用户名: 密码: 验证码:
CdSe量子点功能化修饰及在微流控液相生物芯片中的初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,基于量子点的荧光成像和荧光检测已经得到广泛的发展,特别是其在疾病早期、高灵敏、特异性诊断的应用加速了量子点的研究进展。本文主要是在油溶性CdSe量子点的基础上,对其原料配比、反应条件等影响因素进行了探讨,并进一步研究了量子点水溶性改性和复合磁性纳米粒子的方法,最后作为荧光探针应用于微流控液相生物芯片。
     首先,我们采用高温油相法制备了性能优良的CdSe量子点,该油溶性量子点具有较好的分散性,且粒径可控、均匀,结晶度较高;其发射峰高斯对称,半峰宽可以较好地控制在30nm以内;通过各条件地调控,量子产率(QY)有较大的提高。实验中,我们分别探讨了Cd前体与Se前体的配比,反应温度,反应时间,壳层材料及结构对量子点荧光性能的影响。发现Cd与Se前体的摩尔配比为1:6时,制备的量子点具有最佳的荧光性能;通过调整反应温度和反应时间,可制备不同波长的量子点,且在一定范围内,温度的升高有助于量子点荧光性能的提高。在制备核壳结构的量子点时发现,无机壳层的包覆有助于量子点荧光性能的提高,而合金壳层的包覆即可有效地提高量子产率,又可抑制量子点半峰宽过度增长。
     其次,为了将量子点应用到生物检测领域,我们对量子点进行了水溶性改性,分别采用了高分子包裹法和配体交换法。前者,我们通过疏水作用力将聚(苯乙烯-co-马来酸酐)包覆在量子点表面(QDs@PSMA),利用开环法将量子点转移到水相,并同时将量子点表面类PEG化。实验表明改性后的量子点具有较好的水溶性和较低的蛋白吸附性,在荧光免疫检测中,显示了较好的特异性;后者,我们应用自主设计合成的巯基乙胺接枝聚γ谷氨酸(PGA-g-MEA),PGA-g-MEA链上的多个巯基取代了量子点表面的有机配体,将量子点转移到水相中去,改性后的量子点具有较小的粒径,约10nm,且显示了较高的pH和温度稳定性。
     再次,我们将量子点与磁性纳米粒子进行复合,制备了双功能的磁性荧光纳米粒子。同样是基于简单的开环法,利用Fe3O4@SiO2表面的氨基开环QDs@PSMA表面的马来酸酐,并同时表面类PEG化。实验发现,该种方法制备的磁性荧光纳米粒子的荧光强度远高于二氧化硅共包裹法制备的纳米粒子,且在不同pH溶液和温度条件下展现出较好的胶体和荧光稳定性,同时该磁性荧光纳米粒子也显示了低的细胞毒性和低非特异吸附性,为其进一步的生物应用奠定了基础。
     最后,我们初步构建了基于量子点荧光探针的微流控液相生物芯片检测系统,主要包括四部分,即基于量子点荧光探针和量子点荧光编码微球的夹心反应检测系统;通过聚焦,促使编码微球快速、单列通过检测区域的微流控芯片;可以实时读取编码微球信息的检测系统;以及信息处理系统。在微流控检测系统构建的基础上,初步实现了编码微球的实时解码和夹心免疫信息的解读,为以后进一步的高通量检测奠定了坚实的基础。
Now, there is great development in bioimaging and biodetection based onquantum dots(QDs) probes, and their potential application in the early sensitive andspecific diagnosis of disease has promoted the research of QDs. In this paper, wefirstly studied the different influence on the fluorescence properties of CdSe QDs,then two methods to prepare water-soluble QDs were investigated, as well as thepreparation of magnetic fluorescent nanocomposites. Finally, the QDs probes wereapplied in microfluidic biochip assays.
     Firstly, we prepared high crystallization and monodispersion CdSe QDs bycolloid chemistry method. The emission spectra of CdSe QDs were Gaussiansymmetric with full width at half maximum (FWHM) less than30nm. During thepreparation, the influences of the ratio of Cd and Se precursors, reactive temperature,reactive time and the materials of shell on the fluorescence properties of QDs wereinvestigated. The results indicated that when the ratio of Cd and Se precursors was1:6,we could get the highest quality QDs; As the reactive temperature or timeincreased, the absorption and emission peak of QDs were obviously red shifted.Significantly, the reactive temperature had a great influence on the quantum yield(QY) of QDs. As for the core/shell QDs, there was a marked increase in the QY with anarrow FWHM after CdSe QDs coated with inorganic shells.
     Secondly, in order to apply the QDs in biodetection, the oil-soluble CdSe QDsneed be transferred into aqueous phase. Two methods were employed to modify theQDs, those were polymer encapsulation method and ligand exchange method. In thefirst method, the poly(styrene-co-maleic anhydride) terminated with cumene (PSMA)was introduced to coat the oil-soluble QDs by the hydrophobic interaction, then theQDs@PSMA were transferred into aqueous phase by a ring-opening reaction andfunctionalized with Jeffamine M-1000polyetheramine (M1000). The water-solubleQDs@PSMA showed a good fluorescence and colloid stability in different pHsolution and a low protein absorption in PBS solution with10%fetal bovine serum(FBS). In addition, it also exhibited a high specificity in fluoimmunoassay. In the second method, a kind of self-synthesized multidentate polymer PGA-g-MEA wasapplied to transfer the oil-soluble QDs into aqueous phase by ligand exchange. TheQDs@PGA-g-MEA had a quite small size about10nm, and showed a high stabilityin pH2-13aqueous solution as well as in different temperature.
     Thirdly, the magnetic and fluorescent bifunctional nanocomposites (MNQDNCs)were prepared by a ring-opening reaction to conjugate QDs and magneticnanoparticles (MNs). And meanwhile, the MNQDNCs were functionalized withM1000by the same ring-opening reaction. The nanocomposites exhibited a highcolloidal and photochemical stability over a wide pH range (pH2-13), a low proteinadsorption in PBS with10%FBS at37°C, and showed a low nonspecific bindingincubated with Hela cells. Sandwich fluoroimmunoassay and magnetic targetingresults indicated that the nanocomposites can be successfully applied in a variety ofdiagnosis, bioimaging and delivery applications.
     Finally, we initially constructed microfluidic biochip detection system basedon quantum dots fluorescent probes. The system mainly included four parts, whichwere as follows:1) the sandwich reaction detection system based on quantum dotsprobes and quantum dots coded microspheres;2) the microfluidic biochip allowingencoded microspheres to pass through the interrogation region quickly in single row;3) the detection system which can read the coded microspheres signal in real time;4)information processing systems. Based on the microfluidic biochip arrays system, thereal-time decoding of encoded microspheres and sandwich immunoassay informationwere realized now. The work has laid a solid foundation for the future furtherhigh-throughput detection.
引文
1Mazumder, S., Dey, R., Mitra, M. K. et al. Review: Biofunctionalized Quantum Dots inBiology and Medicine, Journal of Nanomaterials,2009,906:185-192.
    2Mansur, H. S. Quantum dots and nanocomposites, Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology,2010,2:113-129.
    3Hoshino, A., Hanaki, K., Suzuki, K. et al. Applications of T-lymphoma labeled withfluorescent quantum dots to cell tracing markers in mouse body, Biochemical andbiophysical research communications,2004,314:46-53.
    4Ekimov, A., Efros, A. L.&Onushchenko, A. Quantum size effect in semiconductormicrocrystals, Solid State Communications,1985,56:921-924.
    5Murray, C. B., Norris, D.&Bawendi, M. G. Synthesis and characterization of nearlymonodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,Journal of the American Chemical Society,1993,115:8706-8715.
    6Bruchez, M., Moronne, M., Gin, P. et al. Semiconductor nanocrystals as fluorescentbiological labels, Science,1998,281:2013-2016.
    7Chan, W. C. W.&Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection, Science,1998,281:2016-2018.
    8张兵波.疾病诊断用功能化量子点荧光探针的研究,天津大学,(2009).
    9张阳德.纳米生物技术学.(科学出版社,2005).
    10De Mello Donegá, C. Synthesis and properties of colloidal heteronanocrystals, Chem. Soc.Rev.,2010,40:1512-1546.
    11Efros, A. L.&Rosen, M. Random telegraph signal in the photoluminescence intensity ofa single quantum dot, Physical review letters,1997,78:1110-1113.
    12Ekimov, A.&Onushchenko, A. Quantum size effect in the optical spectra ofsemiconductor microcrystals, Sov. Phys. Semicond,1982,16:775-778.
    13EFROS, A. L.&Efros, A. Interband absorption of light in a semiconductor sphere, SPIEmilestone series,2005,180:71-74.
    14De Mello Donegá, C. Formation of nanoscale spatially indirect excitons: Evolution of thetype-II optical character of CdTe/CdSe heteronanocrystals, Physical Review B,2010,81:165-173.
    15Garci a-Santamari a, F., Chen, Y., Vela, J. et al. Suppressed auger recombination in “giant”nanocrystals boosts optical gain performance, Nano letters,2009,9:3482-3488.
    16Wang, X., Ren, X., Kahen, K. et al. Non-blinking semiconductor nanocrystals, Nature,2009,459:686-689.
    17Carrillo-Carrión, C., Cárdenas, S., Simonet, B. M. et al. Quantum dots luminescenceenhancement due to illumination with UV/Vis light, Chemical communications,2009,5214-5226.
    18Brus, L. E. Electron–electron and electron‐hole interactions in small semiconductorcrystallites: The size dependence of the lowest excited electronic state, The Journal ofChemical Physics,1984,80:4403-4411.
    19唐爱伟,滕枫,王元敏et al. II—VI族半导体量子点的发光特性及其应用研究进展,液晶与显示,2005,20:302-308.
    20宫晓群.硒化镉量子点的合成,改性及荧光编码微球的制备,天津大学,(2009).
    21MacInnes, A. N., Power, M. B., Barron, A. R. et al. Enhancement of photoluminescenceintensity of GaAs with cubic GaS chemical vapor deposited using a structurally designedsingle‐source precursor, Applied physics letters,1993,62:711-713.
    22Correa-Duarte, M. A., Giersig, M.&Liz-Marzan, L. M. Stabilization of CdSsemiconductor nanoparticles against photodegradation by a silica coating procedure,Chemical Physics Letters,1998,286:497-501.
    23Dubertret, B., Skourides, P., Norris, D. J. et al. In vivo imaging of quantum dotsencapsulated in phospholipid micelles, Science,2002,298:1759-1762.
    24Gao, X. H., Chan, W. C. W.&Nie, S. M. Quantum-dot nanocrystals for ultrasensitivebiological labeling and multicolor optical encoding, Journal of Biomedical Optics,2002,7:532-537.
    25Dahan, M., Levi, S., Luccardini, C. et al. Diffusion dynamics of glycine receptorsrevealed by single-quantum dot tracking, Science,2003,302:442-445.
    26Clapp, A. R., Medintz, I. L.&Mattoussi, H. Forster resonance energy transferinvestigations using quantum-dot fluorophores, Chemphyschem,2006,7:47-57.
    27Peng, Z. A., Peng, X. Formation of High‐Quality CdTe, CdSe, and CdS NanocrystalsUsing CdO as Precursor, ChemInform,2001,32:183-184.
    28Peng, X. Green Chemical Approaches toward High‐Quality SemiconductorNanocrystals, Chemistry-A European Journal,2002,8:334-339.
    29Biju, V., Itoh, T., Anas, A. et al. Semiconductor quantum dots and metal nanoparticles:syntheses, optical properties, and biological applications, Analytical and bioanalyticalchemistry,2008,391:2469-2495.
    30Weaver, J., Zakeri, R., Aouadi, S. et al. Synthesis and characterization of quantumdot–polymer composites, J. Mater. Chem.,2009,19:3198-3206.
    31Li, J. J., Wang, Y. A., Guo, W. Z. et al. Large-scale synthesis of nearly monodisperseCdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layeradsorption and reaction, Journal of the American Chemical Society,2003,25:12567-12575.
    32Zhu, Y., Li, Z., Chen, M. et al. One-pot preparation of highly fluorescent cadmiumtelluride/cadmium sulfide quantum dots under neutral-pH condition for biologicalapplications, Journal of colloid and interface science,2013,390:3-10.
    33Rogach, A. L., Kornowski, A., Gao, M. et al. Synthesis and characterization of a sizeseries of extremely small thiol-stabilized CdSe nanocrystals, The Journal of PhysicalChemistry B,1999,103:3065-3069.
    34Zhu, J., Palchik, O., Chen, S. et al. Microwave assisted preparation of CdSe, PbSe, andCu2-x Se nanoparticles, The Journal of Physical Chemistry B,2000,104:7344-7347.
    35Das, B. C., Batabyal, S. K., Pal, A. J. A bit per particle: electrostatic assembly of CdSequantum dots as memory elements, Advanced Materials,2007,19:4172-4176.
    36Gao, Y., Zhang, Q., Gao, Q. et al. Synthesis of high quality CdSe quantum dots through amild solution-phase synthetic route, Materials Chemistry and Physics,2009,115:724-727.
    37Niu, K., Yang, J., Kulinich, S. et al. Morphology Control of Nanostructures via SurfaceReaction of Metal Nanodroplets, Journal of the American Chemical Society,2010,132:9814-9819.
    38Aldana, J., Wang, Y. A., Peng, X. G. Photochemical instability of CdSe nanocrystalscoated by hydrophilic thiols, Journal of the American Chemical Society,2001,123:8844-8850.
    39Ballou, B., Lagerholm, B. C., Ernst, L. A. et al. Noninvasive imaging of quantum dots inmice, Bioconjugate Chemistry,2004,15:79-86.
    40Bentzen, E. L., Tomlinson, I. D., Mason, J. et al. Surface modification to reducenonspecific binding of quantum dots in live cell assays, Bioconjugate Chemistry,2005,16:1488-1494.
    41Bullen, C., Mulvaney, P. The effects of chemisorption on the luminescence of CdSequantum dots, Langmuir,2006,22:3007-3013.
    42Choi, H. S., Liu, W., Misra, P. et al. Renal clearance of quantum dots, NatureBiotechnology,2007,25:1165-1170.
    43Anderson, R. E., Chan, W. C. W. Systematic investigation of preparing biocompatible,single, and small ZnS-capped CdSe quantum dots with amphiphilic polymers, Acs Nano,2008,2:1341-1352.
    44Lees, E. E., Nguyen, T.L., Clayton, A. H. A. et al. The Preparation of Colloidally Stable,Water-Soluble, Biocompatible, Semiconductor Nanocrystals With a Small HydrodynamicDiameter, Acs Nano,2009,3:1121-1128.
    45Liu, L., Guo, X., Li, Y. et al. Bifunctional Multidentate Ligand Modified Highly StableWater-Soluble Quantum Dots, Inorganic Chemistry,2010,49:3768-3775.
    46Willard, D. M., Carillo, L. L., Jung, J. et al. CdSe-ZnS quantum dots as resonance energytransfer donors in a model protein-protein binding assay, Nano Letters,2001,1:469-474.
    47Mitchell, G. P., Mirkin, C. A., Letsinger, R. L. Programmed assembly of DNAfunctionalized quantum dots, Journal of the American Chemical Society,1999,121:8122-8123.
    48Hoshino, A., Fujioka, K., Oku, T. et al. Quantum dots targeted to the assigned organellein living cells, Microbiology and Immunology,2004,48:985-994.
    49Sukhanova, A., Devy, M., Venteo, L. et al. Biocompatible fluorescent nanocrystals forimmunolabeling of membrane proteins and cells, Analytical Biochemistry,2004,324:60-67.
    50Jiang, W., Mardyani, S., Fischer, H. et al. Design and characterization of lysinecross-linked mereapto-acid biocompatible quantum dots, Chemistry of Materials,2006,18:872-878.
    51Mattoussi, H., Mauro, J. M., Goldman, E. R. et al. Self-assembly of CdSe-ZnS quantumdot bioconjugates using an engineered recombinant protein, Journal of the AmericanChemical Society,2000,122:12142-12150.
    52Smith, A. M.,Nie, S. Minimizing the hydrodynamic size of quantum dots withmultifunctional multidentate polymer ligands, Journal of the American Chemical Society,2008,130:11278-11283.
    53Talapin, D. V., Rogach, A. L., Kornowski, A. et al. Highly luminescent monodisperseCdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphineoxide-trioctylphospine mixture, Nano letters,2001,1:207-211.
    54Uyeda, H. T., Medintz, I. L., Jaiswal, J. K. et al. Synthesis of compact multidentateligands to prepare stable hydrophilic quantum dot fluorophores, Journal of the AmericanChemical Society,2005,127:3870-3878.
    55van Embden, J., Jasieniak, J., Gomez, D. E. et al. Review of the synthetic chemistryinvolved in the production of core/shell semiconductor nanocrystals, Australian Journalof Chemistry,2007,60:457-471.
    56Gao, X. H., Cui, Y. Y., Levenson, R. M. et al. In vivo cancer targeting and imaging withsemiconductor quantum dots, Nature Biotechnology,2004,22:969-976.
    57Smith, A. M., Duan, H., Rhyner, M. N. et al. A systematic examination of surfacecoatings on the optical and chemical properties of semiconductor quantum dots, Phys.Chem. Chem. Phys.,2006,8:3895-3903.
    58Cui, B., Wu, C., Chen, L. et al. One at a time, live tracking of NGF axonal transport usingquantum dots, Proceedings of the National Academy of Sciences,2007,104:13666-13671.
    59Dahan, M., Levi, S., Luccardini, C. et al. Diffusion dynamics of glycine receptorsrevealed by single-quantum dot tracking, Science Signalling,2003,302:442-450.
    60Pinaud, F., Michalet, X., Bentolila, L. A. et al. Advances in fluorescence imaging withquantum dot bio-probes, Biomaterials,2006,27:1679-1687.
    61Yu, W. W., Chang, E., Drezek, R. et al. Water-soluble quantum dots for biomedicalapplications, Biochemical and biophysical research communications,2006,348:781-786.
    62Han, R., Yu, M., Zheng, Q. et al. A Facile Synthesis of Small-Sized, HighlyPhotoluminescent, and Monodisperse CdSeS QD/SiO2for Live Cell Imaging, Langmuir,2009,25:12250-12255.
    63Pellegrino, T., Manna, L., Kudera, S. et al. Hydrophobic nanocrystals coated with anamphiphilic polymer shell: A general route to water soluble nanocrystals, Nano letters,2004,4:703-707.
    64Lin, C.-A. J., Sperling, R. A., Li, J. K. et al. Design of an amphiphilic polymer fornanoparticle coating and functionalization, Small,2008,4:334-341.
    65Smith, A. M., Nie, S. Nanocrystal Synthesis in an Amphibious Bath: SpontaneousGeneration of Hydrophilic and Hydrophobic Surface Coatings, AngewandteChemie-International Edition,2008,47:9916-9921.
    66Gerion, D., Pinaud, F., Williams, S. C. et al. Synthesis and properties of biocompatiblewater-soluble silica-coated CdSe/ZnS semiconductor quantum dots, Journal of PhysicalChemistry B-Condensed Phase,2001,105:8861-8871.
    67Wu, P., He, Y., Wang, H. F. et al. Conjugation of glucose oxidase onto Mn-doped ZnSquantum dots for phosphorescent sensing of glucose in biological fluids, Analyticalchemistry,2010,82:1427-1433.
    68Ji, X., Zheng, J., Xu, J. et al.(CdSe) ZnS quantum dots and organophosphorus hydrolasebioconjugate as biosensors for detection of paraoxon, The Journal of Physical ChemistryB,2005,109:3793-3799.
    69Goldman, E. R., Medintz, I. L., Whitley, J. L. et al. A hybrid quantum dot-antibodyfragment fluorescence resonance energy transfer-based TNT sensor, Journal of theAmerican Chemical Society,2005,127:6744-6751.
    70Wei, Q., Lee, M., Yu, X. et al. Development of an open sandwich fluoroimmunoassaybased on fluorescence resonance energy transfer, Analytical biochemistry,2006,358:31-37.
    71Pathak, S., Davidson, M. C., Silva, G. A. Characterization of the functional bindingproperties of antibody conjugated quantum dots, Nano letters,2007,7:1839-1845.
    72Medintz, I. L., Clapp, A. R., Mattoussi, H. et al. Self-assembled nanoscale biosensorsbased on quantum dot FRET donors, Nature materials,2003,2:630-638.
    73Tang, B., Cao, L., Xu, K. et al. A new nanobiosensor for glucose with high sensitivity andselectivity in serum based on fluorescence resonance energy transfer (FRET) betweenCdTe quantum dots and Au nanoparticles, Chemistry-A European Journal,2008,14:3637-3644.
    74Ikanovic, M., Rudzinski, W. E., Bruno, J. G. et al. Fluorescence assay based onaptamer-quantum dot binding to Bacillus thuringiensis spores, Journal of fluorescence,2007,17:193-199.
    75Zhou, D., Piper, J. D., Abell, C. et al. Fluorescence resonance energy transfer between aquantum dot donor and a dye acceptor attached to DNA, Chemical communications,2005,6:4807-4809.
    76Zhou, M., Nakatani, E., Gronenberg, L. S. et al. Peptide-labeled quantum dots forimaging GPCRs in whole cells and as single molecules, Bioconjugate Chemistry,2007,18:323-332.
    77Hanaki, K., Momo, A., Oku, T. et al. Semiconductor quantum dot/albumin complex is along-life and highly photostable endosome marker, Biochemical and biophysical researchcommunications,2003,302:496-501.
    78Chen, C. C., Yet, C. P., Wang, H. N. et al. Self-assembly of monolayers of cadmiumselenide nanocrystals with dual color emission, Langmuir,1999,15:6845-6850.
    79Jaiswal, J. K., Mattoussi, H., Mauro, J. M. et al. Long-term multiple color imaging of livecells using quantum dot bioconjugates, Nature Biotechnology,2002,21:47-51.
    80Sukhanova, A., Venteo, L., Devy, J. et al. Highly stable fluorescent nanocrystals as anovel class of labels for immunohistochemical analysis of paraffin-embedded tissuesections, Laboratory investigation,2002,82:1259-1261.
    81Sukhanova, A., Devy, J., Venteo, L. et al. Biocompatible fluorescent nanocrystals forimmunolabeling of membrane proteins and cells, Analytical biochemistry,2004,324:60-67.
    82Pinaud, F., King, D., Moore, H. P. et al. Bioactivation and cell targeting of semiconductorCdSe/ZnS nanocrystals with phytochelatin-related peptides, Journal of the AmericanChemical Society,2004,126:6115-6123.
    83Pathak, S., Choi, S. K., Arnheim, N. et al. Hydroxylated quantum dots as luminescentprobes for in situ hybridization, Journal of the American Chemical Society,2001,123:4103.
    84Wang, Y. A., Li, J. J., Chen, H. et al. Stabilization of inorganic nanocrystals by organicdendrons, Journal of the American Chemical Society,2002,124:2293-2298.
    85Skaff, H., Emrick, T. The use of4-substituted pyridines to afford amphiphilic, pegylatedcadmium selenide nanoparticles, Chemical communications,2003,13:52-53.
    86Giersig, M., Liz Marzán, L. M., Ung, T. et al. Chemistry of nanosized silica‐coatedmetal particles‐EM‐study, Berichte der Bunsengesellschaft für physikalische Chemie,1997,101:1617-1620.
    87Mattoussi, H., Mauro, J., Goldman, E. et al. Bioconjugation of Highly LuminescentColloidal CdSe–ZnS Quantum Dots with an Engineered Two‐Domain RecombinantProtein, physica status solidi (b),2001,224:277-283.
    88Algar, W. R., Tavares, A. J., Krull, U. J. Beyond labels: A review of the application ofquantum dots as integrated components of assays, bioprobes, and biosensors utilizingoptical transduction, Analytica Chimica Acta,2010,673:1-25.
    89kerman, M. E., Chan, W. C. W., Laakkonen, P. et al. Nanocrystal targeting in vivo,Proceedings of the National Academy of Sciences,2002,99:12617-12621.
    90Rosenthal, S. J., Tomlinson, I., Adkins, E. M. et al. Targeting cell surface receptors withligand-conjugated nanocrystals, Journal of the American Chemical Society,2002,124:4586-4594.
    91Etgar, L., Lifshitz, E., Tannenbaum, R. Synthesis of water-soluble PbSe quantum dots,Journal of Materials Research,2008,23:899-903.
    92Nie, Q., Tan, W. B., Zhang, Y. Synthesis and characterization of monodisperse chitosannanoparticles with embedded quantum dots, Nanotechnology,2005,17:140.
    93Goldman, E. R., Balighian, E. D., Mattoussi, H. et al. Avidin: a natural bridge forquantum dot-antibody conjugates, Journal of the American Chemical Society,2002,124:6378-6382.
    94Kroll, A., Pillukat, M. H., Hahn, D. et al. Current in vitro methods innanoparticle risk assessment: Limitations and challenges, European journal ofpharmaceutics and biopharmaceutics,2009,72:370-377.
    95Kim, B. Y. S., Jiang, W., Oreopoulos, J. et al. Biodegradable quantum dotnanocomposites enable live cell labeling and imaging of cytoplasmic targets, Nano letters,2008,8:3887-3892.
    96Bagalkot, V., Zhang, L., Levy-Nissenbaum, E. et al. Quantum dot-aptamer conjugates forsynchronous cancer imaging, therapy, and sensing of drug delivery based onbi-fluorescence resonance energy transfer, Nano letters,2007,7:3065-3070.
    97Nel, A. E., M dler, L., Velegol, D. et al. Understanding biophysicochemical interactionsat the nano–bio interface, Nature materials,2009,8:543-557.
    98Roh, C., Lee, H. Y., Kim, S. E. et al. Quantum‐dots‐based detection of hepatitis Cvirus (HCV) NS3using RNA aptamer on chip, Journal of Chemical Technology andBiotechnology,2010,85:1130-1134.
    99Jokerst, J. V., Raamanathan, A., Christodoulides, N. et al. Nano-bio-chips for highperformance multiplexed protein detection: determinations of cancer biomarkers in serumand saliva using quantum dot bioconjugate labels, Biosensors and Bioelectronics,2009,24:3622-3629.
    100Chan, W. C. W., Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection, Science,1998,281:2016-2018.
    101Zhang, C. Y., Yeh, H. C., Kuroki, M. T. et al. Single-quantum-dot-based DNA nanosensor,Nature materials,2005,4:826-831.
    102Chen, Y., Ren, H., Liu, N. et al. A Fluoroimmunoassay Based on Quantum DotStreptavidin Conjugate for the Detection of Chlorpyrifos, Journal of Agricultural andFood Chemistry,2010,58:8895-8903.
    103Corr, S. A., Rakovich, Y. P., Gun'ko, Y. K. Multifunctional magnetic-fluorescentnanocomposites for biomedical applications, Nanoscale Research Letters,2008,3:87-104.
    104Pankhurst, Q. A., Connolly, J., Jones, S. K. et al. Applications of magnetic nanoparticlesin biomedicine, Journal of Physics D-Applied Physics,2003,36:R167-R181.
    105Perez, F. G., Mascini, M., Tothill, I. E. et al. Immunomagnetic separation with mediatedflow injection analysis amperometric detection of viable Escherichia coli O157,Analytical Chemistry,1998,70:2380-2386.
    106Koole, R., Mulder, W. J. M., Van Schooneveld, M. M. et al. Magnetic quantum dots formultimodal imaging, Wiley Interdisciplinary Reviews: Nanomedicine andNanobiotechnology,2009,1:475-491.
    107Rao, J., Dragulescu-Andrasi, A., Yao, H. Fluorescence imaging in vivo: recent advances,Current Opinion in Biotechnology,2007,18:17-25.
    108Yi, D. K., Selvan, S. T., Lee, S. S. et al. Silica-coated nanocomposites of magneticnanoparticles and quantum dots, Journal of the American Chemical Society,2005,127:4990-4991.
    109Sun, P., Zhang, H., Liu, C. et al. Preparation and Characterization of Fe3O4/CdTeMagnetic/Fluorescent Nanocomposites and Their Applications in Immuno-Labeling andFluorescent Imaging of Cancer Cells, Langmuir,2010,26:1278-1284.
    110Gerion, D., Pinaud, F., Williams, S. C. et al. Synthesis and properties of biocompatiblewater-soluble silica-coated CdSe/ZnS semiconductor quantum dots, Journal of PhysicalChemistry B,2001,105:8861-8871.
    111Lu, Y., Yin, Y., Mayers, B. T. et al. Modifying the surface properties ofsuperparamagnetic iron oxide nanoparticles through a sol-gel approach, Nano Letters,2002,2:183-186.
    112Yang, H. H., Zhang, S. Q., Chen, X. L. et al. Magnetite-containing spherical silicananoparticles for biocatalysis and bioseparations, Analytical Chemistry,2004,76:1316-1321.
    113Erogbogbo, F., Yong, K. T., Hu, R. et al. Biocompatible magnetofluorescent probes:luminescent silicon quantum dots coupled with superparamagnetic iron (III) oxide,2010,
    114Cho, H.-S., Dong, Z., Pauletti, G. M. et al. Fluorescent, Superparamagnetic Nanospheresfor Drug Storage, Targeting, and Imaging: A Multifunctional Nanocarrier System forCancer Diagnosis and Treatment, Acs Nano,2010,4:5398-5404.
    115Fernandez, B., Galvez, N., Cuesta, R. et al. Quantum Dots Decorated with MagneticBionanoparticles, Advanced Functional Materials,2008,18:3931-3935.
    116Xie, M., Hu, J., Wen, C. Y. et al. Fluorescent–magnetic dual-encoded nanospheres: apromising tool for fast-simultaneous-addressable high-throughput analysis,Nanotechnology,2011,23:035602.
    117Fang, M., Grant, P. S., McShane, M. J. et al. Magnetic bio/nanoreactor with multilayershells of glucose oxidase and inorganic nanoparticles, Langmuir,2002,18:6338-6344.
    118Iwata, A., Satoh, K., Murata, M. et al. Virus concentration using sulfonated magneticbeads to improve sensitivity in nucleic acid amplification tests, Biological&Pharmaceutical Bulletin,2003,26:1065-1069.
    119Bertorelle, F., Wilhelm, C., Roger, J. et al. Fluorescence-modified superparamagneticnanoparticles: intracellular uptake and use in cellular imaging, Langmuir,2006,22:5385-5391.
    120Choi, H., Choi, S. R., Zhou, R. et al. Iron oxide nanoparticles as magnetic resonancecontrast agent for tumor imaging via folate receptor-targeted delivery1,Academic radiology,2004,11:996-1004.
    121Song, E.-Q., Hu, J., Wen, C.-Y. et al. Fluorescent-Magnetic-Biotargeting MultifunctionalNanobioprobes for Detecting and Isolating Multiple Types of Tumor Cells, Acs Nano,2011,5:761-770.
    122Di Corato, R., Bigall, N. C., Ragusa, A. et al. Multifunctional Nanobeads Based onQuantum Dots and Magnetic Nanoparticles: Synthesis and Cancer Cell Targeting andSorting, Acs Nano,2011,5:1109-1121.
    123Shi, D., Cho, H. S., Chen, Y. et al. Fluorescent Polystyrene-Fe3O4CompositeNanospheres for In Vivo Imaging and Hyperthermia, Advanced Materials,2009,21:2170-2178.
    124Shi, D., Bedford, N. M., Cho, H.-S. Engineered Multifunctional Nanocarriers for CancerDiagnosis and Therapeutics, Small,2011,7:2549-2567.
    125Zebli, B., Susha, A. S., Sukhorukov, G. B. et al. Magnetic targeting and cellular uptake ofpolymer microcapsules simultaneously functionalized with magnetic and luminescentnanocrystals, Langmuir,2005,21:4262-4265.
    126Crosby, G. A., Demas, J. N. Measurement of photoluminescence quantum yields. Review,The Journal of Physical Chemistry,1971,75:991-1024.
    127Wu, X., Liu, H., Liu, J. et al. Immunofluorescent labeling of cancer marker Her2andother cellular targets with semiconductor quantum dots, Nature Biotechnology,2002,21:41-46.
    128宋会花,方震&郭海清.纳米CdSe与聚4-乙烯基吡啶盐的复合与表征,物理化学学报,2003,19:9-12.
    129Qu, L., Peng, X. Control of photoluminescence properties of CdSe nanocrystals in growth,Journal of the American Chemical Society,2002,124:2049-2055.
    130de Mello Donega, C., Hickey, S. G., Wuister, S. F. et al. Single-step synthesis to controlthe photoluminescence quantum yield and size dispersion of CdSe nanocrystals, TheJournal of Physical Chemistry B,2003,107:489-496.
    131Cumberland, S. L., Hanif, K. M., Javier, A. et al. Inorganic clusters as single-sourceprecursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials, Chemistry ofMaterials,2002,14:1576-1584.
    132田红叶,贺蓉,古宏晨.不同温度下硒化镉(CdSe)量子点的生长及荧光性研究,功能材料,2006,36:1564-1567.
    133Kubo, R., Kawabata, A., Kobayashi, S. Electronic properties of small particles, AnnualReview of Materials Science,1984,14:49-66.
    134Drbohlavova, J., Adam, V., Kizek, R. et al. Quantum dots—characterization, preparationand usage in biological systems, International journal of molecular sciences,2009,10:656-673.
    135Qu, L., Peng, Z. A., Peng, X. Alternative routes toward high quality CdSe nanocrystals,Nano letters,2001,1:333-337.
    136Hines, M. A., Guyot-Sionnest, P. Synthesis and characterization of strongly luminescingZnS-capped CdSe nanocrystals, The Journal of Physical Chemistry,1996,100:468-471.
    137Bailey, R. E., Nie, S. Alloyed semiconductor quantum dots: tuning the optical propertieswithout changing the particle size, Journal of the American Chemical Society,2003,125:7100-7106.
    138Gu, H., Ho, P. L., Tsang, K. W. T. et al. Using biofunctional magnetic nanoparticles tocapture vancomycin-resistant enterococci and other gram-positive bacteria at ultralowconcentration, Journal of the American Chemical Society,2003,125:15702-15703.
    139Gu, H., Zheng, R., Zhang, X. X. et al. Facile one-pot synthesis of bifunctionalheterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles,Journal of the American Chemical Society,2004,126:5664-5665.
    140Tsay, J. M., Pflughoefft, M., Bentolila, L. A. et al. Hybrid approach to the synthesis ofhighly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals, Journal of the AmericanChemical Society,2004,126:1926-1927.
    141Medintz, I. L., Uyeda, H. T., Goldman, E. R. et al. Quantum dot bioconjugates forimaging, labelling and sensing, Nature materials,2005,4:435-446.
    142Zhang, B., Gong, X., Hao, L. et al. A novel method to enhance quantum yield ofsilica-coated quantum dots for biodetection, Nanotechnology,2008,19:466-473.
    143Li, J. J., Wang, Y. A., Guo, W. et al. Large-scale synthesis of nearly monodisperseCdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layeradsorption and reaction, Journal of the American Chemical Society,2003,125:12567-12575.
    144Smith, A. M., Duan, H., Mohs, A. M. et al. Bioconjugated quantum dots for in vivomolecular and cellular imaging, Advanced drug delivery reviews,2008,60:1226-1240.
    145Xing, Y., Xia, Z., Rao, J. Semiconductor quantum dots for biosensing and in vivo imaging,Ieee Transactions on Nanobioscience,2009,8:3191-3200.
    146Xing, Y., Chaudry, Q., Shen, C. et al. Bioconjugated quantum dots for multiplexed andquantitative immunohistochemistry, Nature Protocols,2007,2:1152-1165.
    147Liu, Z., Cai, W., He, L. et al. In vivo biodistribution and highly efficient tumour targetingof carbon nanotubes in mice, Nature Nanotechnology,2006,2:47-52.
    148Couvreur, P., Vauthier, C. Nanotechnology: intelligent design to treat complex disease,Pharmaceutical Research,2006,23:1417-1450.
    149Wang, M., Felorzabihi, N., Guerin, G. et al. Water-soluble CdSe quantum dots passivatedby a multidentate diblock copolymer, Macromolecules,2007,40:6377-6384.
    150Sperling, R., Parak, W. Surface modification, functionalization and bioconjugation ofcolloidal inorganic nanoparticles, Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2010,368:1333-1383.
    151Lundqvist, M., Stigler, J., Elia, G. et al. Nanoparticle size and surface propertiesdetermine the protein corona with possible implications for biological impacts,Proceedings of the National Academy of Sciences,2008,105:14265-14270.
    152Walkey, C. D., Olsen, J. B., Guo, H. et al. Nanoparticle size and surface chemistrydetermine serum protein adsorption and macrophage uptake, Journal of the AmericanChemical Society,2012,134:2139-2147.
    153Stewart, M. H., Susumu, K., Mei, B. C. et al. Multidentate poly (ethylene glycol) ligandsprovide colloidal stability to semiconductor and metallic nanocrystals in extremeconditions, Journal of the American Chemical Society,2010,132:9804-9813.
    154Liu, W., Howarth, M., Greytak, A. B. et al. Compact biocompatible quantum dotsfunctionalized for cellular imaging, Journal of the American Chemical Society,2008,130:1274-1284.
    155Fang, Z., Liu, L., Xu, L. et al. Synthesis of highly stable dihydrolipoic acid cappedwater-soluble CdTe nanocrystals, Nanotechnology,2008,19:235-241.
    156Hu, X., Gao, X. Multilayer coating of gold nanorods for combined stability andbiocompatibility, Physical Chemistry Chemical Physics,2011,13:10028-10035.
    157Algar, W. R., Krull, U. J. Multidentate surface ligand exchange for the immobilization ofCdSe/ZnS quantum dots and surface quantum dot-oligonucleotide conjugates, Langmuir,2008,24:5514-5520.
    158Cui, Y., Gong, X., Zhu, S. et al. An effective modified method to prepare highlyluminescent, highly stable water-soluble quantum dots and its preliminary application inimmunoassay, Journal of Materials Chemistry,2012,22:462-469.
    159Pong, B. K., Trout, B. L., Lee, J. Y. Modified ligand-exchange for efficient solubilizationof CdSe/ZnS quantum dots in water: A procedure guided by computational studies,Langmuir,2008,24:5270-5276.
    160Zhou, C., Shen, H., Guo, Y. et al. A versatile method for the preparation of water-solubleamphiphilic oligomer-coated semiconductor quantum dots with high fluorescence andstability, Journal of colloid and interface science,2010,344:279-285.
    161Beaune, G., Dubertret, B., Clement, O. et al. Giant vesicles containing magneticnanoparticles and quantum dots: Feasibility and tracking by fiber confocal fluorescencemicroscopy, Angewandte Chemie-International Edition,2007,46:5421-5424.
    162Bertorelle, F., Wilhelm, C., Roger, J. et al. Fluorescence-modified superparamagneticnanoparticles: Intracellular uptake and use in cellular imaging, Langmuir,2006,22:5385-5391.
    163Sun, P., Zhang, H., Liu, C. et al. Preparation and Characterization of Fe(3)O(4)/CdTeMagnetic/Fluorescent Nanocomposites and Their Applications in Immuno-Labeling andFluorescent Imaging of Cancer Cells, Langmuir,2010,26:1278-1284.
    164Wang, D. S., He, J. B., Rosenzweig, N. et al. Superparamagnetic Fe2O3Beads-CdSe/ZnSquantum dots core-shell nanocomposite particles for cell separation, Nano Letters,2004,4:409-413.
    165Wang, G. P., Song, E. Q., Xie, H. Y. et al. Biofunctionalization offluorescent-magnetic-bifunctional nanospheres and their applications, ChemicalCommunications,2005,2:4276-4278.
    166Xie, H. Y., Zuo, C., Liu, Y. et al. Cell-targeting multifunctional nanospheres with bothfluorescence and magnetism, Small,2005,1:506-509.
    167Xie, M., Hu, J., Long, Y.-M. et al. Lectin-modified trifunctional nanobiosensors formapping cell surface glycoconjugates, Biosensors&Bioelectronics,2009,24:1311-1317.
    168Yong, K.-T., Roy, I., Swihart, M. T. et al. Multifunctional nanoparticles as biocompatibletargeted probes for human cancer diagnosis and therapy, Journal of Materials Chemistry,2009,19:4655-4672.
    169Koole, R., Mulder, W. J. M., van Schooneveld, M. M. et al. Magnetic quantum dots formultimodal imaging, Wiley Interdisciplinary Reviews-Nanomedicine andNanobiotechnology,2009,1:475-491.
    170Quarta, A., Di Corato, R., Manna, L. et al. Fluorescent-magnetic hybrid nanostructures:Preparation, properties, and applications in biology, Ieee Transactions on Nanobioscience,2007,6:298-308.
    171Sun, S. H., Zeng, H., Robinson, D. B. et al. Monodisperse MFe2O4(M=Fe, Co, Mn)nanoparticles, Journal of the American Chemical Society,2004,126:273-279.
    172Zhang, B., Chen, B., Wang, Y. et al. Preparation of highly fluorescent magneticnanoparticles for analytes-enrichment and subsequent biodetection, Journal of Colloidand Interface Science,2011,353:426-432.
    173Erogbogbo, F., Yong, K. T., Hu, R. et al. Biocompatible Magnetofluorescent Probes:Luminescent Silicon Quantum Dots Coupled with Superparamagnetic Iron(III) Oxide,Acs Nano,2010,4:5131-5138.
    174Maiorano, G., Sabella, S., Sorce, B. et al. Effects of Cell Culture Media on the DynamicFormation of Protein-Nanoparticle Complexes and Influence on the Cellular Response,Acs Nano,2010,4:7481-7491.
    175Xu, F. J., Li, H. Z., Li, J. et al. Spatially well-defined binary brushes of poly(ethyleneglycol)s for micropatterning of active proteins on anti-fouling surfaces, Biosensors&Bioelectronics,2008,24:773-780.
    176Charles, P. T., Stubbs, V. R., Soto, C. M. et al. Reduction of Non-Specific ProteinAdsorption Using Poly(ethylene) Glycol (PEG) Modified Polyacrylate Hydrogels InImmunoassays for Staphylococcal Enterotoxin B Detection, Sensors,2009,9:645-655.
    177Walkey, C. D., Olsen, J. B., Guo, H. B. et al. Nanoparticle Size and Surface ChemistryDetermine Serum Protein Adsorption and Macrophage Uptake, Journal of the AmericanChemical Society,2012,134:2139-2147.
    178Kellar, K. L., Douglass, J. P. Multiplexed microsphere-based flow cytometricimmunoassays for human cytokines, Journal of immunological methods,2003,279:277-285.
    179宋涛,逯超亮,宫晓群et al.量子点荧光编码微球的制备,天津市生物医学工程学会第30次学术年会暨生物医学工程前沿科学研讨会论文集,2010.
    180Li, Y. H., Song, T., Liu, J. Q. et al. An efficient method for preparing high-performancemultifunctional polymer beads simultaneously incorporated with magnetic nanoparticlesand quantum dots, Journal of Materials Chemistry,2011,21:12520-12528.
    181陈肇娜,刘宝红,吴会灵et al.微流控免疫芯片检测方法的研究进展,高等学校化学学报,2011,32:1001-1007.
    182Lee, G. B., Hwei, B. H., Huang, G. R. Micromachined pre-focused M×N flow switchesfor continuous multi-sample injection, Journal of Micromechanics and Microengineering,2001,11:654-662.
    183杨久敏,宫晓群,张琦et al.小波变换在量子点编码识别中的应用, Journal ofClinical Rehabilitative Tissue Engineering Research,2010,14:1634-1638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700