]Etling D. On plume meandering under stable stratification[J]. Atmospheric Environment. Part A. General Topics,1990,24(8):1979-1985.
    [24]Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data[J]. Journal of Atmospheric and Oceanic Technology,1997,14(3):512-526.
    [25]Mahrt L. Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric & Oceanic Technology,1998,15(2).
    [26]Howell J F, Sun J. Surface-layer fluxes in stable conditions[J]. Boundary-Layer Meteorology, 1999,90(3):495-520.
    [27]Andreas E L, Geiger C A, Trevino G, et al. Identifying nonstationarity in turbulence series[J]. Boundary-Layer Meteorology,2008,127(1):37-56.
    [28]Nakamura R, Mahrt L. A study of intermittent turbulence with CASES-99 tower measurements[J]. Boundary-Layer Meteorology,2005,114(2):367-387.
    [29]Salmond J A. Wavelet analysis of intermittent turbulence in a very stable nocturnal boundary layer:implications for the vertical mixing of ozone[J]. Boundary-Layer Meteorology,2005, 114(3):463-488.
    [30]Basu S, Porte-Agel F, Foufoula-Georgiou E, et al. Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence:an integration of field and laboratory measurements with large-eddy simulations[J]. Boundary-Layer Meteorology,2006,119(3): 473-500.
    [31]Mahrt L, Thomas C, Richardson S, et al. Non-stationary generation of weak turbulence for very stable and weak-wind conditions[J]. Boundary-Layer Meteorology,2013,147(2): 179-199.
    [32]Argentini S, Mastrantonio G, Petenko I, et al. Use of a high-resolution sodar to study surface-layer turbulence at night[J]. Boundary-Layer Meteorology,2012,143(1):177-188.
    [33]Basu S, Porte-Agel F, Foufoula-Georgiou E, et al. Revisiting the local scaling hypothesis in stably stratified atmospheric boundary-layer turbulence:an integration of field and laboratory measurements with large-eddy simulations[J]. Boundary-Layer Meteorology,2006,119(3): 473-500.
    [34]Van de Wiel B J H, Moene A F, Hartogensis O K, et al. Intermittent turbulence in the stable boundary layer over land. Part Ⅲ:A classification for observations during CASES-99[J]. Journal of the Atmospheric Sciences,2003,60(20):2509-2522.
    [35]Sterk H A M, Steeneveld G J, Holtslag A A M. The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice[J]. Journal of Geophysical Research:Atmospheres,2013,118(3):1199-1217.
    [36]Gilman C, Garrett C. Heat flux parameterizations for the Mediterranean Sea:The role of atmospheric aerosols and constraints from the water budget[J]. Journal of Geophysical Research:Oceans (1978-2012),1994,99(C3):5119-5134.
    [37]Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science,2002,297(5590):2250-2253.
    [38]Kaufman Y J, Koren I. Smoke and pollution aerosol effect on cloud cover[J]. Science,2006, 313(5787):655-658.
    [39]Oliveira P H F, Artaxo P, Pires C, et al. The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia[J]. Tellus B,2007,59(3):338-349.
    [40]Businger J A, Wyngaard J C, Izumi Y, et al. Flux-profile relationships in the atmospheric surface layer[J]. Journal of the Atmospheric Sciences,1971,28(2):181-189.
    [41]Dyer A J. A review of flux-profile relationships[J]. Boundary-Layer Meteorology,1974,7(3): 363-372.
    [42]Grachev A A, Andreas E L, Fairall C W, et al. SHEBA flux-profile relationships in the stable atmospheric boundary layer[J]. Boundary-Layer Meteorology,2007,124(3):315-333.
    [43]Rodrigo J S, Anderson P S. Investigation of the stable atmospheric boundary layer at Halley Antarctica[J]. Boundary-Layer Meteorology,2013,148(3):517-539.
    [44]Kondo J, Kanechika O, Yasuda N. Heat and momentum transfers under strong stability in the atmospheric surface layer[J]. Journal of the Atmospheric Sciences,1978,35(6):1012-1021.
    [45]Hogstrom U L F. Non-dimensional wind and temperature profiles in the atmospheric surface layer:A re-evaluation[M]//Topics in Micrometeorology. A Festschrift for Arch Dyer. Springer Netherlands,1988:55-78.
    [46]Beljaars A C M, Holtslag A A M. Flux parameterization over land surfaces for atmospheric models[J]. Journal of Applied Meteorology,1991,30(3):327-341.
    [47]Yagiie C, Viana S, Maqueda G, et al. Influence of stability on the flux-profile relationships for wind speed,Φ m, and temperature,Φ h, for the stable atmospheric boundary layer[J]. Nonlinear Processes in Geophysics,2006,13(2):185-203.
    [48]Klipp C L, Mahrt L. Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer[J]. Quarterly Journal of the Royal Meteorological Society,2004, 130(601):2087-2103.
    [49]Grachev A A, Fairall C W, Persson P O G, et al. Stable boundary-layer scaling regimes:The SHEBA data[J]. Boundary-Layer Meteorology,2005,116(2):201-235.
    [50]Grachev A A, Andreas E L, Fairall C W, et al. SHEBA flux-profile relationships in the stable atmospheric boundary layer[J]. Boundary-Layer Meteorology,2007,124(3):315-333.
    [51]Mahrt L. Stratified atmospheric boundary layers[J]. Boundary-Layer Meteorology,1999, 90(3):375-396.
    [52]Banta R M, Pichugina Y L, Brewer W A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet[J]. Journal of the Atmospheric Sciences, 2006,63(11).
    [53]Karipot A, Leclerc M Y, Zhang G, et al. Influence of nocturnal low-level jet on turbulence structure and CO2 flux measurements over a forest canopy[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2008,113(D10).
    [54]Sun J, Burns S P, Lenschow D H, et al. Intermittent turbulence associated with a density current passage in the stable boundary layer[J]. Boundary-Layer Meteorology,2002,105(2): 199-219.
    [55]Darby L S, Banta R M, Brewer W A, et al. Vertical variations in 03 concentrations before and after a gust front passage[J]. Journal of Geophysical Research:Atmospheres (1984-2012), 2002,107(D13):ACH 9-1-ACH 9-11.
    [56]Zeng Q, Cheng X, Hu F, et al. Gustiness and coherent structure of strong winds and their role in dust emission and entrainment[J]. Advances in Atmospheric Sciences,2010,27:1-13.
    [57]Blumen W, Banta R, Burns S P, et al. Turbulence statistics of a Kelvin-Helmholtz billow event observed in the night-time boundary layer during the Cooperative Atmosphere-Surface Exchange Study field program[J]. Dynamics of Atmospheres and Oceans,2001,34(2): 189-204.
    [58]Newsom R K, Banta R M. Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99[J]. Journal of the Atmospheric Sciences,2003, 60(1).
    [1]Poulos G S, Blumen W, Fritts D C, et al. CASES-99:A comprehensive investigation of the stable nocturnal boundary layer[J]. Bulletin of the American Meteorological Society,2002, 83(4):555-581.
    [2]Tjernstrom M, Balsley B B, Svensson G, et al. The Effects of Critical Layers on Residual Layer Turbulence[J]. Journal of the Atmospheric Sciences,2009,66(2):468-480.
    [3]Hu X M, Klein P M, Xue M, et al. Impact of Low-Level Jets on the Nocturnal Urban Heat Island Intensity in Oklahoma City[J]. Journal of Applied Meteorology & Climatology,2013, 52(8):1779-1802.
    [4]Reitebuch O, Strassburger A, Emeis S, et al. Nocturnal secondary ozone concentration maxima analysed by sodar observations and surface measurements[J]. Atmospheric Environment,2000, 34(25):4315-4329.
    [5]Salmond J A, McKendry I G. Secondary ozone maxima in a very stable nocturnal boundary layer:observations from the Lower Fraser Valley, BC[J]. Atmospheric Environment,2002, 36(38):5771-5782.
    [6]Stutz J, Alicke B, Ackermann R, et al. Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer:1. Observations during the Texas Air Quality Study 2000[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2004,109(D12).
    [7]Talbot R, Mao H, Sive B. Diurnal characteristics of surface level 03 and other important trace gases in New England[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2005, 110(D9).
    [8]Hidy G M. Ozone process insights from field experiments-part I:overview[J]. Atmospheric Environment,2000,34(12):2001-2022.
    [9]Banta R M, Pichugina Y L, Newsom R K. Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer[J]. Journal of the Atmospheric Sciences,2003,60(20):2549-2555.
    [10]Banta R M, Pichugina Y L, Brewer W A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet[J]. Journal of the Atmospheric Sciences, 2006,63(11):2700-2719.
    [11]Mathieu N, Strachan I B, Leclerc M Y, et al. Role of low-level jets and boundary-layer properties on the NBL budget technique[J]. Agricultural and Forest Meteorology,2005, 135(1):35-43.
    [12]Hu X M, Klein P M, Xue M, et al. Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration[J]. Atmospheric Environment,2013,70:123-130.
    [13]Beyrich F. Sodar observations of the stable boundary layer height in relation to the nocturnal low-level jet[J]. Meteorologische Zeitschrift,1994,3(1):29-34.
    [14]Banta R M, Newsom R K, Lundquist J K, et al. Nocturnal low-level jet characteristics over Kansas during CASES-99[J]. Boundary-Layer Meteorology,2002,105(2):221-252.
    [15]Song J, Liao K, Coulter R L, et al. Climatology of the low-level jet at the Southern Great Plains Atmospheric Boundary Layer Experiments site[J]. Journal of Applied Meteorology, 2005,44(10).
    [16]Zhang D L, Zhang S, Weaver S J. Low-level jets over the mid-Atlantic states:Warm-season climatology and a case study[J]. Journal of Applied Meteorology and Climatology,2006, 45(1):194-209.
    [17]Kallistratova M, Kouznetsov R D, Kuznetsov D D, et al. Summertime low-level jet characteristics measured by sodars over rural and urban areas[J]. Meteorologische Zeitschrift, 2009,18(3):289-295.
    [18]Kallistratova M A, Kouznetsov R D. Low-level jets in the Moscow region in summer and winter observed with a sodar network[J]. Boundary-Layer Meteorology,2012,143(1): 159-175.
    [19]Corsmeier U, Kalthoff N, Kolle O, et al. Ozone concentration jump in the stable nocturnal boundary layer during a LLJ-event[J]. Atmospheric Environment,1997,31(13):1977-1989.
    [20]Karipot A, Leclerc M Y, Zhang G. Characteristics of Nocturnal Low-Level Jets Observed in the North Florida Area[J]. Monthly Weather Review,2009,137(8).
    [21]Mahrt L, Vickers D. Contrasting vertical structures of nocturnal boundary layers[J]. Boundary-Layer Meteorology,2002,105(2):351-363.
    [22]Karipot A, Leclerc M Y, Zhang G, et al. Influence of nocturnal low-level jet on turbulence structure and CO2 flux measurements over a forest canopy[J]. Journal of Geophysical Research:Atmospheres (1984-2012),2008,113(D10).
    [23]Andreas E L, Claffy K J, Makshtas A P. Low-level atmospheric jets and inversions over the western Weddell Sea[J]. Boundary-Layer Meteorology,2000,97(3):459-486.
    [24]Conangla L, Cuxart J. On the turbulence in the upper part of the low-level jet:an experimental and numerical study[J]. Boundary-Layer Meteorology,2006,118(2):379-400.
    [25]Ohya Y, Nakamura R, Uchida T. Intermittent bursting of turbulence in a stable boundary layer with low-level jet[J]. Boundary-Layer Meteorology,2008,126(3):349-363.
    [26]王瑾,张镭,王腾蛟,等.兰州附近山谷典型日环流特征对比分析[J].干旱气象,2012,30(2):169-177.
    [27]张龙,张镭,王颖,等.基于WRF不同边界层方案的黄上高原丘陵冬季地面气象要素日变化模拟分析[J].干旱气象,2012,30(2):158-168.
    [28]赵世强,张镭,王治厅,等.利用激光雷达结合数值模式估算兰州远郊榆中地区夏季边界层高度[J].气候与环境研究,2012,17(5):523-531.
    [29]王腾蛟,张镭,胡向军,等.WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J].高原气象,2013,32(005):1261-1271.
    [30]李炬,舒文军.北京夏季夜间低空急流特征观测分析[J].地球物理学报,2008,51(2):360-368.
    [31]Blackadar A K. Boundary layer wind maxima and their significance for the growth of nocturnal inversions[J]. Bulletin of the American Meteorological Society,1957,38(5): 283-290.
    [32]Rider L J, Armendariz M. Nocturnal maximum winds in the planetary boundary layer at White Sands Missile Range, New Mexico[J]. Journal of Applied Meteorology,1971,10(6): 1154-1161.
    [33]Karipot A, Leclerc M Y, Zhang G, et al. Nocturnal CO2 exchange over a tall forest canopy associated with intermittent low-level jet activity[J]. Theoretical and Applied Climatology, 2006,85(3-4):243-248.
    [34]Sun J, Burns S P, Lenschow D H, et al. Intermittent turbulence associated with a density current passage in the stable boundary layer[J]. Boundary-Layer Meteorology,2002,105(2): 199-219.
    [35]Holton J R. The diurnal boundary layer wind oscillation above sloping terrainl [J]. Tellus, 1967,19(2):199-205.
    [36]Burk S D, Thompson W T. The summertime low-level jet and marine boundary layer structure along the California coast[J]. Monthly Weather Review,1996,124(4):668-686.
    [37]Parish T R. Forcing of the summertime low-level jet along the California coast[J]. Journal of Applied Meteorology,2000,39(12):2421-2433.
    [38]Lundquist J K. Intermittent and elliptical inertial oscillations in the atmospheric boundary layer[J]. Journal of the Atmospheric Sciences,2003,60(21):2661-2673.
    [39]Baas P, Bosveld F C, Klein Baltink H, et al. A climatology of nocturnal low-level jets at Cabauw[J]. Journal of Applied Meteorology & Climatology,2009,48(8).
    [40]Cava D, Giostra U, Tagliazucca M. Spectral maxima in a perturbed stable boundary layer[J]. Boundary-Layer Meteorology,2001,100(3):421-437.
    [41]Hogstrom U, Hunt J C R, Smedman A S. Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer[J]. Boundary-Layer Meteorology,2002, 103(1):101-124.
    [42]刘树华,李洁,刘和平,等.在EBEX-2000实验资料中湍流谱和局地各向同性特征[J].大气科学,2005,29(2):213-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700