用户名: 密码: 验证码:
几种新型光电活性材料的制备及其在染料敏化太阳能电池与分析检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:光电活性材料包括有机染料及荧光分子、过渡金属复合物、半导体氧化物、量子点(QDs)等。其优良的物理化学性质使其在光电转换、光催化以及分析检测方面具有广泛的应用。染料敏化太阳能电池(DSSCs)制作成本较低、环境友好是一类被广泛关注的新型太阳能电池。目前实验室得到的DSSCs的最高效率为13%,但与传统的硅基太阳能电池的效率(约30%)还有较大差距。在DSSCs中,电解质氧化还原电对电位与氧化态染料分子能级之间的不匹配是造成电池开路电压和总体效率中偏低的主要原因。而TiO2中光电子与氧化态电解质的复合,阻碍了DSSCs中具有较高电势电解质的使用。针对这问题,在本研究中使用硅烷化处理的有序一维TiO2纳米线阵列作为DSSCs的光阳极,这种开放的结构更有利于形成规则的聚硅氧烷修饰层来阻止光电子的复合,从而为DSSCs中使用高电势电解质成为潜在可能。QDs具有独特的光电性质,已被广泛应用于构建无机离子及生物分子传感器。但这些基于QDs的传感器中,大部分需要进行繁琐的表面修饰和功能化处理。借助化学修饰方法研究基于QDs的简易传感器有很重要的意义。比色检测方法具有操作便利、结果直观等特点,得到了广泛的应用。设计合成新型有效的比色法探针也是研究的热点。本论文设计合成了几种新型光电活性物质,并将它们应用于了DSSCs与分析检测中。主要内容包括:
     (1)用水热法制备了一维有序结构的TiO2纳米线,在吸附染料后通过硅烷化处理得到的光阳极中,光电子与高活性电解质(Fc+/Fc)间的复合被有效地阻止了。红外光谱证实了聚硅氧烷层的形成。TiO2纳米线阵列为表面修饰提供一种更开放和便于操作的结构,X射线散射能谱显示Si在TiO2纳米线为均匀分布状态。电池性能测试结果表明,硅烷化处理后,在Fc+/Fc电解质中,电池的开路电压及效率都显著地提高了,光阳极中电子的寿命也呈指数关系地增长了。该电极的设计为DSSCs中使用与光敏剂能级更加匹配的电解质提供了可能。
     (2)引入化学还原方法(还原剂为抗坏血酸,AA),使Cu2+能快速地还原成一价铜并以Cu2S的形式沉积在CdS量子点表面。通过观测CdS量子点在650nm处荧光强度的变化,可在1nM至1μM范围内实现对Cu2+的快速专一检测,检测限为0.5nM,与传统的基于量子点的方法相比低了2至3个数量级。对水样和人脑脊液实际样品中Cu2+含量进行了测试,得到了与标准ICP-MS检测类似的结果,说明该方法有较高的可行性。
     (3)通过层层组装的方法得到了CdS量子点固载的光电化学电极,将CdS量子点表面富集S2-后电极能产生将强的光电流响应。而电极用半胱氨酸处理后,由于Cys能取代CdS量子点表面的S2-,使得光电流信号下降。实现了对Cys的灵敏检测,检测线性范围为1-100nM,检测限为0.4nM。该方法成功应用于了血清样品中Cys的检测。
     (4)根据Cys和N3染料竞争对Hg2+结合,利用Hg2+-N3复合物实现了对Cys的比色法检测。首先,由于N3染料分子中SCN基团与Hg2十的配位作用,形成得到Hg2+-N3复合物,对应溶液颜色由红色变为黄色。在Cys的存在下,Cys的巯基与Hg2+具有更强的结合作用,从而将Hg2+-N3复合物中的Hg2+置换,N3染料分子被释放,溶液颜色恢复至红色。基于上述原理实现了对Cys的定量检测,其检测范围为0.5-25μM,检测限57nM。在此基础上,通过在配体联吡啶环上引入磷酸基团,得到了全水溶性的含钌染料。利用该染料分子实现了对水溶液体系中Hg2+的检测。
     (5)将水杨醛单元与萘酰亚胺重氮盐偶联反应得到了基于萘酰亚胺的偶氮苯染料分子探针1。在探针1中,水杨醛为CN-的识别基团,萘酰亚胺偶氮苯为检测信号基团。与CN-反应后,探针1溶液显示出了从黄到红的显著颜色变化,对应光谱吸收峰位置从408nm移置497nm。在优选的H2O/DMSO (7/3, v/v)混合溶剂体系中,探针1.能实现对CN-的比值式检测,检测范围为2-45μM,检测限为0.4μM。而且该方法具有很高的特异性。另外,利用探针1制备了CN-检测试纸,可目测出浓度大于20μM的CN-溶液。
ABSTRACT: Optically and electrically active materials, including organic dyes, fluorescent molecules, metal complexes, quantum dots (QDs) and etc., due to their excellent chemical and physical properties, have wide applications in photoelectric conversion, photocatalysis, and analytical chemistry. Dye-sensitized solar cells (DSSCs), as a type of alternative, renewable energy source, have attracted a great deal of attention because of their low production cost, environmentally friendly fabrication processes. So far, the highest achieved efficiency for DSSCs is13%which is much less that for silicon based solar cell (e. g.30%). The mismatch in the energy between the redox potential and the HOMO level of the sensitizers lowers the open-circuit voltage and consequently the conversion efficiency of the DSSC. And the recombination between electrons injected by excited dyes at the anode with the oxidized redox species prevent using electrolyte with higher energy level, compared with the normally used triiodide/iodide redox shuttle. To surmount this problem, silane-treated (coated) one-dimensional TiO2nanowire arrays as the photoanode of DSSC was proposed. The open and spatially accessible structure of the TiO2nanowire arrays would be favorable for the coating with uniform polysiloxane which could act as effective insulating layers for blocking the recombination reaction while using high-potential redox couple. Owing to their unique electrical and optical properties, QDs have been widely used to construct various sensors for inorganic ions and biomolecules. But most of those QDs-based sensors require sophisticated procedures for surface decoration, so the development of facile sensors using QDs in combination with chemical reactions is noteworthy. Colorimetric method is extremely attractive because of the convenient and direct readout for detection result. The design of novel dyes as effective colorimetric probes for various analytes has attracted enormous attentions.
     In this thesis, several kinds of optically, electrically active materials were designed. And their applications in DSSCs and analytical chemistry were also explored. The main contents are as follows:
     (1) Effective blockage of recombination electron transfer of a high reactive redox couple (Fc+/Fc) at TiO2nanowire array electrodes was achieved by silanization of the dye loaded TiO2nanowire array. FT-IR clearly showed the formation of polysiloxane network at fluorine doped tin electrodes covered with TiO2nanowire arrays and the dye molecules. Energy-dispersive X-ray spectroscopy (EDS) also reveals the presence of Si over multiple spots at the cross sections of the silanized TiO2nanowire array electrodes. As a result, a rather high open-cell voltage Voc (0.69V) and an enhanced efficiency (0.749%) for DSSC with the Fc+/Fc couple were obtained. Contrary to the passivated TiO2nanoparticle film electrodes at which a complex, biphasic dependence of electron lifetime on Voc was observed, we recorded a logarithm linear dependence of the lifetime on Voc after the silanization treatment.
     (2) By reducing free and/or weakly coordinated Cu2+with a Cu2+-reducing agent (ascorbic acid for example) and detecting the photoluminescence peak of Cu2S-covered CdS QDs at650nm, Cu2+concentrations ranging from1nM to1μM can be readily determined. The detection limit of0.5nM was achieved, which is at least2-3orders of magnitude lower than QD-based detection methods. Among a number of metal ions interferences, only Cu2+causes the red shift of the CdS photoluminescence. Analyses of Cu2+in a river water sample and Cu2+coordinated by amino acids and proteins in cerebrospinal fluids were performed.
     (3) The photoelectrochemical response at electrodes immobilized with CdS quantum dots whose surface were enriched with sulfide ions was found to change when sulfide ions are replaced by thiol-containing compounds. A sensitive photoelectrochemical method was therefore developed for selective detection of Cys. Immersion of the resultant electrode in sample solution containing a sulfhydryl compound allows the sulfide anions to be gradually replaced by the Cys. The adsorption, hence the decrease in photoelectrochemical response (photocurrent) correlates with the concentration of the Cys in solution. The dynamic range is 1-100nM and the detection limit is0.4nM.
     (4) A novel reversible colorimetric sensor, which based on a competitive ligation of Hg2+by thiols and thiocyanate (SCN) on the N3dye (bis(4,4'-dicarboxy-2,2'-bipyridine) dithiocyanato ruthenium (II)), was developed for the detection of Cys. First, Hg2+ions coordinated to the sulfur atom of the dyes' SCN groups, and this interaction induces a change in color from red to yellow, owing to the formation of a complex of Hg2+-N3. Then, in the presence of Cys, the red color of N3is recovered concomitantly with the dissociation of the Hg2+-N3complex, due to the extraction of Hg2+by biothiols. The dynamic range of this method is0.5-25μM and the detection limits is57nM. Furthermore, by using phosphate group-incorporated bipyridine liagand, we synthesized a water soluble ruthenium-contaning dye which was successfully used for the colorimetric detection of Hg2+in aqueous solution.
     (5) A naphthalimide-based azo dye (1) used as a colorimetric and ratiometric probe for the detection of CN-was synthesized by incorporating a salicylaldehyde moiety, which acts as a recognition unit, to the naphthalimido diazonium salt. Upon reacting with CN-, probe1display dramatic color changes rapidly from yellowish to red, corresponding to the absorption bands shift from408nm to497nm. The colorimetric probe allows ratiometric detection of CN-with a linear range of2-45μM and a LOD (limit of detection) of0.4μM. In the optimized H2O/DMSO (7/3, v/v) mixed solvent, probe1displays excellent selectivity for CN-over other anions. In addition,1was successfully employed to prepare the filter paper-based test strips which can be used to monitor CN-conveniently, and the discernible concentration of CN-can be as low as20μM.
引文
[1]http://en.wikipedia.org/wiki/Electromagnetic_spectrum.
    [2]http://stainsfile.info/StainsFile/dyes/dyes.htm.
    [3]Chan J, Dodani S C, Chang C J. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging [J]. Nat. Chem.,2012,4 (12):973-984.
    [4]Yang Y, Zhao Q, Feng W, et al. Luminescent Chemodosimeters for Bioimaging [J]. Chem. Rev.,2012,113 (1):192-270.
    [5]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting [J]. Chem. Soc. Rev.,2009,38 (1):253-278.
    [6]Hildebrandt N. Biofunctional Quantum Dots:Controlled Conjugation for Multiplexed Biosensors [J]. ACS Nano,2011,5 (7):5286-5290.
    [7]Urban A S, Shen X, Wang Y, et al. Three-Dimensional Plasmonic Nanoclusters [J]. Nano Lett.,2013,13 (9):4399-4403.
    [8]Fan J A, He Y, Bao K, et al. DNA-Enabled Self-Assembly of Plasmonic Nanoclusters [J]. Nano Lett.,2011,11 (11):4859-4864.
    [9]Fabris L, Antonello S, Armelao L, et al. Gold Nanoclusters Protected by Conformationally Constrained Peptides [J]. J. Am. Chem. Soc.,2005,128 (1):326-336.
    [10]Wen F, Dong Y, Feng L, et al. Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing [J]. Anal. Chem.,2011,83 (4):1193-1196.
    [11]Li L, Liu H, Shen Y, et al. Electrogenerated Chemiluminescence of Au Nanoclusters for the Detection of Dopamine [J]. Anal. Chem.,2011,83 (3):661-665.
    [12]Ma L L, Feldman M D, Tam J M, et al. Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy [J]. ACS Nano,2009,3 (9):2686-2696.
    [13]Zhuang M, Ding C, Zhu A, et al. Ratiometric Fluorescence Probe for Monitoring Hydroxyl Radical in Live Cells Based on Gold Nanoclusters [J]. Anal. Chem., 2014,86(3):1829-1836.
    [14]Xiao Y, Shu F, Wong K-Y, et al. Forster Resonance Energy Transfer-Based Biosensing Platform with Ultrasmall Silver Nanoclusters as Energy Acceptors [J]. Anal. Chem.,2013,85 (18):8493-8497.
    [15]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353 (6346):737-740.
    [16]Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers [J]. Nat. Chem.,2014,6 (3):242-247.
    [17]Rhee S-W, Kwon W. Key technological elements in dye-sensitized solar cells (DSC) [J]. Korean J. Chem. Eng.,2011,28 (7):1481-1494.
    [18]Hagfeldt A, Boschloo G, Sun L, et al. Dye-Sensitized Solar Cells [J]. Chem. Rev., 2010,110 (11):6595-6663.
    [19]Hao F, Dong P, Luo Q, et al. Recent advances in alternative cathode materials for iodine-free dye-sensitized solar cells [J]. Energ. Environ. Sci.,2013,6 (7):2003-2019.
    [20]Wu M, Lin X, Wang Y, et al. Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc.,2012,134 (7):3419-3428.
    [21]Ramasamy E, Lee W J, Lee D Y, et al. Nanocarbon counterelectrode for dye sensitized solar cells [J]. Appl. Phys. Lett.,2007,90 (17):173103-173105.
    [22]Li G-R, Wang F, Jiang Q-W, et al. Carbon Nanotubes with Titanium Nitride as a Low-Cost Counter-Electrode Material for Dye-Sensitized Solar Cells [J]. Angew. Chem. Int. Ed.,49 (21):3653-3656.
    [23]Wang R, Wu Q, Lu Y, et al. Preparation of Nitrogen-Doped TiO2/Graphene Nanohybrids and Application as Counter Electrode for Dye-Sensitized Solar Cells [J]. ACS Appl. Mater. Interfaces,2014,6(3):2118-2124.
    [24]Li X, Liu L, Liu G, et al. Efficient Dye-Sensitized Solar Cells with Potential-Tunable Organic Sulfide Mediators and Graphene-Modified Carbon Counter Electrodes [J]. Adv. Funct. Mater.,2013,23 (26):3344-3352.
    [25]Wang M, Anghel A M, Marsan B, et al. CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc.,2009,131 (44):15976-15977.
    [26]Tian H, Yu Z, Hagfeldt A, et al. Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc.,2011,133 (24):9413-9422.
    [27]Daeneke T, Kwon T-H, Holmes A B, et al. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes [J]. Nat. Chem.,2011,3 (3):211-215.
    [28]Wang M, Chamberland N, Breau L, et al. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells [J]. Nat. Chem.,2010,2 (5):385-389.
    [29]Yella A, Lee H-W, Tsao H N, et al. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-based Redox Electrolyte Exceed 12 Percent Efficiency [J]. Science,2012, 334 (6056):629-634.
    [30]Ardo S, Meyer G J. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces [J]. Chem. Soc. Rev.,2009,38 (1):115-164.
    [31]Sauvage F, Decoppet J-D, Zhang M, et al. Effect of Sensitizer Adsorption Temperature on the Performance of Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc.,2011,133 (24):9304-9310.
    [32]Mor G K, Shankar K, Paulose M, et al. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells [J]. Nano Lett.,2005,6 (2):215-218.
    [33]Jennings J R, Ghicov A, Peter L M, et al. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons [J]. J. Am. Chem. Soc.,2008,130 (40):13364-13372.
    [34]Feng X, Shankar K, Paulose M, et al. Tantalum-Doped Titanium Dioxide Nanowire Arrays for Dye-Sensitized Solar Cells with High Open-Circuit Voltage [J]. Angew. Chem. Int. Ed.,2009,121 (43):8239-8242.
    [35]Liu B, Aydil E S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc.,2009,131 (11):3985-3990.
    [36]Feng X, Shankar K, Varghese O K, et al. Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications [J]. Nano Lett.,2008,8 (11):3781-3786.
    [37]Le Viet A, Jose R, Reddy M V, et al. Nb2O5 Photoelectrodes for Dye-Sensitized Solar Cells:Choice of the Polymorph [J]. J. Phys. Chem. C,2010,114 (49):21795-21800.
    [38]Ghosh R, Brennaman M K, Uher T, et al. Nanoforest Nb2O5 Photoanodes for Dye-Sensitized Solar Cells by Pulsed Laser Deposition [J]. ACS Appl. Mater. Interfaces,2011,3 (10):3929-3935.
    [39]Wang Y-F, Li J-W, Hou Y-F, et al. Hierarchical Tin Oxide Octahedra for Highly Efficient Dye-Sensitized Solar Cells [J]. Chem. Eur. J.,2011,16 (29):8620-8625.
    [40]Guerin V M, Magne C, Pauporte T, et al. Electrodeposited Nanoporous versus Nanoparticulate ZnO Films of Similar Roughness for Dye-Sensitized Solar Cell Applications [J]. ACS Appl. Mater. Interfaces,2010,2 (12):3677-3685.
    [41]Zheng Y-Z, Tao X, Wang L-X, et al. Novel ZnO-Based Film with Double Light-Scattering Layers as Photoelectrodes for Enhanced Efficiency in Dye-Sensitized Solar Cells [J]. Chem. Mater.,2009,22 (3):928-934.
    [42]Xu C, Wu J, Desai U V, et al. Multilayer Assembly of Nanowire Arrays for Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc.,2011,133 (21):8122-8125.
    [43]McCune M, Zhang W, Deng Y. High Efficiency Dye-Sensitized Solar Cells Based on Three-Dimensional Multilayered ZnO Nanowire Arrays with "Caterpillar-like" Structure [J].Nano Lett.,2012,12 (7):3656-3662.
    [44]Xu C, Wu J, Desai U V, et al. High-Efficiency Solid-State Dye-Sensitized Solar Cells Based on TiO2-Coated ZnO Nanowire Arrays [J]. Nano Lett.,2012,12 (5):2420-2424.
    [45]Mishra A, Fischer M K R, Bauerle P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells:From Structure:Property Relationships to Design Rules [J]. Angew. Chem. Int. Ed.,2009,48 (14):2474-2499.
    [46]Gratzel M. Recent Advances in Sensitized Mesoscopic Solar Cells [J]. Acc. Chem. Res.,2009,42 (11):1788-1798.
    [47]Chiba Y, Islam A, Watanabe Y, et al. Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%[J]. Jpn. J. Appl. Phys.,2006,45 (7):L638.
    [48]Wang Q, Ito S, Gratzel M, et al. Characteristics of High Efficiency Dye-Sensitized Solar Cells? [J]. J. Phys. Chem. B,2006,110 (50):25210-25221.
    [49]Feldt S M, Gibson E A, Gabrielsson E, et al. Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc.,2010,132 (46):16714-16724.
    [50]Clifford J N, Yahioglu G, Milgrom L R, et al. Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films [J]. Chem. Commun., 2002,(12):1260-1261.
    [51]Hasobe T, Imahori H, Kamat P V, et al. Photovoltaic Cells Using Composite Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles [J]. J. Am. Chem. Soc.,2004,127 (4):1216-1228.
    [52]Hasobe T, Kamat P V, Troiani V, et al. Enhancement of Light-Energy Conversion Efficiency by Multi-Porphyrin Arrays of Porphyrin-Peptide Oligomers with Fullerene Clusters [J]. J. Phys. Chem. B,2004,109 (1):19-23.
    [53]Lee C-W, Lu H-P, Lan C-M, et al. Novel Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells:Synthesis and Spectral, Electrochemical, and Photovoltaic Properties [J]. Chem. Eur. J.,2009,15 (6):1403-1412.
    [54]Huijser A, Savenije T J, Kotlewski A, et al. Efficient Light-Harvesting Layers of Homeotropically Aligned Porphyrin Derivatives [J]. Adv. Mater.,2006,18 (17):2234-2239.
    [55]Hagemann O, J(?)rgensen M, Krebs F C. Synthesis of an All-in-One Molecule (for Organic Solar Cells) [J]. J. Org. Chem.,2006,71 (15):5546-5559.
    [56]Bessho T, Zakeeruddin S M, Yeh C-Y, et al. Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor-Acceptor-Substituted Porphyrins [J]. Angew. Chem. Int. Ed.,2010,49 (37):6646-6649.
    [57]Gerlier D, Thomasset N. Use of MTT colorimetric assay to measure cell activation [J]. J. Immunol. Methods,1986,94 (1-2):57-63.
    [58]Volpe G, Draisci R, Palleschi G, et al.3,3 [prime or minute],5,5[prime or minute]-Tetramethylbenzidine as electrochemical substrate for horseradish peroxidase based enzyme immunoassays. A comparative study [J]. Analyst,1998, 123 (6):1303-1307.
    [59]Ali M, Tahir M N, Siwy Z, et al. Hydrogen Peroxide Sensing with Horseradish Peroxidase-Modified Polymer Single Conical Nanochannels [J]. Anal. Chem., 2011,83 (5):1673-1680.
    [60]Cheng X, Zhou Y, Qin J, et al. Reaction-Based Colorimetric Cyanide Chemosensors:Rapid Naked-Eye Detection and High Selectivity [J]. ACS Appl. Mater. Interfaces,2012,4 (4):2133-2138.
    [61]Tsui Y-K, Devaraj S, Yen Y-P. Azo dyes featuring with nitrobenzoxadiazole (NBD) unit: A new selective chromogenic and fluorogenic sensor for cyanide ion [J]. Sensors and Actuators B:Chemical,2012,161 (1):510-519.
    [62]Sun Y, Liu Y, Guo W. Fluorescent and chromogenic probes bearing salicylaldehyde hydrazone functionality for cyanide detection in aqueous solution [J]. Sens. Actuat. B,2009,143 (1):171-176.
    [63]Coronado E, Galan-Mascaros J R, Marti-Gastaldo C, et al. Reversible Colorimetric Probes for Mercury Sensing [J]. J. Am. Chem. Soc.,2005,127 (35):12351-12356.
    [64]Palomares E, Vilar R, Durrant J R. Heterogeneous colorimetric sensor for mercuric salts [J]. Chem. Commun.,2004, (4):362-363.
    [65]Elghanian R, Storhoff J J, Mucic R C, et al. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles [J]. Science,1997,277 (5329):1078-1081.
    [66]Sener G, Uzun L, Denizli A. Lysine-Promoted Colorimetric Response of Gold Nanoparticles:A Simple Assay for Ultrasensitive Mercury(Ⅱ) Detection [J]. Anal. Chem.,2014,86 (1):514-520.
    [67]Lee J-S, Ulmann P A, Han M S, et al. A DNA-Gold Nanoparticle-Based Colorimetric Competition Assay for the Detection of Cysteine [J]. Nano Lett., 2008,8 (2):529-533.
    [68]Ye B-C, Yin B-C. Highly Sensitive Detection of Mercury(Ⅱ) Ions by Fluorescence Polarization Enhanced by Gold Nanoparticles [J]. Angew. Chem. Int. Ed.,2008,47 (44):8386-8389.
    [69]Wang Y, Yang F, Yang X. Colorimetric Detection of Mercury(Ⅱ) Ion Using Unmodified Silver Nanoparticles and Mercury-Specific Oligonucleotides [J]. ACS Appl. Mater. Interfaces,2010,2 (2):339-342.
    [70]Liu D, Wang S, Swierczewska M, et al. Highly Robust, Recyclable Displacement Assay for Mercuric Ions in Aqueous Solutions and Living Cells [J]. ACS Nano, 2012,6(12):10999-11008.
    [71]Storhoff J J, Elghanian R, Mucic R C, et al. One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes [J]. J. Am. Chem. Soc.,1998,120 (9):1959-1964.
    [72]Deng Z, Yan H, Liu Y. Band Gap Engineering of Quaternary-Alloyed ZnCdSSe Quantum Dots via a Facile Phosphine-Free Colloidal Method [J]. J. Am. Chem. Soc.,2009,131 (49):17744-17745.
    [73]Shen S, Wang Q. Rational Tuning the Optical Properties of Metal Sulfide Nanocrystals and Their Applications [J]. Chem. Mater.,2013,25 (8):1166-1178.
    [74]Sun Y-P, Zhou B, Lin Y, et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence [J]. J. Am. Chem. Soc.,2006,128 (24):7756-7757.
    [75]Zrazhevskiy P, Sena M, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery [J]. Chem. Soc. Rev.,2010,39 (11):4326-4354.
    [76]Freeman R, Willner I. Optical molecular sensing with semiconductor quantum dots (QDs) [J]. Chem. Soc. Rev.,2012,41 (10):4067-4085.
    [77]Freeman R, Finder T, Willner I. Multiplexed Analysis of Hg2+ and Ag+ Ions by Nucleic Acid Functionalized CdSe/ZnS Quantum Dots and Their Use for Logic Gate Operations [J]. Angew. Chem. Int. Ed.,2009,48 (42):7818-7821.
    [78]Murphy C J. Peer Reviewed: Optical Sensing with Quantum Dots [J]. Anal. Chem.,2002,74 (19):520 A-526 A.
    [79]Dubach J M, Harjes D I, Clark H A. Ion-Selective Nano-optodes Incorporating Quantum Dots [J]. J. Am. Chem. Soc.,2007,129 (27):8418-8419.
    [80]Mohamed Ali E, Zheng Y, Yu H-h, et al. Ultrasensitive Pb2+ Detection by Glutathione-Capped Quantum Dots [J]. Anal. Chem.,2007,79 (24):9452-9458.
    [81]Wang Z, Lu M, Wang X, et al. Quantum Dots Enhanced Ultrasensitive Detection of DNA Adducts [J]. Anal. Chem.,2009,81 (24):10285-10289.
    [82]Tanne J, Schafer D, Khalid W, et al. Light-Controlled Bioelectrochemical Sensor Based on CdSe/ZnS Quantum Dots [J]. Anal. Chem.,2011,83 (20):7778-7785.
    [83]Aryal B P, Benson D E. Electron Donor Solvent Effects Provide Biosensing with Quantum Dots [J]. J. Am. Chem. Soc.,2006,128 (50):15986-15987.
    [84]Chen D, Zhang H, Li X, et al. Biofunctional Titania Nanotubes for Visible-Light-Activated Photoelectrochemical Biosensing [J]. Anal. Chem.,2010, 82(6):2253-2261.
    [85]Tu W, Dong Y, Lei J, et al. Low-Potential Photoelectrochemical Biosensing Using Porphyrin-Functionalized TiO2 Nanoparticles [J]. Anal. Chem.,2010,82 (20):8711-8716.
    [86]Li H, Li J, Xu Q, et al. Poly(3-hexylthiophene)/TiO2 Nanoparticle-Functionalized Electrodes for Visible Light and Low Potential Photoelectrochemical Sensing of Organophosphorus Pesticide Chlopyrifos [J]. Anal. Chem.,2011,83 (24):9681-9686.
    [87]Long Y-T, Kong C, Li D-W, et al. Ultrasensitive Determination of Cysteine Based on the Photocurrent of Nafion-Functionalized CdS-MV Quantum Dots on an ITO Electrode [J]. Small,2011,7 (12):1624-1628.
    [88]Zhao W-W, Ma Z-Y, Yan D-Y, et al. In Situ Enzymatic Ascorbic Acid Production as Electron Donor for CdS Quantum Dots Equipped TiO2 Nanotubes: A General and Efficient Approach for New Photoelectrochemical Immunoassay [J]. Anal. Chem.,2012,84 (24):10518-10521.
    [89]Wang G-L, Yu P-P, Xu J-J, et al. A Label-Free Photoelectrochemical Immunosensor Based on Water-Soluble CdS Quantum Dots [J]. J. Phys. Chem. C,2009,113 (25):11142-11148.
    [90]Zhao X, Zhou S, Jiang L-P, et al. Graphene-CdS Nanocomposites:Facile One-Step Synthesis and Enhanced Photoelectrochemical Cytosensing [J]. Chem. Eur. J.,2012,18 (16):4974-4981.
    [91]Kang Q, Yang L, Chen Y, et al. Photoelectrochemical detection of pentachlorophenol with a Multiple Hybrid CdSexTe1-x/TiO2 Nanotube Structure-Based Label-Free Immunosensor [J]. Anal. Chem.,2010,82 (23):9749-9754.
    [92]Zhang X, Li S, Jin X, et al. A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers [J]. Chem. Commun.,2010,47 (17):4929-4931.
    [93]Liu F, Zhang Y, Yu J, et al. Application of ZnO/graphene and S6 aptamers for sensitive photoelectrochemical detection of SK-BR-3 breast cancer cells based on a disposable indium tin oxide device [J]. Biosens. Bioelectron.,2014, 51:413-420.
    [94]Wang G-L, Xu J-J, Chen H-Y, et al. Label-free photoelectrochemical immunoassay for a-fetoprotein detection based on TiO2/CdS hybrid [J]. Biosens. Bioelectron.,2009,25 (4):791-796.
    [95]Zhao W-W, Xiong M, Li X-R, et al. Photoelectrochemical bioanalysis: A mini review [J]. Electrochem. Commun.,2014,38 (0):40-43.
    [96]Wang G-L, Xu J-J, Chen H-Y. Selective detection of trace amount of Cu2+ using semiconductor nanoparticles in photoelectrochemical analysis [J]. Nanoscale, 2010,2(7):1112-1114.
    [97]Shen Q, Zhao X, Zhou S, et al. ZnO/CdS Hierarchical Nanospheres for Photoelectrochemical Sensing of Cu2+[J]. J. Phys. Chem. C,2011,115 (36):17958-17964.
    [98]Yan J, Wang K, Liu Q, et al. One-pot synthesis of CdxZn1-xS-reduced graphene oxide nanocomposites with improved photoelectrochemical performance for selective determination of Cu2+[J]. RSC Adv.,2013,3 (34):14451-14457.
    [99]Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 39) [J]. Prog. Photovolt: Res. Appl.,2011,20 (1):12-20.
    [100]Snaith H J. Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells [J]. Adv. Funct. Mater.,2010,20 (1):13-19.
    [101]Feldt S M, Wang G, Boschloo G, et al. Effects of Driving Forces for Recombination and Regeneration on the Photovoltaic Performance of Dye-Sensitized Solar Cells using Cobalt Polypyridine Redox Couples [J]. J. Phys. Chem. C,2011,115 (43):21500-21507.
    [102]Klahr B M, Hamann T W. Performance Enhancement and Limitations of Cobalt Bipyridyl Redox Shuttles in Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C, 2009,113 (31):14040-14045.
    [103]Shin Y-J, Lee J-H, Park J-H, et al. Enhanced Photovoltaic Properties of SiO2-treated ZnO Nanocrystalline Electrode for Dye-sensitized Solar Cell [J]. Chem. Lett.,2007,36 (12):1506-1507.
    [104]Wang Z-S, Yanagida M, Sayama K, et al. Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells: Improvement of Electron Lifetime and Efficiency [J]. Chem. Mater.,2006,18 (12):2912-2916.
    [105]Li T C, Goes M S, Fabregat-Santiago F, et al. Surface Passivation of Nanoporous TiO2 via Atomic Layer Deposition of ZrO2 for Solid-State Dye-Sensitized Solar Cell Applications [J]. J. Phys. Chem. C,2009,113 (42):18385-18390.
    [106]Liu W, Kou D, Cai M, et al. The Intrinsic Relation between the Dynamic Response and Surface Passivation in Dye-Sensitized Solar Cells Based on Different Electrolytes [J]. J. Phys. Chem. C,2010,114 (21):9965-9969.
    [107]Palomares E, Clifford J N, Haque S A, et al. Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers [J]. J. Am. Chem. Soc.,2002,125 (2):475-482.
    [108]Hamann T W, Farha O K, Hupp J T. Outer-Sphere Redox Couples as Shuttles in Dye-Sensitized Solar Cells. Performance Enhancement Based on Photoelectrode Modification via Atomic Layer Deposition [J]. J. Phys. Chem. C,2008,112 (49):19756-19764.
    [109]Gregg B A, Pichot F, Ferrere S, et al. Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces [J]. J. Phys. Chem. B,2001,105 (7):1422-1429.
    [110]Jin W-M, Shin J-H, Cho C-Y, et al. Holographically Defined TiO2 Electrodes for Dye-Sensitized Solar Cells [J]. ACS Appl. Mater. Interfaces,2010,2 (11):2970-2973.
    [111]Trupke T, Baumgartner S, Wurfel P. Time-Resolved Electroluminescence of Dye Sensitized Solar Cells [J]. J. Phys. Chem. B,1999,104 (2):308-312.
    [112]Zaban A, Greenshtein M, Bisquert J. Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements [J]. ChemPhysChem,2003,4 (8):859-864.
    [113]Yu H, Zhang S, Zhao H, et al. An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells [J]. Electrochim. Acta, 2009,54(4):1319-1324.
    [114]Yu H, Zhang S, Zhao H, et al. High-Performance TiO2 Photoanode with an Efficient Electron Transport Network for Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C,2009,113 (36):16277-16282.
    [115]Feldt S M, Cappel U B, Johansson E M J, et al. Characterization of Surface Passivation by Poly(methylsiloxane) for Dye-Sensitized Solar Cells Employing the Ferrocene Redox Couple [J]. J. Phys. Chem. C,2010,114 (23):10551-10558.
    [116]Marchioni F, Star K, Menke E, et al. Protection of Lithium Metal Surfaces Using Chlorosilanes [J]. Langmuir,2007,23 (23):11597-11602.
    [117]Jia X, McCarthy T J. Controlled Growth of Silicon Dioxide from "Nnoholes"? in Silicon-Supported Tris(trimethylsiloxy)silyl Monolayers:Rational Control of Surface Roughness at the Nanometer Length Scale [J]. Langmuir,2003,19 (6):2449-2457.
    [118]Tripp C P, Hair M L. Reaction of chloromethylsilanes with silica: a low-frequency infrared study [J]. Langmuir,1991,7 (5):923-927.
    [119]Tripp C P, Hair M L. Chemical attachment of chlorosilanes to silica: a two-step amine-promoted reaction [J]. J. Phys. Chem.,1993,97 (21):5693-5698.
    [120]Tripp C P, Kazmaier P, Hair M L. Using Trichlorosilane as a Probe To Investigate the Role of the Preadsorbed Amine in a Two-Step Amine-Promoted Reaction of Chlorosilanes on Silica [J]. Langmuir,1996,12 (26):6407-6409.
    [121]Fifield F W, Haines P J, Environmental Analytical Chemistry.2nd ed.; Wiley-Blackwell:Malden,2000.
    [122]Tessier A, Turner D R, Metal Speciation and Bioavailability in Aquatic Systems. 3rd ed.; John Wiley & Sons:New York,1995.
    [123]Mercer J F B. The molecular basis of copper-transport diseases [J]. Trends Mol. Med.,2001,7(2):64-69.
    [124]Melo T M, Larsen C, White L R, et al. Manganese, copper, and zinc in cerebrospinal fluid from patients with multiple sclerosis [J]. Biol. Trace Elem. Res.,2003,93:1-8.
    [125]Montaser A, Inductively Coupled Plasma Mass Spectrometry.1st ed.; Wiley-VCH:New York,1998.
    [126]Skoog D A, Holler F J, Crouch S R, Principles of Instrumental Analysis.6th ed.; Thomson Brooks/Cole:Belmont,2007.
    [127]Wang J, Stripping Analysis: Principles, Instrumentation and Applications. VCH: Deerfield Beach,1985.
    [128]Zhou Y, Wang S, Zhang K, et al. Visual Detection of Copper(Ⅱ) by Azide- and Alkyne-Functionalized Gold Nanoparticles Using Click Chemistry [J]. Angew. Chem. Int. Ed.,2008,47:7454-7456.
    [129]Viguier R F H, Hulme A N. Sensitized Europium Complex Generated by Micromolar Concentrations of Copper(Ⅰ):Toward the Detection of Copper(Ⅰ) in Biology [J]. J. Am. Chem. Soc.,2006,128:11370-11371.
    [130]Mattoussi H, Manro J M, Goldman E R, et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. J. Am. Chem. Soc.,2000,122:12142-12150.
    [131]Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes [J]. Anal. Chem.,2002,74 (19):5132-5138.
    [132]Gattas-Asfura K M, Leblanc R M. Peptide-coated CdS quantum dots for the optical detection of copper(Ⅱ) and silver(Ⅰ) [J]. Chem. Commun., 2003:2684-2685.
    [133]Konishi K, Hiratani T. Turn-On and Selective Luminescence Sensing of Copper Ions by a Water-Soluble Cd10S16 Molecular Cluster [J]. Angew. Chem. Int. Ed., 2006,118:5315-5318.
    [134]Srivastava B B, Jana S, Pradhan N. Doping Cu in Semiconductor Nanocrystals: Some Old and Some New Physical Insights [J]. J. Am. Chem. Soc.,2011,133 (4):1007-1015.
    [135]Isarov A V, Chrysochoos J. Optical and Photochemical Properties of Nonstoichiometric Cadmium Sulfide Nanoparticles:Surface Modification with Copper(II) Ions [J]. Langmuir,1997,13:3142-3149.
    [136]Wang G-L, Dong Y-M, Yang H-X, et al. Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots [J]. Talanta,2011,83:943-947.
    [137]Li X, Shen H, Li S, et al. Investigation on type-Ⅱ Cu2S-CdS core/shell nanocrystals:synthesis and characterization [J]. J. Mater. Chem.,2010,20 (5):923-928.
    [138]Ghosh S, Priyam A, Bhattacharya S C, et al. Mechanistic Aspects of Quantum Dot Based Probing of Cu (II) Ions:Role of Dendrimer in Sensor Efficiency [J]. J. Fluoresc.,2009,19:723-731.
    [139]Harris D C, Quantitative Chemical Analysis.7th ed.; W. H. Freeman: New York, 2007.
    [140]Jiang D, Li X, Liu L, et al. Reaction Rates and Mechanism of the Ascorbic Acid Oxidation by Molecular Oxygen Facilitated by Cu(Ⅱ)-Containing Amyloid-β Complexes and Aggregates [J]. J. Phys. Chem. B,2010,114 (14):4896-4903.
    [141]Liu L, Jiang D, McDonald A, et al. Copper Redox Cycling in the Prion Protein Depends Critically on Binding Mode [J]. J. Am. Chem. Soc.,2011,133 (31):12229-12237.
    [142]Jiang D, Men L, Wang J, et al. Redox Reactions of Copper Complexes Formed with Different β-Amyloid Peptides and Their Neuropathalogical Relevance [J]. Biochemistry,2007,46 (32):9270-9282.
    [143]Rozga M, Sokolowska M, Protas A M, et al. Human serum albumin coordinates Cu(Ⅱ) at its N-terminal binding site with 1 pM affinity [J]. J. Biol. Inorg. Chem.,2007,12 (6):913-918.
    [144]McMahon B K, Gunnlaugsson T. Selective Detection of the Reduced Form of Glutathione (GSH) over the Oxidized (GSSG) Form Using a Combination of Glutathione Reductase and a Tb(Ⅲ)-Cyclen Maleimide Based Lanthanide Luminescent 'switch On' Assay [J]. J. Am. Chem. Soc.,2012.
    [145]Herzenberg L A, De Rosa S C, Dubs J G, et al. Glutathione deficiency is associated with impaired survival in HIV disease [J]. Proc. Natl. Acad. Sci., 1997,94 (5):1967-1972.
    [146]Chen X, Zhou Y, Peng X, et al. Fluorescent and colorimetric probes for detection of thiols [J]. Chem. Soc. Rev.,2010,39 (6):2120-2135.
    [147]Zen J-M, Kumar A S, Chen J-C. Electrocatalytic Oxidation and Sensitive Detection of Cysteine on a Lead Ruthenate Pyrochlore Modified Electrode [J]. Anal. Chem.,2001,73 (6):1169-1175.
    [148]Wang W, Li L, Liu S, et al. Determination of Physiological Thiols by Electrochemical Detection with Piazselenole and Its Application in Rat Breast Cancer Cells 4T-1 [J]. J. Am. Chem. Soc.,2008,130 (33):10846-10847.
    [149]Ivanov A R, Nazimov I V, Baratova L. Determination of biologically active low-molecular-mass thiols in human blood: Ⅰ. Fast qualitative and quantitative, gradient and isocratic reversed-phase high-performance liquid chromatography with photometric and fluorescence detection [J]. J. Chromatogr. A,2000,895 (1-2):157-166.
    [150]Amarnath K, Amarnath V, Amarnath K, et al. A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples [J]. Talanta,2003,60 (6):1229-1238.
    [151]Liang M, Liu S, Wei M, et al. Photoelectrochemical Oxidation of DNA by Ruthenium Tris(bipyridine) on a Tin Oxide Nanoparticle Electrode [J]. Anal. Chem.,2005,78 (2):621-623.
    [152]Zhao W-W, Ma Z-Y, Yu P-P, et al. Highly Sensitive Photoelectrochemical Immunoassay with Enhanced Amplification Using Horseradish Peroxidase Induced Biocatalytic Precipitation on a CdS Quantum Dots Multilayer Electrode [J]. Anal. Chem.,2012,84 (2):917-923.
    [153]Haddour N, Chauvin J, Gondran C, et al. Photoelectrochemical Immunosensor for Label-Free Detection and Quantification of Anti-cholera Toxin Antibody [J]. J. Am. Chem. Soc.,2006,128 (30):9693-9698.
    [154]Pardo-Yissar V, Katz E, Wasserman J, et al. Acetylcholine Esterase-Labeled CdS Nanoparticles on Electrodes: Photoelectrochemical Sensing of the Enzyme Inhibitors [J]. J. Am. Chem. Soc.,2002,125 (3):622-623.
    [155]Zhang X, Guo Y, Liu M, et al. Photoelectrochemically active species and photoelectrochemical biosensors [J]. RSC Adv.,2013,3 (9):2846-2857.
    [156]Yue Z, Lisdat F, Parak W J, et al. Quantum-Dot-Based Photoelectrochemical Sensors for Chemical and Biological Detection [J]. ACS Appl. Mater. Interfaces,2013,5 (8):2800-2814.
    [157]Yang Z, Chen C-Y, Liu C-W, et al. Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells [J]. Chem. Commun.,2010,46 (30):5485-5487.
    [158]Stabler S P, Marcell P D, Podell E R, et al. Quantitation of total homocysteine, total cysteine, and methionine in normal serum and urine using capillary gas chromatography-mass spectrometry [J]. Anal. Biochem.,1987,162 (1):185-196.
    [159]Jacobsen D W, Gatautis V J, Green R, et al. Rapid HPLC determination of total homocysteine and other thiols in serum and plasma: sex differences and correlation with cobalamin and folate concentrations in healthy subjects [J]. Clin. Chem.,1994,40 (6):873-881.
    [160]Gao Y, Li Y, Zou X, et al. Highly sensitive and selective detection of biothiols using graphene oxide-based "Molecular beacon"? like fluorescent probe [J]. Anal. Chim. Acta,2012,731 (0):68-74.
    [161]Xu H, Hepel M. "Molecular Beacon"-Based Fluorescent Assay for Selective Detection of Glutathione and Cysteine [J]. Anal. Chem.,2011,83 (3):813-819.
    [162]Liu H, Wang Y, Shen A, et al. Highly selective and sensitive method for cysteine detection based on fluorescence resonance energy transfer between FAM-tagged ssDNA and graphene oxide [J]. Talanta,2012,93:330-335.
    [163]Kwon N Y, Kim D, Jang G, et al. Highly Selective Cysteine Detection and Bioimaging in Zebrafish through Emission Color Change of Water-Soluble Conjugated Polymer-Based Assay Complex [J]. ACS Appl. Mater. Interfaces, 2012,4 (3):1429-1433.
    [164]Miao F, Zhan J, Zou Z, et al. A new Hg2+ fluorescent sensors based on 1,3-alternate thiacalix[4]arene (L) and the complex of [L+Hg2+] as turn-on sensor for cysteine [J]. Tetrahedron,2012,68 (10):2409-2413.
    [165]Xu H, Wang Y, Huang X, et al. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols [J]. Analyst,2012,137 (4):924-931.
    [166]Wu J, Sheng R, Liu W, et al. Reversible Fluorescent Probe for Highly Selective and Sensitive Detection of Mercapto Biomolecules [J]. Inorg. Chem.,2012,50 (14):6543-6551.
    [167]Kong D-M, Cai L-L, Shen H-X. Quantitative detection of Ag+ and cysteine using G-quadruplex-hemin DNAzymes [J]. Analyst,2010,135 (6):1253-1258.
    [168]Zhou X-H, Kong D-M, Shen H-X. Ag+ and Cysteine Quantitation Based on G-Quadruplex-Hemin DNAzymes Disruption by Ag+[J]. Anal. Chem.,2009, 82 (3):789-793.
    [169]Jia S-M, Liu X-F, Li P, et al. G-quadruplex DNAzyme-based Hg2+ and cysteine sensors utilizing Hg2+-mediated oligonucleotide switching [J]. Biosens. Bioelectron.,2011,27 (1):148-152.
    [170]Li T, Shi L, Wang E, et al. Silver-Ion-Mediated DNAzyme Switch for the Ultrasensitive and Selective Colorimetric Detection of Aqueous Ag+ and Cysteine [J]. Chem. Eur. J.,2009,15 (14):3347-3350.
    [171]Jitchati Y, Thathong, Wongkhan K. Three Synthetic Routes to a Commercial N3 Dye [J]. Int. J. Appl. Phys. Math.,2012,2 (2):107-110.
    [172]Oki A R, Morgan R J. An Efficient Preparation of 4,4'-Dicarboxy-2, 2'-Bipyridine [J]. Synth. Commun.,1995,25 (24):4093-4097.
    [173]Gillaizeau-Gauthier I, Odobel F, Alebbi M, et al. Phosphonate-Based Bipyridine Dyes for Stable Photovoltaic Devices [J]. Inorg. Chem.,2001,40 (23):6073-6079.
    [174]Mercer A, Trotter J. Crystal and molecular structure of dichlorotetrakis(dimethyl sulphoxide)ruthenium(Ⅱ) [J]. J. Chem. Soc. Dalton Trans.,1975, (23):2480-2483.
    [175]Zabri H, Gillaizeau I, Bignozzi C A, et al. Synthesis and Comprehensive Characterizations of New cis-RuL2X2 (X=C1, CN, and NCS) Sensitizers for Nanocrystalline TiO2 Solar Cell Using Bis-Phosphonated Bipyridine Ligands (L) [J]. Inorg. Chem.,2003,42 (21):6655-6666.
    [176]Gratzel M. Dye-sensitized solar cells [J]. J. Photochem. Photobiol. C,2003,4 (2):145-153.
    [177]Martinez-Manez R, Sancenon F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions [J]. Chem. Rev.,2003,103 (11):4419-4476.
    [178]Du J, Hu M, Fan J, et al. Fluorescent chemodosimeters using "mild" chemical events for the detection of small anions and cations in biological and environmental media [J]. Chem. Soc. Rev.,2012,41 (12):4511-4535.
    [179]Zamecnik J, Tam J. Cyanide in Blood by Gas Chromatography with NP Detector and Acetonitrile as Internal Standard. Application on Air Accident Fire Victims [J]. J. Anal. Toxicol.,1987,11 (1):47-48.
    [180]Tomasulo M, Sortino S, White A J P, et al. Chromogenic Oxazines for Cyanide Detection [J]. J. Org. Chem.,2005,71 (2):744-753.
    [181]Kulling P. Hospital treatment of victims exposed to combustion products [J]. Toxicol. Lett.,1992,64-65 (0):283-289.
    [182]Giuriati C, Cavalli S, Gorni A, et al. Ion chromatographic determination of sulfide and cyanide in real matrices by using pulsed amperometric detection on a silver electrode [J]. J. Chromatogr. A,2004,1023 (1):105-112.
    [183]Qian G, Li X, Wang Z Y. Visible and near-infrared chemosensor for colorimetric and ratiometric detection of cyanide [J]. J. Mater. Chem.,2009,19 (4):522-530.
    [184]Xu Z, Chen X, Kim H N, et al. Sensors for the optical detection of cyanide ion [J]. Chem. Soc. Rev.,2010,39 (1):127-137.
    [185]Zhou Y, Xu Z, Yoon J. Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH:highlighted research during 2004-2010 [J]. Chem. Soc. Rev.,2010,40 (5):2222-2235.
    [186]Anzenbacher P, Tyson D S, Jursikova K, et al. Luminescence Lifetime-Based Sensor for Cyanide and Related Anions [J]. J. Am. Chem. Soc.,2002,124 (22):6232-6233.
    [187]Gee H-C, Lee C-H, Jeong Y-H, et al. Highly sensitive and selective cyanide detection via Cu2+ complex ligand exchange [J]. Chem. Commun.,2011,47 (43):11963-11965.
    [188]Jung H S, Han J H, Kim Z H, et al. Coumarin-Cu(Ⅱ) Ensemble-Based Cyanide Sensing Chemodosimeter [J]. Org. Lett.,2011,13 (19):5056-5059.
    [189]Kumari N, Jha S, Bhattacharya S. A Chemodosimetric Probe Based on a Conjugated Oxidized Bis-Indolyl System for Selective Naked-Eye Sensing of Cyanide Ions in Water [J]. Chem. Asian J.,2013,7 (12):2805-2812.
    [190]Zhou X, Lv X, Hao J, et al. Coumarin-indanedione conjugate as a doubly activated Michael addition type probe for the colorimetric and ratiometric fluorescent detection of cyanide [J]. Dyes Pigm.,2012,95 (2):168-173.
    [191]Liu Z, Wang X, Yang Z, et al. Rational Design of a Dual Chemosensor for Cyanide Anion Sensing Based on Dicyanovinyl-Substituted Benzofurazan [J]. J. Org. Chem.,2011,76 (24):10286-10290.
    [192]Robbins T F, Qian H, Su X, et al. Cyanide Detection Using a Triazolopyridinium Salt [J]. Org. Lett.,2013,15 (10):2386-2389.
    [193]Park S, Kim H-J. Reaction-based chemosensor for the reversible detection of cyanide and cadmium ions [J]. Sens. Actuat. B,2012,168 (0):376-380.
    [194]Jo J, Lee D. Turn-On Fluorescence Detection of Cyanide in Water: Activation of Latent Fluorophores through Remote Hydrogen Bonds That Mimic Peptide β-Turn Motif [J]. J. Am. Chem. Soc.,2009,131 (44):16283-16291.
    [195]Jo J, Olasz A, Chen C-H, et al. Interdigitated Hydrogen Bonds:Electrophile Activation for Covalent Capture and Fluorescence Turn-On Detection of Cyanide [J]. J. Am. Chem. Soc.,2013,135 (9):3620-3632.
    [196]Lee K-S, Kim H-J, Kim G-H, et al. Fluorescent Chemodosimeter for Selective Detection of Cyanide in Water [J]. Org. Lett.,2008,10 (1):49-51.
    [197]Isaad J, El Achari A. Colorimetric sensing of cyanide anions in aqueous media based on functional surface modification of natural cellulose materials [J]. Tetrahedron,2011,67 (26):4939-4947.
    [198]Mohammadkhodaei Z, Mokhtari J, Nouri M. Novel anti-bacterial acid dyes derived from naphthalimide: synthesis, characterisation and evaluation of their technical properties on nylon 6 [J]. Color. Technol.,2010,126 (2):81-85.
    [199]Gharanjig K, Arami M, Bahrami H, et al. Synthesis, spectral properties and application of novel monoazo disperse dyes derived from N-ester-1,8-naphthalimide to polyester [J]. Dyes Pigm.,2008,76 (3):684-689.
    [200]Khosravi A, Moradian S, Gharanjig K, et al. Synthesis and spectroscopic studies of some naphthalimide based disperse azo dyestuffs for the dyeing of polyester fibres [J]. Dyes Pigm.,2006,69 (1-2):79-92.
    [201]Li C-Y, Zhang X-B, Qiao L, et al. Naphthalimide-Porphyrin Hybrid Based Ratiometric Bioimaging Probe for Hg2+:Well-Resolved Emission Spectra and Unique Specificity [J]. Anal. Chem.,2009,81 (24):9993-10001.
    [202]Liu F, Du W, Liang Q, et al. Synthesis of 4-aziridino[C60]fullerene-1,8-naphthalimide (C60-NI dyads) and their photophysical properties [J]. Tetrahedron,2010,66 (29):5467-5471.
    [203]Goswami S, Manna A, Paul S, et al. Resonance-assisted hydrogen bonding induced nucleophilic addition to hamper ESIPT: ratiometric detection of cyanide in aqueous media [J]. Chem. Commun.,2013,49 (28):2912-2914.
    [204]Struss A, Pasini P, Ensor C M, et al. Paper Strip Whole Cell Biosensors:A Portable Test for the Semiquantitative Detection of Bacterial Quorum Signaling Molecules [J]. Anal. Chem.,2010,82 (11):4457-4463.
    [205]Weaver A A, Reiser H, Barstis T, et al. Paper Analytical Devices for Fast Field Screening of Beta Lactam Antibiotics and Antituberculosis Pharmaceuticals [J]. Anal. Chem.,2013,85 (13):6453-6460.
    [206]Martinez A W, Phillips S T, Butte M J, et al. Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays [J]. Angew. Chem. Int. Ed., 2007,46(8):1318-1320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700