用户名: 密码: 验证码:
含磷有机光电材料的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机π-共轭功能材料作为一种新型的有机光电材料,已经在场效应晶体管(FETs)、非线性光学材料(NLO)、太阳能光伏电池(Solar Cell)以及有机电致发光二极管(OLEDs)等领域展现出了非常广阔的应用前景。将杂原子引入π-共轭体系是一种有效地调节材料光电性能的方法,例如磷原子的引入为材料分子结构的设计以及光电性能的调控提供了新的思路和方向。因此,近年来有机磷光电材料以其独特的结构特点引起了研究者越来越多的关注。然而,相对于其它已经得到广泛研究的有机光电材料而言,含磷共轭材料才刚刚起步,构效关系仍需完善,这里我们设计和合成了系列新型的有机磷功能材料,并对它们的光电性能进行了初步探究。
     第一章节,我们根据磷原子的不同引入方式,综述了含磷有机功能材料方面的研究进展。主要总结了磷杂环戊二烯、磷杂聚苯撑乙烯、三苯基磷以及其它含磷材料在有机光电领域的应用。
     第二章节,我们将2,2’-双磷杂环戊二烯作为一种新型的结构单元,通过改变P原子上取代基以及与不同金属(AuI、PdII)配位两种方式有效的调节两个磷杂环之间的二面角(θ)。通过这些调控方法,可以实现二面角从23°到86°之间的变化,从而改变共轭体系的共轭度,进而调节分子的HOMO-LUMO能级差。这种简单有效的调控方法对于其它已经成功运用到有机π-共轭光电功能材料的有机小分子化合物,如2,2’-双吡啶、2,2’-双噻吩、2,2’-双吡咯和2,2’-双硅杂环戊二烯等来说都是很难实现的。其中一些2,2’-双磷杂环戊二烯衍生物固体量子产率高,热力学稳定性好以及氧化还原电势适中,当化合物2-5c以2.2%掺杂在常用的蓝光材料DPVBi中时,得到的器件呈现出令人满意的结果(外量子效率:0.5%;亮度:电流密度20mA/cm2时为189cd/m2),其色坐标(0.34,0.34)与纯白光(0.33,0.33)非常接近,这是首次关于通过掺杂磷杂环二烯衍生物得到纯正色度白光的报道。
     此外,我们设计合成了含有苯并呋喃结构的新型磷杂环戊二烯衍生物。这些化合物与具有苯并噻吩结构单元的磷杂环戊二烯类似物在光电性质方面有着极大的不同,并且可以应用在OLED的发光层,呈现为蓝绿光发射,表明此类化合物在有机光电材料领域具有潜在应用价值。
     最后,考虑到噻咯与磷杂环戊二烯相似,同样具有σ*-π*超共轭效应,我们设计合成了系列含有苯并呋喃结构单元的噻咯衍生物,并通过紫外荧光、电化学以及热重分析等手段对它们的光电性能进行分析测试。此类化合物的荧光发射主要集中在蓝光区域,并且具有较高的量子产率以及较低的氧化电势。虽然改变硅原子上的取代基对共轭体系光电性能几乎没有影响,但是对相应体系的热力学稳定性却有着较大的影响。此类新型的噻咯衍生物可以应用在蓝光OLED的发光层。
     第三章节,我们将磷杂丁烯衍生物作为新型的构建单元引入有机π-共轭体系,通过在分子骨架上引入不同电子效应的取代基以及对活泼磷中心进行化学修饰(如氧化,硫化以及与金属配位),非常容易实现共轭分子HOMO和LUMO轨道能级以及固态时分子的堆积模式的调控。其中部分化合物作为发光层应用在蓝光OLED中表现出较好的性能,并且CIE坐标不受电流密度的影响。
     第四章节,我们设计了一条通过磷杂环戊二烯基卡宾合成磷杂苯的新方法,并通过理论计算探索了其中转化的过程。此路线为以磷杂苯为基本构筑单元的共轭材料的合成提供了全新的路径,不仅简单高效,而且可以在α位引入不同的π-共轭基团,这为磷杂苯在光电材料中的应用奠定了基础。
Organic π-conjugated functional materials have great potential for applicationsin electronic devices such as field-effect transistors (FETs), non-linear opticalmaterials (NLO), solar cell and organic light emitting diodes (OLEDs). One powerfulstrategy to influence and tailor the physical properties of organic materials viasynthetic methodologies is to incorporate heteroatoms into π-conjugated systems.Phosphorus-containing organic functional materials have attracted more attentions inrecent years with its unique structural features. The introduction of P-moieties greatlybroaden the molecular structure design and the optoelectronic property improvementof organic optoelectronic materials. However, the chemistry of π-conjugated systemscontaining π-units still remains in its infancy, and more efforts should devote toestablish the relationship between structure and properties. Here we designed andsynthesized a series of new organophosphorus functional materials, and their opticalproperties were also studied.
     In the first chapter, various organophosphorus π-conjugated materials weresummarized and discussed according to the different incorporation modes of theP-atom, including phosphole, phosphalkene, diphosphene and arylphosphane, etc.
     In the second chapter, we show that exploiting the properties of the2,2’-biphosphole unit (modification of the substituents on P, or metal coordination)allows an unique combined covalent/metal coordination approach for on-demandtuning of the torsion angle θ from23°to86°between the two conjugated P heteroles.This simple and straight-forward molecular engineering, which is not possible withother π-building blocks (2,2’-bipyridine,2,2’-bithiophene,2,2’-bipyrrole,2,2’-bisilole, etc.), allows an unprecedented fine control of the HOMO-LUMO gap ofthe π-systems through two orthogonal approaches. It was of great importance to showthat these novel π-conjugated systems based on biphosphole synthons exhibit theproperties (high solid-state quantum yield, thermal stability, and suitable reversibleredox potential) required for the application as materials in optoelectronic devices.Multilayered OLEDs were fabricated by co-evaporation of DPVBi and2-5c (2.2% doping rate). The device exhibits satisfying performances (external quantum yield:0.5%; brigthness:189cd.m-2at20mA.cm-2). The most important data is that the CIEcoordinates (0.34,0.34) are almost similar to those of the perfect white emission(0.33,0.33). This is the first time that a perfect white emission has been obtained witha phosphole-based dopant.
     A synthetic route to novel benzofuran-fused phosphole derivatives is described.These compounds show optical and electrochemical properties that differ from theirbenzothiophene analog. Preliminary results show that2-13can be used as an emitterin OLEDs, illustrating the potential of these new compounds for opto-electronicapplications.
     Since silole has silimar electronic effect as phosphole, we designed andsynthesized a series of benzofuran-fused silole derivatives, and their optoelectronicproperties were also detected by UV, fluorescence, electrochemical and thermalgravimetric analysis. These compounds emit at blue region with high fluorescencequantum yield and display lower oxidation potentials. Although variation of thesubstitution pattern of siloles has little effect on the optical propeities of theπ-conjugated system, but a greater impact on the thermal stability of the moleculars.Such novel silole derivative have great potential when used as blue emitter material inOLED devices.
     In the third chapter, we report the development of new π-conjugated oligomersincorporating a dihydrophosphete skeleton. Variation of the substitution pattern of1,2-dihydrophosphete derivatives and chemical modification of their P atoms affordthermally stable derivatives which are suitable emitters to construct efficient organiclight emitting diodes. The optical and the electrochemical properties of these newP-based oligomers have been investigated in detail and are supported by DFTcalculations. The OLED devices exhibit good performances and current independentCIE coordinates.
     In the forth chapter, we have designed a new method to incorporate phosphinineinto organic π-conjugated system through investigating the phospholylcarbene tophosphinine conversion by DFT calculation and experiment. This procedure is verysimple, and interesting π-conjugated groups can also be obtained at the α-position. This approach is thus a valuable addition to the development phosphinine-containingfunctional materials.
引文
[1](a) Roncali J. Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems[J].Chem. Rev.,1997,97:173~206;(b) Schwab P F H, Smith J R, Michl J. Synthesis andProperties of Molecular Rods.2. Zig-Zag Rods[J]. Chem. Rev.,2005,105:1197~1280;(c)Martin R E, Diederich F. Linear Monodisperse π-Conjugated Oligomers: Model Compoundsfor Polymers and More[J]. Angew. Chem. Int. Ed.,1999,38:1350~1377;(d) Svensson M,Zhang F L, Veenstra S C, et al. High-Performance Polymer Solar Cells of an AlternatingPolyfluorene Copolymer and a Fullerene Derivative[J]. Adv. Mater.2003,15:988~991.
    [2](a) Kraft A, Grimsdale A C, Holmes A B. Electroluminescent Conjugated Polymers-SeeingPolymers in a New Light[J]. Angew. Chem., Int. Ed.,1998,37:402~428;(b) Kulkarni A P,Tonzola C J, Babel A, et al. Electron Transport Materials for Organic Light-Emitting Diodes[J]. Chem. Mater.,2004,16,4556~4573;(c) Chen C-T. Evolution of Red Organic LightEmitting Diodes: Materials and Devices[J]. Chem. Mater.,2004,16:4389~4400.
    [3](a) Nielsen M B, Diederich F. Conjugated Oligoenynes Based on the Diethynylethene Unit[J].Chem. Rev.,2005,105:1837~1868;(b) Szafert S, Gladysz J A. Carbon in One Dimension:Structural Analysis of the Higher Conjugated Polyynes[J]. Chem. Rev.,2003,103:4175~4206;(c) Bunz U H F. Poly(aryleneethynylene)s: Syntheses, Properties, Structures, andApplications [J]. Chem. Rev.,2000,100:1605~1644.
    [4](a) Albert D L, Marks T J, Ratner M A. Large Molecular Hyperpolarizabilities. QuantitativeAnalysis of Aromaticity and Auxiliary Donor-Acceptor Effects[J]. J. Am. Chem. Soc.,1997,119:6575~6582;(b) Ma J, Li S, Jiang Y. A Time-Dependent DFT Study on Band Gaps andEffective Conjugation Lengths of Polyacetylene, Polyphenylene, Polypentafulvene,Polycyclopentadiene, Polypyrrole, Polyfuran, Polysilole, Polyphosphole, andPolythiophene[J]. Macromolecules,2002,35:1109~1115.
    [5](a) Mathey F. Phospha-Organic Chemistry: Panorama and Perspectives[J]. Angew. Chem., Int.Ed.2003,42:1578~1604.(b) Baumgartner T, Réau R. Organophosphorus π-ConjugatedMaterials[J].Chem. Rev.,2006,106:4681~4727;(c) Hissler M, Lescop C, Réau R. Functionalphosphorus-based π-conjugated systems: Structural diversity without multistep synthesis[J].Pure Appl. Chem.,2007,79:201~212.
    [6](a) Hobbs M G, Baumgartner T. Recent Developments in Phosphole-Containing OligoandPolythiophene Materials[J]. Eur. J. Inorg. Chem.,2007,3611~3628;(b) Crassous J, Reau R.π-Conjugated phosphole derivatives: synthesis, optoelectronic functions and coordinationchemistry [J]. Dalton. Trans.,2008,6865~6876;(c) Matano Y, Imahoria H. Design andsynthesis of phosphole-based π systems for novel organic materials[J]. Org. Biomol. Chem.,2009,7:1258~1271;(d)阎石磊,陈军武,曹镛.含磷杂环戊二烯的分子/聚合物材料的光电性质[J].分子科学学报,2008,24(6):371~380;(e)张胜兰,陈润锋,姜鸿基,et al.含磷有机电致发光材料[J].化学进展,2010,22(5):898~904.
    [7] Leavitt F C, Manuel T A, Johnson F. Novel Heterocyclo Pentadienes[J]. J. Am. Chem. Soc.,1959,81:3163~3164.
    [8] Mathey F. Phosphorus-Carbon Heterocyclic Chemistry:The Rise of a New Domain,[M].Pergamon Press, Amsterdam,2001.
    [9] Hay C, Hissler M, Fischmeister C, et al. Phosphole-Containing π-Conjugated Systems: FromModel Molecules to Polymer Films on Electrodes[J]. Chem.-Eur. J.2001,7:4222~4236.
    [10] Yamaguchi S, Tamao K. Silole-containing σ-and π-conjugated compounds[J].J. Chem. Soc.,Dalton Trans.,1998,3693~3702.
    [11](a) Vilain D L, Hay C, Deborde V, et al.2,5-Di(2-pyridyl)phospholes: model compounds forthe engineering of π-conjugated donor-acceptor co-oligomers with a chemically tunableHOMO-LUMO gap[J]. Chem. Commun.,1999,345~346;(b) Hay C, Fischmeister C, HisslerM, et al. Electropolymerization of π-Conjugated Oligomers Containing Phosphole Cores andTerminal Thienyl Moieties: Optical and Electronic Properties[J]. Angew. Chem., Int. Ed.,2000,39:1812~1815;(c) Su H C, Fadhel O, Yang C-J, et al. Toward Functionalπ-Conjugated Organophosphorus Materials: Design of Phosphole-Based Oligomers forElectroluminescent Devices[J]. J. Am. Chem. Soc.,2006,128:983~995.
    [12] Sanji T, Shiraishi K, Tanaka M. Synthesis and Photophysical Properties of Phosphole-CoredDendrimers[J]. Org. Lett.,2007,9:3611~3614.
    [13] Hay C, Fave C, Hissler M, et al. Synthesis and Electronic Properties of Alternating α,α’-Thiophene-Phosphole Oligomers[J]. Org. Lett.,2003,19:3467~3470.
    [14] Sebastian M, Hissler M, Fave C, et al.[J]. Phosphole-Modified Poly(thiophene)s: UniquePostfunctionalizable Conjugated Polymers That Sense Elemental Chalcogenides[J]. Angew.Chem. Int. Ed.,2006,45:6152~6155.
    [15] Matano Y, Nakashima M, and Imahori H. A Convenient Method for the Synthesis ofα-Ethynylphospholes and Modulation of Their π-Conjugated Systems[J]. Angew. Chem. Int.Ed.,2009,48:4002~4005.
    [16] Saito A, Matano Y, Imahori H. Synthesis of α, α’-Linked Oligophospholes andPolyphospholes by Using Pd-CuI-Promoted Stille-Type Coupling[J]. Org. Lett.,2010,12:2675~2677.
    [17] Fave C, Cho T-Y, Hissler M, et al. First Examples of Organophosphorus ContainingMaterials for Light-Emitting Diodes[J]. J. Am. Chem. Soc.,2003,125:9254~9255.
    [18] Fadhel O, Gras M, Lemaitre N, et al. Tunable Organophosphorus Dopants for Bright WhiteOrganic Light-Emitting Diodes with Simple Structures[J]. Adv. Mater.2009,21:1261~1265.
    [19] Joly D, Tondelier D, Deborde V, et al. Phosphole-based π-conjugated electroluminescentmaterials for OLEDs[J]. New J. Chem.,2010,34:1603~1611.
    [20] Joly D, Tondelier D, Deborde V, et al. White Organic Light-Emitting Diodes Based onQuench-Resistant Fluorescent Organophosphorus Dopants[J]. Adv. Funct. Mater.,2012,22:567~576.
    [21] Su H-J, Wu F-I, and Shu C-F. Tuning Wavelength: Synthesis and Characterization ofSpiro-DPVF-Containing Polyfluorenes and Applications in Organic Light-Emitting Diodes[J].Macromolecules,2004,37:7197~7202.
    [22] Geramita K, Mcbee J, Tilley T.2,7-Substituted Hexafluoroheterofluorenes as PotentialBuilding Blocks for Electron Transporting Materials [J]. J. Org. Chem.,2009,74:820~829.
    [23] Makioka Y, Hayashi T, Tanaka M.2,7-Substituted Hexafluoroheterofluorenes as PotentialBuilding Blocks for Electron Transporting Materials[J]. Chem. Lett.,2004,33:44~45.
    [24] Chen R-F, R Z, Fan Q-L, et al. Synthesis, Structure, and Optoelectronic Properties ofPhosphafluorene Copolymers[J]. Org. Lett.,2008,10:2913~2916.
    [25] Carlos R N, Baumgartner T. Dithieno[3,2-b:2′,3′-d]phospholes: A Look Back at the FirstDecade[J]. Synlett2013,24:920~937.
    [26] Baumgartner T, Neumann T, Wirges B. The Dithieno[3,2-b:2’,3’-d]phosphole System: ANovel Building Block for Highly Luminescent π-Conjugated Materials [J]. Angew. Chem. Int.Ed.2004,43:6197~6201.
    [27] Ren Y, DienesY, Hettel S, et al. Highly Fluorinated Dithieno[3,2-b:2′,3′-d] phospholes withStabilized LUMO Levels[J]. Organometallics,2009,28:734~740.
    [28] Chua C J, Ren Y, Baumgartner T. Structure-Property Studies of Bichromophoric, PAH-Functionalized Dithieno[3,2-b:2′,3′-d]phospholes[J]. Organometallics,2012,31,2425~2436.
    [29] Chua C J, Ren Y, Baumgartner T. Charge-Transfer Properties of Lateral TriphenylamineDithienophosphole Diads[J]. Org. Lett.,2012,14:1588~1591.
    [30] Baumgartner T, Bergmans W, Kárpáti T, et al. From Model Compounds to Extendedπ-Conjugated Systems: Synthesis and Properties of Dithieno [3,2-b:2’,3’-d]phospholes [J].Chem. Eur. J.,2005,11:4687.
    [31] Dienes Y, Eggenstein M, Neumann T, et al. Synthesis and optoelectronic properties oftransition metal complexes incorporating dithieno[3,2-b:2’,3’-d] phosphole ligands[J].Dalton Trans,2006,1424~1433.
    [32](a) Ren Y, Kan W H, Henderson M A, et al. External-Stimuli Responsive Photophysics andLiquid Crystal Properties of Self-Assembled “Phosphole-Lipids”[J]. J. Am. Chem. Soc.,2011,133:17014~17026;(b) Ren Y, Baumgartner T. Structure-Property Studies Toward theStimuli-Responsive Behavior of Benzyl-Phospholium Acenes[J]. Inorg. Chem.,2012,51:2669~2678;(c) Ren Y, Kan W H, Thangadurai V, Baumgartner T, et al. Bio-InspiredPhosphole-Lipids: From Highly Fluorescent Organogels to Mechanically Responsive FRET[J].Angew. Chem. Int. Ed.,2012,51:3964~3968.
    [33] Dienes Y, Durben S, Kárpáti T, et al. Selective Tuning of the Band Gap of π-ConjugatedDithieno[3,2-b:2’,3’-d]phospholes toward Different Emission Colors[J]. Chem. Eur. J.,2007,13:7487~7500.
    [34] Romero N C, Merino S, Rodríguez-López J, et al. Dendrimeric Oligo(phenylene)-ExtendedDithieno[3,2-b:2’,3’-d]phospholes-Synthesis, Self-Organization, and Optical Properties[J].Chem. Eur. J.,2009,15:4135~4145.
    [35] Durben S, Dienes Y, Baumgartner T. Cationic Dithieno[3,2-b:2’,3’-d]phospholes: A NewBuilding Block for Luminescent, Conjugated Polyelectrolytes[J]. Org. Lett.,2006,8:5893~5896.
    [36] Durben S, Nickel D, Krüger R, et al. Toward Low-Band Gap Dithienophosphole Copolymersfor an Application in Organic Solar Cells[J]. J. Polym. Sci., Part A: Polym. Chem.,2008,46:8179~8190.
    [37] Romero-Nieto C, Durben S, Kormos I M, et al. Simple and Efficient Generation of WhiteLight Emission From Organophosphorus Building Blocks[J].Adv. Funct. Mater.,2009,19:3625~3631.
    [38] Sanji T,Shiraishi K, Kashiwabara T, et al. Base-Mediated Cyclization Reaction of2-Alkynylphenylphosphine Oxides: Synthesis and Photophysical Properties of Benzo[b]phosphole Oxides[J]. Org. Lett.,2008,10:2689~2692.
    [39] Fukazawa A, Hara M, Okamoto T, et al. Bis-Phosphoryl-Bridged Stilbenes Synthesized byan Intramolecular Cascade Cyclization[J]. Org. Lett.,2008,10:913~916.
    [40] Matano Y, Miyajima T, Fukushima T, et al. Comparative Study on the Structural, Optical,and Electrochemical Properties of Bithiophene-Fused Benzo[c] phospholes[J]. Chem. Eur. J.,2008,14:8102~8115.
    [41] Pierre-Antoine B, Escande A, Szucs R, et al. Dibenzophosphapentaphenes: Exploiting PChemistry for Gap Fine-Tuning and Coordination-Driven Assembly of Planar PolycyclicAromatic Hydrocarbons[J]. J. Am. Chem. Soc.,2012,134:6524~6527.
    [42] Wright V A, Gates D P. Poly(p-phenylenephosphaalkene): A π-Conjugated MacromoleculeContaining P=C Bonds in the Main Chain[J]. Angew. Chem. Int. Ed.,2002,41:2389~2392.
    [43] Sasaki S, Aoki H, Sutoh K, et al. Synthesis and Redox Properties ofBis{4-[bis(4-methoxyphenyl)amino]-2,6-bis(2,4,6-triisopropylphenyl)phenyl}diphosphene[J]. Helv. Chim. Acta,2002,85:3842~3847.
    [44] Smith R C, Protasiewicz J D. Conjugated Polymers Featuring Heavier Main Group ElementMultiple Bonds: A Diphosphene-PPV[J]. J. Am. Chem. Soc.,2004,126:2268~2269.
    [45] Jin Z, Lucht B L. Transition metal mediated routes to poly(arylphosphine)s: investigation ofnovel phosphorus containing conjugated polymers[J]. J. Organomet. Chem.,2002,653:167~176.
    [46] Jin Z, Lucht B L. Poly-p-phenylene Phosphine/Polyaniline Alternating Copolymers:Electronic Delocalization through Phosphorus[J]. J. Am. Chem. Soc.,2005,127:5586~5595.
    [47] Han L-B, Huang Z, Matsuyama S, et al. Regio-and stereoselective synthesis ofpoly(arylenevinylene phosphine oxide)s by the metal-catalyzed addition polymerization ofbisphosphoroyl compounds with diynes[J].J. Polym. Sci., Part A: Polym. Chem.2005,43,5328~5336.
    [48] Scott L T, Unno M. Novel heterocycles comprised of alternating phosphorous atoms andalkyne units[J]. J. Am. Chem. Soc.,1990,112(21):7823~7825.
    [49] Huy N H T, Perrier E, Ricard L, et al. The Use of Phosphirenes as Conjugating Spacers inPolythiophene Chains[J]. Organometallics,2006,25:5176~5179.
    [50] Huy N H T, Donnadieu B, Mathey F. Dithienophosphinine[J]. Organometallics,2007,26:6497~6500.
    [51] Christian Müller, Wasserberg D, Weemers JJ M, et al. Donor-Functionalized PolydentatePyrylium Salts and Phosphinines: Synthesis, Structural Characterization, and PhotophysicalProperties[J]. Chem. Eur. J.,2007,13:4548~4559.
    [52] Ren Y, Baumgartner T. Ladder-Type π-Conjugated4-Hetero-1,4-dihydrophosphinines: AStructure-Property Study[J]. Chem. Asian J.,2010,5:1918~1929.
    [1](a) Müllen K, Scherf U. Organic Light Emitting Devices: Synthesis Properties andApplications,[M]. Wiley-VCH, Weinheim,2006;(b) Cheng Y-J, Yang S-H, Hsu C-S.Synthesis of Conjugated Polymers for Organic Solar Cell Applications [J]. Chem. Rev.,2009,109:5868~5923.
    [2] Roncali J, Macromol. Effect of the Molecular Weight of Poly(3-hexylthiophene) on theMorphology and Performance of Polymer Bulk Heterojunction Solar Cells[J]. RapidCommun.,2007,28:1761~1775.
    [3](a) Grimsdale A C, Chan K L, Martin R E, et al. Synthesis of Light-Emitting ConjugatedPolymers for Applications in Electroluminescent Devices [J]. Chem. Rev.,2009,109:897~1091;(b) Iida A, Yamaguchi S, Thiophene-Fused Ladder Boroles with HighAntiaromaticity [J].J. Am. Chem. Soc.,2011,133:6952~6955;(c) Xu C, Wakamiya A,Yamaguchi S, Ladder Oligo(p-phenylenevinylene)s with Silicon and Carbon Bridges [J].J.Am. Chem. Soc.,2005,127:1638~1639.
    [4] Mathey F. Phosphorus-Carbon Heterocyclic Chemistry: The rise of a new domain[M].Pergamon, Oxford, UK,2001.
    [5](a) Bevierre M O, Mercier F, Ricard L, et al. A First Step toward the Phosphorus Analogues ofPolythiophenes[J]. Angew. Chem. Int. Ed.,1990,29:655~657;(b) Laporte F, Mercier F,Ricard L, et al. Tetraphosphorus Macrocycles from Phosphole Tetramers [J]. J. Am. Chem.Soc.,1994,116:3306~3311.
    [6] Robe E, Ortega C, M Mikina, et al. Stereochemically Dynamic2,2’-Biphosphole Ligands forAsymmetric Catalysis [J].Organometallics,2005,24:5549~5559.
    [7](a) Pyykko P. Strong Closed-Shell Interactions in Inorganic Chemistry [J].Chem. Rev.,1997,97:597~636;(b) Yu S Y, Zhang Z X, Cheng E C C, et al. A Chiral Luminescent Au16RingSelf-Assembled from Achiral Components [J].J. Am. Chem. Soc.,2005,127:17994~17995.
    [8](a) Andrade B W D, Forrest S R, White Organic Light-Emitting Devices for Solid-StateLighting [J]. Adv. Mater.,2004,16:1585~1595;(b) Kamtekar K T, Monkman A P, Bryce MR, Recent Advances in White Organic Light-Emitting Materials and Devices (WOLEDs)[J].Adv. Mater.,2010,22:572~582.
    [9] Usta H, Facchetti A, Marks T J. n-Channel Semiconductor Materials Design for OrganicComplementary Circuits [J].Acc. Chem. Res.2011,44:501~510.
    [10](a) Mishra A, MaC-Q, Baauerle P. Functional Oligothiophenes: Molecular Design forMultidimensional Nanoarchitectures and Their Applications [J].Chem. Rev.2009,109:1141~1276;(b) Thomson B C, Frechet J M J. Polymer–Fullerene Composite Solar Cells[J].Angew. Chem. Int. Ed.2008,47:58~77;(c) Allard S, Forster M, Souharce B, et al. OrganicSemiconductors for Solution-Processable Field-Effect Transistors (OFETs)[J]. Angew.Chem., Int. Ed.2008,47:4070~4098.
    [11](a) Salzner U, Lagowski J B P, Pickup G, et al. Comparison of geometries and electronicstructures of polyacetylene, polyborole, polycyclopentadiene, polypyrrole, polyfuran,polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene[J].Synth.Met.1998,96:177~189;(b) Cyranski M K, Krygowski T M, Katritzky A R, et al. To whatextent can aromaticity be defined uniquely?[J].J. Org. Chem.2002,67:1333~1338.
    [12](a) Gidron O, Diskin-Posner Y, Bendikov M.α-Oligofurans [J]. J. Am. Chem.Soc.2010,132:2148~2150.(b) Bunz U H F. α-Oligofurans: Molecules without a Twist [J]. Angew. Chem.,Int. Ed.2010,49:5037~5040.
    [13](a) Mitsui C, Tsuji H, Sato Y, et al. Carbazolyl Benzo[1,2-b:4,5-b']difuran: An AmbipolarHost Material for Full-Color Organic Light-Emitting Diodes [J]. Chem. Asian J.2012,7:1443~1450;(b) Mitsui C, Soeda J, Miwa K, et al. Naphtho [2,1-b:6,5-b']difuran: A VersatileMotif Available for Solution-Processed Single-Crystal Organic Field-Effect Transistors withHigh Hole Mobility [J].J. Am. Chem. Soc.2012,134:5448~5451;(c) Walker B, Tamayo A B,Dang X-D, et al. Nanoscale Phase Separation and High Photovoltaic Efficiency inSolution-Processed, Small-Molecule Bulk Heterojunction Solar Cells [J]. Adv. Funct. Mater.2009,19:3063~3069;(d) Wu C-C, Hung W-Y, Liu T-L, et al. Hole-transport properties of afuran-containing oligoaryl [J].J. Appl.Phys.2003,93:5465~5471;(e)Aleveque O, Frere P,Leriche P, et al. Effects of aromatic spacers on the properties of organic field effect transistorsbased on p-extended tetrathiafulvalene derivatives [J].J. Mater.Chem.2009,19:3648~3651;(f)Woo C H, Beaujuge P M, Holcombe T W, et al. Incorporation of Furan into Low Band-GapPolymers for Efficient Solar Cells [J].J. Am. Chem. Soc.2010,132:15547~15549.
    [14] Hissler M, Dyer P W, Reau R. Linear organic π-conjugated systems featuring the heavyGroup14and15elements[J].Coord. Chem. Rev.2003,244:1~44.
    [15](a)Fukazawa A, Yamada H, Yamaguchi S. Phosphonium-and borate-bridged zwitterionicladder stilbene and its extended analogues [J].Angew. Chem., Int. Ed.2008,47:5582~5585.(b)Weymiens W, Zaal M, Slootweg J C, et al. Ladder-Type P,S-Bridgedtrans-Stilbenes [J].Inorg. Chem.2011,50,8516~8523.
    [16] Ren Y, Baumgartner T. Combining form with function-the dawn of phosphole-basedfunctional materials[J].Dalton Trans.2012,41:7792~7800.
    [17] Matano Y, Saito A, Fujita M, et al. Effects of heterole spacers on the structural, optical, andelectrochemical properties of2,5-bis(1,5-diphenylphosphol-2-yl) heteroles[J].HeteroatomChem.2011,22:457~470;
    [18](a)Deschamps E, Ricard L, Mathey F. Stereochemistry and some synthetic uses of theheteroarylation of phospholes[J]. Heteroatom Chem.1991,2:377~383;(b) Tran Huy N H, LuY, Nien Ah Qune L F, et al. Influence of the substitution pattern on the optoelectronicproperties of oligofuran and oligothiophene-phosphole chains[J]. J. Organomet. Chem.2013,730:63~68.
    [19] Dienes Y, Eggenstein M, Karpati T, et al. Phosphorus-Based Heteropentacenes: EfficientlyTunable Materials for Organic n-Type Semiconductors[J]. Chem. Eur. J.2008,14,9878~9889.
    [20] Mehta S, Larock S. Iodine/Palladium Approaches to the Synthesis of PolyheterocyclicCompounds[J]. J. Org. Chem.2010,75,1652~1658.
    [21] Usón R, Laguna A, Laguna M. Tetrahydrothiophene)Gold(I) or Gold(III) Complexes [J].Inorg. Synth.1989,26:85~91.
    [22] Klauk H. Organic Electronics, Manufacturing and Applications[M]. Wiley-VCH, Weinheim,2006.
    [23](a) Fukazawa A, Yamaguchi S. Ladder π-Conjugated Materials Containing Main-GroupElements [J].Chem. Asian J.2009,4:1386~1400;(b) Scherf U, Ladder-type materials [J].J.Chem. Mater.1999,9:1853~1864;(c) Watson M D, Fechtenkter A, Mullen K. Big IsBeautiful “Aromaticity” Revisited from the Viewpoint of Macromolecular andSupramolecular Benzene Chemistry[J].Chem. Rev.2001,101:1267~1300;(d) Bendikov M,Wudl F, Perepichka D F. Tetrathiafulvalenes, Oligoacenenes, and Their BuckminsterfullereneDerivatives: The Brick and Mortar of Organic Electronics[J].Chem. Rev.2004,104:4891~4946;(e) Harvery R G. Polycyclic Aromatic Hydrocarbons[M]. Wiley-VCH, NewYork,1997.
    [24] Chen H, Delaunay W, Li J, et al.Benzofuran-fused Phosphole: Synthesis, Electronic, andElectroluminescence Properties[J]. Org. Lett.,201315:330~333.
    [25](a) Uchida M, Izumikawa T, Nakano T, et al. Structural Optimization of2,5-Diarylsiloles asExcellent Electron-Transporting Materials for Organic Electroluminescent Devices [J].Chem.Mater.2001,13:2680~2683;(b) Luo J, Xie Z, Lam W Y, et al. Aggregation-inducedemission of1-methyl-1,2,3,4,5-pentaphenylsilole [J].Chem. Commun.2001,1740~1741;(c)Tamao K, Yamaguchi S. New type of polysilanes: poly(1,1-silole)s [J].J. Organomet. Chem.2000,611:5;(d) Chen J, Law C C W, Lam J W Y, et al. Synthesis, Light Emission,Nanoaggregation, and Restricted Intramolecular Rotation of1,1-Substituted2,3,4,5-Tetraphenylsiloles [J].Chem. Mater.2003,15:1535~1546.
    [26](a) Liu M S, Luo J, Jen A K-Y. Efficient Green-Light-Emitting Diodes fromSilole-Containing Copolymers [J].Chem. Mater.2003,15:3496~3500;(b) Sohn H, Sailor M J,Magde D, et al. Detection of Nitroaromatic Explosives Based on Photoluminescent PolymersContaining Metalloles [J]. J. Am. Chem. Soc.2003,125:3821~3830.(c) Zhang G, Ma J, JiangY. Effects of Silole Content and Doping on the Electronic Structures and Excitation Energiesof Silole/Thiophene Cooligomers [J]. Macromolecules,2003,36:2130~2140.
    [27] Ohshita J, Lee K-H, Kimura K, et al. Synthesis of Siloles Condensed with Benzothiopheneand Indole Rings[J]. Organometallics2004,23:5622~5625.
    [28] Wan J-H, Fang W-F, Li Z-F, et al. Novel Ladder π-Conjugated Materials-Sila-Pentathienoacenes: Synthesis, Structure, and Electronic Properties[J].Chem. Asian J.2010,5:2290~2296.
    [1](a) Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett.,1987,51:913~915;(b) Tang C W, VanSlyke S A, Chen C H. Electro-luminescence of dopedorganic thin films[J].J. Appl. Phys.1989,65:3610;(c) M. C. Gather, A. K hnen, K. MeerholzWhite Organic Light-Emitting Diodes[J].Adv. Mater.2011,23:233~248.
    [2] Thomas III S W, Joly G D, Swager T M. chemical Sensors Based on Amplifying FluorescentConjugated Polymers [J].Chem. Rev.,2007,107:1339~1386.
    [3] Chen H, Delaunay W, Yu L, et al.2,2’-Biphospholes: Building Blocks for Tuning theHOMO-LUMO Gap of π-Systems Using Covalent Bonding and Metal Coordination[J].Angew. Chem. Int. Ed.2012,51:214~217.
    [4](a) Wang S, Oldham Jr W J, Hudack R A, et al. Synthesis, Morphology, and OpticalProperties of Tetrahedral Oligo(phenylenevinylene) Materials [J].J. Am. Chem. Soc.2000,122:5695~5709;(b) Liu D, He F, Wang H, J. et al. Cruciform DPVBi: synthesis, morphology,optical and electroluminescent properties [J].Mater. Chem.2008,18:4802~4807.
    [5](a)RenY, Baumgartner T. Dually Switchable Heterotetracenes: Addressing the PhotophysicalProperties and Self-Organization of the P-S System [J]. J. Am. Chem. Soc.2011,133:1328~1340;(b) Durben S, Baumgartner T.3,7-Diazadi benzophosphole Oxide: APhosphorus-Bridged Viologen Analogue with Significantly Lowered ReductionThreshold[J].Angew. Chem. Int. Ed.2011,50:7948~7952;(c) Matano Y, SaitoA, FukushimaT, et al.Fusion of Phosphole and1,1’-Biacenaphthene:Phosphorus(V)-Containing Extendedp-Systems with High Electron Affinity and Electron Mobility[J].Angew. Chem. Int. Ed.2011,50:8016~8020;(d) Weymiens W, Hartl F, Lutz M et al. Bis(azidophenyl)phosphole BuildingBlock for Extended π-Conjugated Systems[J]. Eur. J. Org. Chem.2012,6711~6721.
    [6](a) Marinetti A, Fischer J, Mathey F. Carbonylation of a Strained Phosphorus Carbon Bond.Conversion of Phosphirene into2-Keto-1,2-dihydrophosphete Complexes: An Entry into theChemistry of the Phosphorus Analogues of Unsaturated β-Lactams [J].J. Am. Chem. Soc.1985,107:5001~5002;(b) Huy N H T, Richard L, Mathey F. Synthesis of the Phosphorus-Carbon Double Bond by Reaction between Pentacarbonylchromium or-tungsten Complexesof Phosphinidenes and Carbenes. Application to the Synthesis of the1,2-Dihydro phospheteRing[J].Organometallics1988,7:1791~1795;(c) Jun H, Angelici R J, Mechanism of theplatinum-promoted conversion of Cl2C:PR to RC.tplbond.P, where R=2,4,6-tri-tert-butylphenyl[J].Organometallics,1993,12:4265~4266;(d) Weber L, Kaminski O, StammlerH-G, et al. Transition-Metal-Substituted Acylphosphanes and Phosphaalkenes.26. Synthesisand Structure of the2-Metallo-1,2,3-diazaphospholes [cyclic](.eta.5-C5Me5)(CO)2Fe-N-P:C(NMe2)-C(CO2R):N (R=Et, tBu)[J]. Organometallics1995,14,581~583;(e) Dupuis L,Pirio N, Meunier P, et al. Zirconocen-Benzyme-Mediated Intramolecular Coupling ofBis(alkynyl)phosphane: A Way to Mono-and Tricyclic1,2-Dihydro phosphetes[J].Angew.Chem. Int. Ed.1997,36:987~989;(f) Pirio N, Bredeau S, Dupuis L, et al. Intramolecularcoupling of acetylenic groups of bis(alkynyl) phosphanes and silanes mediated bybenzynezirconocene: a route to new mono-and tricyclic heterocycles [J].Tetrahedron2004,60:1317~1327.
    [7](a) Beletskaya I P, Afanasiev V V, Kazankova M A, et al. New Approach to PhosphinoalkynesBased on Pd-and Ni-Catalyzed Cross-Coupling of Terminal Alkynes with Chlorophosphanes[J]. Org. Lett.2003,23:4309~4311;(b) Afanasiev V V, Beletskaya I P, Kazankova M A, et al.A Convenient and Direct Route to Phosphinoalkynes via Copper-Catalyzed Cross-Coupling ofTerminal Alkynes with Chlorophosphanes[J]. Synthesis,2003,18:2835~2838.
    [8] Bayoumi El M A A, Halim F M A. Effect of Intramolecular Twisting on the FluorescenceSpectra of Sterically Hindered Tetraphenylbutadienes[J]. J. Chem. Phys.1968,48:2536.
    [9] Gaussian03, Revision C.02, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb MA, Cheeseman J R, Montgomery J A, Vreven Jr T, Kudin K N, Burant J C, Millam J M,Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A,Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T,Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C,Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C,Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski VG, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K,Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G,Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y,Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C,and Pople J A, Gaussian, Inc., Wallingford CT,2004
    [10] Matsusue N, Ikame S, Suzuki Y, et al. Charge carrier transport in an emissive layer of greenelectrophosphorescent devices[J]. Appl. Phys. Lett.,2004,85:4046.
    [11] Choukri H, Fischer A, Forget S, et al. White organic light-emitting diodes with finechromaticity tuning via ultrathin layer position shifting[J]. Appl. Phys. Lett.2006,89:183513
    [1](a) Le F P, Carmichael D, Ricard L, et al. Palladium(0)-Catalyzed Functionalization ofBromophosphinines [J]. J. Am. Chem. Soc.1993,115:10665~10670;(b) Trauner H, Le F P,Lefour J M, et al. Insertion of Palladium(0)and Nickel(0) Complexes into the α-Carbon-Bromine Bonds of2-Bromo-or2,6-Dibromophosphinines: A Versatile Routeto α-Functionalised Phosphinines[J]. Synthesis,1995,717~726.
    [2](a) Le F P, Kolb A, Mathey F. A Zirconocenerf-Phosphabenzyne Complex as an Intermediateen route to Functional Phosphinines [J]. J. Chem. Soc., Chem. Commun.1994,2065~2066;(b)Rosa P, Le F P, Ricard L, et al. Synthesis, Structure, and Reactivity ofη2-Phosphabenzyne-Zirconocene Dimers[J].J. Am. Chem. Soc.1997,119:9417~9423.
    [3] Alcaraz J M, Deschamps E, Mathey F. Donnees Complementaires Sur La Conversion DesPhospholes En Phosphorines[J].Phosphorus Sulfur1984,19:45~59.
    [4] M rkl G, Hauptmann H, Advena J. General Synthesis of Aryl-Substituted Arsabenzenes[J].Angew. Chem. Int. Ed. Engl.1972,11:441~443.
    [5] Kato T, Gornitzka H, Baceiredo A, et al. On the Electronic Structure of(Phosphino)(silyl)carbenes: Single-Crystal X-ray Diffraction and ELF Analyses[J].J. Am.Chem. Soc.2000,122:998~999.
    [6] Katz T J, Wang E J, Acton N. A Benzvalene Synthesis.[J]. J. Am. Chem. Soc.,1971,93:3782~3783.
    [7] Divisia B.Synthese et Proprietes Chimiques de Deux Diazoalcanes α-thiophosphores[J].Tetrahedron1979,35:181~187.
    [8] Alcaraz J M, Mathey F. Generation and Trapping of a Phosphinine Sulphide.[J]. J. Chem.Soc., Chem. Commun.,1984,508~509.
    [9] Holand S, Ricard L, Mathey F. Reaction of Phosphole Sulfides with Diazoalkanes as a NewRoute to Phosphinines.[J]. J. Org. Chem.,1991,56:4031~4035.
    [10] Holand S, Jeanjean M, Mathey F. A Straightforward Access to α-Functional Phospholide[J].Ions Angew. Chem. Int. Ed.1997,36:98~100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700