用户名: 密码: 验证码:
吐鲁番盆地区域水文地质条件及地下水循环研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于地下水系统存在于地下的多孔介质中,具有隐蔽性以及复杂性,这就使我们不能够直观、全面的给予诠释。在水文地质的发展过程中,水文地质学家们曾经尝试了各种方法来研究地下水系统,但收效甚微。地下水作为一种环境信息变化的载体,我们可以基于地下水系统理论,利用各种手段和方法提取复杂的各个方面的信息来减少其不确定性,也可以更好的帮助人们准确直观的了解其真实的面貌。本文以吐鲁番盆地地下水系统为研究对象,融合现在主流的技术手段和常规水文地质分析,较为真实的还原了该地区的地下水循环规律,并对该地区的水文地质条件做出了较为详细的剖析。
     吐鲁番盆地位于我国西北内陆的新疆维吾尔自治区,其独特的地理位置形成了其独特的暖温带干旱荒漠气候,该地区的蒸发强烈,降水稀少,气候干燥。在无降水补给的内陆盆地地下水循环的方式值得探讨。本文利用已有的资料,对该地区的水文地质条件进行了充分的分析。利用GOCAD软件构建了该地区的三维地质和三维水文地质模型,运用GMS软件对研究区进行了地下水数值模拟,并选取了典型剖面进行了深入研究。最后根据内陆盆地的地下水循环的方式讨论了含水层厚度改变条件下地下水循环的特点。结论如下:
     (1)运用GOCAD软件模拟了研究区的三维地质模型,并运用序贯高斯模拟计算了该地区的水文地质模型,结果和实际情况较为符合,可用于水流模型的计算。
     (2)利用GMS软件计算了该地区的地下水资源量,并预测了20年后地下水的水位变化,研究指出按照现有的水均衡模式计算,20年后地下水位最高下降13m,由于该地区的地下水开采主要用于农业灌溉,所以基本不会导致该地区绿洲面积的减少。
     (3)典型剖面的水流模拟显示,该地区的水流循环可分为局部循环、中间循环和区域循环,局部循环主要发育在北盆地,吐鲁番盆地北盆地和南盆地的水力联系由区域循环构成,其水量很小,仅占水量总循环的3.72%,且循环周期长,该部分地下水一旦污染将很难修复。
The complexity and concealment of groundwater system make it difficult to fully understand groundwater system. For alone time people have tried to use various methods to understand groundwater system. But the only part information of the groundwater system can be obtained.Groundwater is the receptor and information carrier in the environmental change. Based on the theory of groundwater system, distilling and assimilating the isolated and scattered information Can reduce the uncertainty, and can help us to accurately understand groundwater system in the original. Turpan Basin groundwater system, for example, combined with a variety of techniques and conventional hydrogeological analysis, quantitative extraction and integration of fragmented information in an integrated system view of the hydrogeological conditions ofthe area and groundwater circulation.
     Turpan Basin, located in Xinjiang Uygur Autonomous Region NW China, itsunique geographical location has form unique warm temperate arid desert climate,the region's scarce precipitation, dry climate, strong evaporation. In inlandgroundwater without precipitation recharge cycle worth exploring. In this paper, theuse of existing data, a full analysis of the hydrogeological conditions of the area. TheGOCAD software built in the area of three-dimensional geological and threedimensional hydrogeological model, the use of GMS software to the numericalsimulation of groundwater in the study area, and select a typical profile for furtherstudy. Finally, according to the inland basin groundwater cycle discussed thecharacteristics of groundwater circulation. The conclusions as follows:
     (1) The use of the GOCAD software to simulate three-dimensional geologicalmodel of the study area, and the use of sequential Gaussian simulation to simulate the hydrogeological model of the area, the results in line with the actual situation, andcan be used for the calculation of the flow model.
     (2) Using GMS software to simulate the region's groundwater resources, and topredict the groundwater level change after20years, the study pointed out that inaccordance with the existing water balance model,20years after the highest groundwater table decline13m, due to the region's groundwater exploitation ismainly used for agricultural irrigation, so basically does not result in a decrease inthe oasis area.
     (3) The typical profile of hydraulic modeling shows that the region's watercycle can be divided into the local flow system, intermediate flow system andregional flow system, local flow system mainly developed in the North Basin, NorthBasin and South Basin have hydraulic connection, but the amount of water is verysmall, accounting for only3.72%of the total amount of water cycle. Once this partof the groundwater polluted will be difficult to repair.
引文
Abouelmagd A, Sultan M, Milewski A, et al.Toward a better understanding of palaeoclimaticregimes that recharged the fossil aquifers in North Africa: Inferences from stable isotope andremote sensing data.Palaeogeography Palaeoclimatology Palaeoecology,2012.137-149.
    Anderson M P, Cheng X.Long and short-term transience in a groundwater/lake system inWisconsin, USA.Journal of Hydrology,1993.1–2:1-18.
    Bratton J F, Boehlke J K, Krantz D E, et al.Flow and geochemistry of groundwater beneath aback-barrier lagoon: The subterranean estuary at Chincoteague Bay, Maryland, USA.MarineChemistry,2009.1-2:78-92.
    Chen L W, Gui H R, Yin X X.Monitoring of flow field based on stable isotope geochemicalcharacteristics in deep groundwater. Environmental Monitoring and Assessment,2011.1-4:487-498.
    Chen L, Wang G C, Hu F S, et al. Groundwater hydrochemistry and isotope geochemistry in theTurpan Basin, northwestern China. Journal of Arid Land,2013:1-11.
    Dotsika E.Isotope and hydrochemical assessment of the Samothraki Island geothermal area,Greece.Journal of Volcanology and Geothermal Research,2012.18-26.
    Engelen G B, Jones.p. Developments in the analysis of groundwater flow system.Wallingford,
    Freeze R A, Witherspoon P A.Theoretical analysis of regional groundwater flow:2. Effect ofwater-table configuration and subsurface permeability variations.Water ResourcesResearch,1967a.623-634.
    Grassi S, Doveri M, Cortecci G, et al.Hydrogeological study of the intensely exploited aquifer ofthe Santa Croce leather-producing district, Tuscany (central Italy).HydrogeologyJournal,2011.3:671-684.
    Heilweil V M, Solomon D K, Gingerich S B, et al.Oxygen, hydrogen, and helium isotopes forinvestigating groundwater systems of the Cape Verde Islands, West Africa.HydrogeologyJournal,2009.5:1157-1174.
    Hubbert M K. The theory of ground-water motion.The Journal of Geology,1940.785-944.
    Jiang X W, Wan L, Cardenas M B, et al.Simultaneous rejuvenation and aging of groundwater inbasins due to depth-decaying hydraulic conductivity and porosity.Geophysical ResearchLetters,2010.
    Jiang X W, Wan L, Wang X S, et al.Effect of exponential decay in hydraulic conductivity withdepth on regional groundwater flow.Geophysical Research Letters,2009.
    Mandal A K, Zhang J, Asai K.Stable isotopic and geochemical data for inferring sources ofrecharge and groundwater flow on the volcanic island of Rishiri, Japan.AppliedGeochemistry,2011.9-10:1741-1751.
    S.bouhlassa, Aiachi A. Groundwater dating with radiocarbon: application to an aquifer undersemi-arid conditions in the south of Morocco.Applied Radiation andIsotopes,2002.56:637–647.
    Saar M O, Manga, M. Depth dependence of permeability in the Oregon Cascades inferred fromhydrogeologic, thermal, seismic, and magmatic modeling constraints.Journal of GeophysicalResearch-Solid Earth,2004.109.
    Tóth J. A theoretical analysis of groundwater flow in small drainage basins. Journal ofGeophysical Research,1963.4795-4812.
    Tan H, Rao W, Chen J, et al.Chemical and isotopic approach to groundwater cycle in westernQaidam Basin, China.Chinese Geographical Science,2009.4:357-364.
    Yang Q, Xiao H, Zhao L, et al.Hydrological and isotopic characterization of river water,groundwater, and groundwater recharge in the Heihe River basin, northwesternChina.Hydrological Processes,2011.8:1271-1283.
    Zijl W.Scale aspects of groundwater flow and transport systems.HydrogeologyJournal,1999.139-150.
    曹阳.鄂尔多斯白垩系盆地北部典型湖淖地区地下水循环模式研究:[硕士学位论文].吉林:吉林大学.2009
    陈建生.地下水循环在沉积盆地演变中的作用机制.会议.中国山东青岛.2007.348-349.
    陈梦熊,马凤山.中国地下水资源与环境.2002.北京:地震出版社,
    董悦安,何明,蒋崧, et al.河北平原第四系深层地下水36Cl同位素年龄的研究.地球科学—中国地质大学学报,2002.27(1):105-109.
    冯.贝塔朗菲.一般系统论:基础、发展和应用.北京:清华大学出版社,1987
    高淑琴.河南平原第四系地下水循环模式及其可更新能力评价:[博士学位论文].吉林:吉林大学.2008
    桂和荣,陈陆望,宋晓梅.利用氚含量研究皖北矿区深层地下水循环特征.地学前缘,2004.(02):351-352.
    韩冬梅.忻州盆地第四系地下水流动系统分析与水化学场演化模拟:[博士学位论文].中国地质大学.2007
    韩永,王广才,邢立亭et al地下水放射性同位素测年方法研究进展.煤田地质与勘探,2009.05:37-42.
    侯光才.鄂尔多斯白垩系盆地地下水系统及其水循环模式研究:[博士学位论文].吉林:吉林大学.2008
    黄金廷,王文科,马雄德, et al.鄂尔多斯沙漠高原区白垩系含水层补给源的探讨.地下水,2005.06):457-459.
    蒋小伟,万力,王旭升, et al.盆地地下水年龄空间分布规律.水文地质工程地质,2012.04):1-6.
    李文鹏,郝爱兵.中国西北内陆干旱盆地地下水形成演化模式及其意义.水文地质工程地质,1999.(04):30-34.
    李文鹏,周仰效.中国西北典型干旱区地下水流系统.北京:地震出版社.1995.
    李向全,侯新伟,张宏达, et al.太原盆地地下水系统水化学-同位素特征研究.干旱区资源与环境,2006.20(5):109-114.
    李兴华.地下水循环与地下水盐运动.黑龙江水利科技,2008.(06):44-45.
    李振拴.用水化学方法计算岩溶地下水储留时间.中国煤田地质,1995.7(3):55-58.
    李壮,马震,孙瑞华.鲁北平原含水系统划分及地下水循环条件研究. Conference Name.中国济南.2003.95-98.
    林学钰,廖资生,苏小四, et al.现代水文地质学.北京:地质出版社.2005.
    刘心彪,张彦林,王延江, et al.陇东盆地地下水水化学特征分析.化工矿产地质,2007.(04):237-241.
    柳富田.基于同位素技术的鄂尔多斯白垩系盆地北区地下水循环及水化学演化规律研究:[博士学位论文].吉林:吉林大学.2008
    潘世兵,王忠静,曹丽萍.西北内陆盆地地下水循环模式及其可持续利用.地理与地理信息科学,2003.(01):51-54.
    潘彦燕,吴剑锋,吴吉春.非均质含水层中地下水年龄数值模拟.地下水,2010.(06):21-26.
    钱云平,林学钰,秦大军, et al.应用同位素研究黑河下游额济纳盆地地下水.干旱区地理,2005.(05):574-580.
    施德鸿,殷夏,孙继朝, et al.中国北方新生代盆地地下水循环系统演化的模拟研究.地质学报,1998.(01):96.
    宋献方,李发东,于静洁, et al.基于氢氧同位素与水化学的潮白河流域地下水水循环特征.地理研究,2007.(01):11-21.
    王丹.曹妃甸地区地下水资源及水循环研究:[硕士学位论文].北京:中国地质大学(北京).2011
    王占和,谌天德,于德胜, et al.塔里木盆地地下水系统划分.新疆地质,2004.22(3):262-264.
    许广明,张燕君.西北地区大型内陆盆地地下水系统演化特征分析.自然资源学报,2004.19(6):701-706.
    于静洁,宋献方,刘相超, et al.基于δD和δ18O及水化学的永定河流域地下水循环特征解析.自然资源学报,2007.(03):415-423.
    张光辉,陈宗宇,费宇红, et al.海河流域平原地下水同位素年龄及其水化学区域分布特征.矿物岩石地球化学通报,2001.(04):412-414.
    张洪霞,宋文.地下水数值模拟的研究现状与展望.水利科技与经济,2007.11:794-796.
    张俊,侯光才,赵振宏, et al.基于剖面数值模拟的地下水流系统结构控制因素—以鄂尔多斯白垩系盆地北部典型剖面为例.水利水电科技进展,2012.32(02):18-22.
    张人权.水文地质学发展的若干趋向,水文地质工程地质,1987.2(2):20-25
    张宗祜,施德鸿,任福弘, et al.论华北平原第四系地下水系统之演化.中国科学(D辑),1997.27(2):168-173.
    中国地下水科学战略研究小组.中国地下水科学的机遇与挑战.北京:科学出版社.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700