用户名: 密码: 验证码:
面向湿度调节的膜组件热质传递特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室内空气湿度对人们的生活与生产密切相关。控制湿度在合适的范围有益于人的身心健康,并有利于生产安全。近年来,膜式组件在室内湿度调节中起到不容忽视的作用。膜式组件按膜的形态与流道结构可以分为平行板式、板翅式、中空纤维膜式与交叉三角形波纹板式。其中以中空纤维膜式与交叉三角形波纹板式膜组件内的传递现象最为复杂。中空纤维膜组件的结构类似于管壳式换热器,管程液态水和壳程空气通过中空纤维膜进行热湿交换。中空纤维膜材料为选择性渗透膜,可以截留液态水而仅允许水蒸汽透过。交叉三角形波纹板式膜组件结构类似于波纹板式换热器,新风与排风空气通过膜进行热湿交换。交叉三角形流道可以有效强化组件的热质传递能力。膜表面的共轭边界条件与组件内的流动分布对组件的性能起到重要的影响。而这两种因素的作用正是现有研究在建立数学模型时所忽视的。为揭示中空纤维膜组件与交叉三角形波纹板式膜组件内的热质传递机理,本文以加湿组件为例建立了相应的数学模型:
     (1)管束按规则排列的错流中空纤维膜组件。以周期性的三角形排列与四边形排列管束为研究对象,建立了壳程动量与质量守恒方程,膜表面采用恒定浓度边界条件,求解获得了舍伍德数与阻力系数等准则数,采用加湿实验结果验证了模型。结果表明,在中空纤维膜管束以三角形排列时,由于管束间的冲击与分离作用,流场内的扰动更强烈,其传质系数与阻力系数均大于同样管间距比下四边形排列管束的值。管束填充率越高,组件的传质系数与进出口压降越大。管束的管间距比对组件传质与阻力特性也有较大影响。其中纵向管间距比对组件性能的影响要比横向管间距比更明显。
     (2)管束按随机排列的逆流中空纤维膜组件。选取有限根随机排列的中空纤维膜为研究对象,建立了空气侧与水侧动量与质量守恒方程,膜表面采用共轭边界条件,求解获得了努谢尔数、舍伍德数与阻力系数等准则数,采用加湿实验结果验证了模型。结果表明,管束分布的随机性使管束的外流场速度分布恶化严重。这种流动分布不均匀性使得随机排列的管束较规则排列管束的热质传递性能有明显降低。而膜表面的共轭边界使这种恶化作用更大,相应的对流传热传质系数比理想边界条件下更低。
     (3)中空纤维膜组件内的流动分布不均匀性。将中空纤维膜管束近似简化为多孔介质来求解组件内的流动分布。然后利用热湿守恒方程求解流动分布不均匀性对组件内温湿度场分布的影响,从而计算得到组件冷却效率与加湿效率受流动分布不均匀性的恶化作用。结果表明,壳程进出口效应对组件内的流动分布有重要影响。这种流动分布不均匀性经中空纤维膜管束进一步得到放大。膜组件的填充率越高,组件内的流动分布越均匀。对于填充率范围为0.1-0.3的错流膜组件,与速度均匀分布的情况相比,其冷却效率降低可达3-30%,而加湿效率降低可达26-58%;对于填充率范围为0.1-0.3的逆流膜组件,其冷却效率降低可达3-36%,而加湿效率降低可达5-39%。
     (4)交叉三角形波纹板式膜组件。选取有限层交叉三角形波纹板流道为研究对象,建立了空气在流道内的动量、热量与质量守恒方程,并将热湿守恒方程通过膜上边界耦合起来求解,最终获得流道的努谢尔数与舍伍德数。实验中通过使用一步法制备的非对称醋酸纤维素膜增强组件的传质性能。并将采用不同流道结构或不同膜材料的组件进行了性能比较。结果表明,流道顶角越大,流道内速度分布越均匀,流道的传热传质能力越大。流道顶角越小,共轭边界条件下的对流传热传质系数较理想边界下越小。相对于采用复合膜制备的平行板与板翅式全热交换组件,采用非对称膜制备的交叉三角形波纹板全热交换组件的显热效率可以提高20%左右,潜热效率提高40%左右。另一方面由于流道结构的差异,交叉三角形波纹板流道的阻力系数是前两者的1.5-4倍。
Indoor air humidity is closely related to people's life and industrial production. It isbeneficial for human health and production safety to manage indoor air humidity in a properrange. In recent years, membrane modules play an important role in humidity control.According to the shape of the flow channel, membrane modules can be divided intoparallel-plate membrane module, plate-fin membrane module, hollow fiber membrane moduleand cross-corrugated triangular duct membrane module. The transport phenomenon isespecially complex in the latter two types. Hollow fiber membrane module has a structuresimilar to a shell-and-tube heat exchanger, water vapor in lumen side and air in shell side canexchange heat and moisture through the membrane. The membrane has a selectivity toprevent liquid water from permeating but allow water vapor to permeate. Cross-corrugatedtriangular duct membrane module has a structure similar to chevron plate heat exchanger.Fresh air and exhaust air exchanges heat and moisture through the membrane. Thecross-corrugated triangular duct can effectively enhance heat and mass transfer in the module.The conjugate boundary condition on the membrane and flow maldistribution in the modulehave significant effect on predicting module’s performance. However, these two elements areusually ignored in the mathematical model in current researches. To reveal the mechanism ofheat and mass transfer in hollow fiber membrane module and cross-corrugated triangular platemembrane module, mathematical models are established in this work:
     (1) Cross flow hollow fiber membrane module, ordered array tube bank. A periodic cellcontaining inlined or staggered tube banks is selected as research object. Conservationequations in shell side are established, and conjugated boundary condition is applied tomembrane surface. The Nusselt number, Sherwood number and friction factor are obtained.Humidification experimental results are used to verify the model. The results show that masstransfer coefficient and friction factor are higher in staggered tube array due to strongerdisturbance and boundary layer separation. The higher the packing fraction is, the larger themass transfer coefficient and pressure drop is. The pitch to diameter ratio has important effecton mass transfer and resistance characteristic. And the effect caused by transverse pitch todiameter ratio is more evident.
     (2) Counter-current flow hollow fiber membrane module, random array tube bank. Arepresentative cell containing finite random packed fibers is selected as research object.Conservation equations in shell side and lumen side are established, and conjugated boundarycondition is applied to membrane surface. The Nusselt number, Sherwood number and friction factor are obtained. Humidification experimental results are used to verify the model.The results show that the randomness of the tube array leads to significant flowmaldistribution in shell side. This flow maldistribution deteriorates module’s performancedramatically. Conjugated boundary conditions on the membrane make this deterioration muchhigher.
     (3) Flow maldistribution in hollow fiber membrane module. To get the flow distributionin the module, hollow fiber membrane bundle is simplified as porous medium. The heat andmass conservation equations are solved to get temperature and humidity distribution in themodule. After that, the effect of flow distribution on sensible cooling and humidificationefficiency can be analyzed. The results show that shell side inlet/outlet effect has effect onflow distribution in the module. The higher the packing fraction is, the more homogeneous theflow distribution is. For a cross flow membrane module whose packing fraction ranges from0.1to0.3, the sensible cooling efficiency can deteriorate by3-30%, and humidificationefficiency can deteriorate by26-58%. For a counter-current flow membrane module whosepacking fraction ranges from0.1to0.3, the sensible cooling efficiency can deteriorate by3-36%, and humidification efficiency can deteriorate by5-39%.
     (4) Cross-corrugated triangular duct membrane module. A representative cell containingfinite cross-corrugated triangular ducts is selected as research object. Conservation equationsin the flow channel are established, and conjugated boundary condition is applied tomembrane surface. The Nusselt number, Sherwood number and friction factor are obtained.One-step made asymmetric cellulose acetate membrane is used as the exchanger material toenhance mass transfer. The modules’ performance is compared with different flow channelstructures or different membrane materials. The results show that the larger the apex angle ofthe channel is, the more homogeneous the flow distribution is, leading to an enhancement onheat and mass transfer. The smaller the apex angle of the channel is, the more deviationbetween results calculated by conjugated boundary condition and realistic boundary condition.Compared to parallel-plate or plate-fin membrane module fabricated by composite membrane,the cross corrugated triangular duct membrane module fabricated by asymmetric membranecan enhance sensible heat efficiency by20%, and enhance latent heat efficiency by40%.However, due to the complex flow channel structure, its friction factor is about1.5-4times ofthe former two.
引文
[1]张立志.除湿技术[M].北京:化学工业出版社,2005:6-8
    [2] Stevens D.I., Braun J.E., Klein S.A. An effectiveness model of liquid-desiccant systemheat/mass exchangers [J]. Solar Energy,1989,42:449-455
    [3] Zhang L.Z. Heat and mass transfer in a cross-flow membrane-based enthalpy exchangerunder naturally formed boundary conditions [J]. International Journal of Heat and MassTransfer,2007,50(1-2):151-162
    [4] Liu X.H., Jiang Y., Qu K.Y. Analytical solution of combined heat and mass transferperformance in a cross-flow packed bed liquid desiccant air dehumidifier [J]. InternationalJournal of Heat and Mass Transfer,2008,51:4563-4572
    [5] Zhang L.Z. Total heat recovery: Heat and moisture recovery from ventilation air [M]. NewYork: Nova Science Publishing Co.,2009:14
    [6] K. Ramya, J. Sreenivas, K.S. Dhathathreyan. Study of a porous membrane humidificationmethod in polymer electrolyte fuel cells [J]. International Journal of Hydrogen Energy,2011,36:14866-14872
    [7] Min J.C., Hu T., Song Y.Z. Experimental and numerical investigations of moisturepermeation through membranes [J]. Journal of Membrane Science,2011,367:174-181
    [8] Zhang L.Z., Huang S.M. Coupled heat and mass transfer in a counter flow hollow fibermembrane module for air humidification [J]. International Journal of Heat and Mass Transfer,2011,54(5-6):1055-1063
    [9] Huang S.M., Zhang L.Z., Tang K., et al. Fluid flow and heat mass transfer in membraneparallel-plates channels used for liquid desiccant air dehumidification [J]. InternationalJournal of Heat and Mass Transfer,2012,55(9-10):2571-2580
    [10] Huang S.M., Zhang L.Z., Tang K., et al. Turbulent heat and mass transfer across a hollowfiber membrane tube bank in liquid desiccant air dehumidification [J]. Journal of HeatTransfer,2012,134(8):082001
    [11] Moghaddam D.G., LePoudre P., Ge G.M., et al. Small-scale single-panel liquid-to-airmembrane energy exchanger (LAMEE) test facility development, commissioning andevaluating the steady-state performance [J]. Energy and Buildings,2013,66:424-436
    [12] Ramya K., Sreenivas J., Dhathathreyan K.S. Study of a porous membrane humidificationmethod in polymer electrolyte fuel cells [J]. International Journal of Hydrogen Energy,2011,36:14866-14872
    [13] Leveque M.A. Les lois de la transmission de chaleur par convection [J]. Annual Mines,1928,13:201-299
    [14] Kafaes N.C., Clump C.W. Turbulent and laminar mass transfer in a tubular membrane [J].AIChE Journal,1973,19:1247-1253
    [15] Yang M.C., Cussler E.L. Designing hollow-fiber contactors [J]. AIChE Journal,1986,32:1910-1916
    [16] Karror S. Gas absorption studies using microporous hollow fiber membrane [D]. NewJersey: Stevens institute of Technology,1992
    [17] Colburn A.P. A method of correlating forced convection heat transfer data and acomparison with fluid friction [J]. Transactions of the Institution of Chemical Engineers,1933,29:174-210
    [18] Grimison E.D. Correlation and utilization of new data on flow resistance and heattransfer for cross flow of gases over tube banks [J]. Transactions of the ASME,1937,59:583-594
    [19] Huge E.C. Experimental investigation of effects of equipment size on convection heattransfer and flow resistance in cross flow of gases over tube banks [J]. Transaction of theASME,1937,59:573-581
    [20] Pierson O.L. Experimental investigation of the influence of tube arrangement onconvection heat transfer and flow resistance in cross flow of gases over tube banks [J].Transaction of the ASME,1937,59:563-572
    [21] Omohundro G.A., Bergelin O.P., Colburn A.P. Heat transfer and fluid friction during flowacross banks of tubes [J]. Transaction of the ASME: Journal of Heat Transfer,1949,71:27-34
    [22] Bergelin O.P., Brown G.A., Hull H.L., et al. Heat transfer and fluid friction during flowacross banks of tubes-III: A study of tube spacing and tube size [J]. Transaction of the ASME:Journal of Heat Transfer,1950,72:81-888
    [23] Bergelin O.P., Brown G.A., Doberstein S.C. Heat transfer and fluid friction during flowacross banks of tubes-IV: A study of the transition zone between viscous and turbulent flow[J]. Transaction of the ASME: Journal of Heat Transfer,1952,74:953-959
    [24] Gram A.J., C.O.Mackey, Monroe E.S. Convection heat transfer and pressure drop of airflowing across in-line tube banks: Part II-Correlation of data for ten row-deep tube banks [J].Transaction of the ASME: Journal of Heat Transfer,1958,80:25-35
    [25] Jones C.E., Monroe E.S. Convection heat transfer and pressure drop of air flowing acrossin-line tube banks: Part I-apparatus, procedures, and special effects [J]. Transaction of theASME: Journal of Heat Transfer,1958,80:18-24
    [26] Zukauskas A. Heat transfer from tubes in cross flow [J]. Advances in Heat Transfer,1972,8:93-160
    [27] Happel J. Viscous flow relative to arrays of cylinders [J]. AIChE Journal,1959,5:174-177
    [28] Satheesh V.K., R.Chhabra, Eswaran V. Steady incompressible fluid flow over a bundle ofcylinders at moderate reynolds numbers [J]. The Canadian Journal of Chemical Engineering,1999,77:978-987
    [29] Mandhania V.K., Chhabra R.P., Eswaran V. Forced convection heat transfer in tube banksin cross flow [J]. Chemical Engineering Science,2002,57:379-391
    [30] Chen C.J., Wung T.S. Finite Analytic Solution of Convective Heat Transfer for TubeArrays in Crossflow: Part II-Heat Transfer Analysis [J]. Journal of Heat Transfer,1989,111(3):641-648
    [31] Zheng J.M., Dai Z.W., Wong F.S., et al. Shell side mass transfer in a transverse flowhollow fiber membrane contactor [J]. Journal of Membrane Science,2005,261:114-120
    [32] Huang S.M., Yang M.L. Heat and mass transfer enhancement in a cross-flow ellipticalhollow fiber membrane contactor used for liquid desiccant air dehumidification [J]. Journal ofMembrane Science,2014,449:184-192
    [33] Huang S.M., Zhang L.Z., Tang K., et al. Turbulent heat and mass transfer across a hollowfiber membrane tube bank in liquid desiccant air dehumidification [J]. Transaction of theASME: Journal of Heat Transfer,2012,134(8):082001-082008
    [34] Baier G., Grateful T.M., Graham M.D., et al. Prediction of mass transfer rates in spatiallyperiodic flows [J]. Chemical Engineering Science,1999,54:343-355
    [35] Bergero S., Chiari A. Experimental and theoretical analysis of airhumidification/dehumidification processes using hydrophobic capillary contactors [J].Applied Thermal Engineering,2001,21:1119-1135
    [36] Li T., Deen N.G., Kuipers J.A.M. Numerical investigation of hydrodynamics and masstransfer for in-line fiber arrays in laminar cross-flow at low Reynolds numbers [J]. ChemicalEngineering Science,2005,60:1837-1847
    [37] Huang S.M., Zhang L.Z., Pei L.X. Transport Phenomena in a Cross-Flow Hollow FibreMembrane Bundle Used for Liquid Desiccant Air Dehumidification [J]. Indoor and BuiltEnvironment,2012,22(3):559-574
    [38] Zhang L.Z., Huang S.M., Zhang W.B. Turbulent heat and mass transfer across a hollowfiber membrane bundle considering interactions between neighboring fibers [J]. InternationalJournal of Heat and Mass Transfer,2013,64:162-172
    [39] Huang S.M., Yang M.L., Yang Y., et al. Fluid flow and heat transfer across an ellipticalhollow fiber membrane tube bank for air humidification [J]. International Journal of ThermalSciences,2013,73:28-37
    [40] Miyatake O., Iwashita H. Laminar-flow axially between heat transfer to a fluid flowingcylinders with a uniform surface temperature [J]. International Journal of Heat and MassTransfer,1990,33:417-425
    [41] Miyatake O., Iwashita H. Laminar-flow heat transfer to a fluid flowing axially betweencylinders with a uniform wall heat flux [J]. International Journal of Heat and Mass Transfer,1991,34:322-327
    [42] Sparrow E.M., Loeffler A.L. Longitudinal laminar flow between cylinders arranged inregular array [J]. AIChE Journal,1959,5(3):325-330
    [43] Szaniawski A., Lipnicki Z. Heat transfer to longitudinal laminar flow between thincylinders [J]. International Journal of Heat and Mass Transfer,2008,51:3504-3513
    [44] Huang S.M., Yang M.L., Zhong W.F., et al. Conjugate transport phenomena in a counterflow hollow fiber membrane tube bank: Effects of the fiber-to-fiber interactions [J]. Journal ofMembrane Science,2013,442:8-17
    [45] Wu J., Chen V. Shell-side mass transfer performance of randomly packed hollow fibermodules [J]. Journal of Membrane Science,2000,172:59-74
    [46] Prasad P., Sirkar K.K. Dispersion-free solvent extraction with microporous hollow-fibermodules [J]. AIChE Journal,1987,33:1057-1066
    [47] Dahuron L., Cussler E.L. Protein extractions with hollow fibres [J]. AIChE Journal,1988,34:130-136
    [48] Viegas R.M.C., Rodriguez M., Luque S., et al. Mass transfer correlations in membraneextraction: analysis of Wilson-plot methodology [J]. Journal of Membrane Science,1998,145:129-142
    [49] Costello M.J., Fane A.G., Hogan P.A., et al. The Effect of shell side hydrodynamics onthe performance of axial flow hollow fibre modules [J]. Journal of Membrane Science,1993,80:1-11
    [50] S. Nii, Takeuchi H. Removal of CO2and/or SO2from gas streams by a membraneabsorption method [J]. Gas Separation&Purification1994,8:107-114
    [51] Zhang L.Z. Heat and mass transfer in a randomly packed hollow fiber membrane module:A fractal model approach [J]. International Journal of Heat and Mass Transfer,2011,54(13-14):2921-2931
    [52] Karoor S., Sirkar K.K. Gas adsorption studies in microporous hollow fibermembrane modules [J]. Industrial Engineering Chemistry Research,1993,32:674-684
    [53] Chen V., Hlavacek M. Application of Voronoi tessellation for modeling randomly packedhollow-fiber bundles [J]. AIChE Journal,1994,40:606-612
    [54] Lipnizki F., Field R.W. Mass transfer performance for hollow fibre moduleswith shell-side axial feed flow: using an engineering approach to develop aframework [J]. Journal of Membrane Science,2001,193:195-208
    [55] Zheng J.M., Xu Y.Y., Xu Z.K. Shell side mass transfer characteristics in a parallel flowhollow fiber membrane module [J]. Separation Science and Technology,2003,38(6):1247-1267
    [56] Zheng J.M., Xu Y.Y., Xu Z.K. Flow distribution in a randomly packed hollow fibermembrane module [J]. Journal of Membrane Science,2003,211:263-269
    [57] Zheng J.M., Xu Z.K., Li J.M., et al. Influence of random arrangement of hollow fibermembranes on shell side mass transfer performance: a novel model prediction [J]. Journal ofMembrane Science,2004,236:145-151
    [58] Zhang L.Z., Huang S.M., Chi J.H., et al. Conjugate heat and mass transfer in a hollowfiber membrane module for liquid desiccant air dehumidification: A free surface modelapproach [J]. International Journal of Heat and Mass Transfer,2012,55(13-14):3789-3799
    [59] Huang S.M., Qin F.G.F., Yang M.L., et al. Heat and mass transfer deteriorations in anelliptical hollow fiber membrane tube bank for liquid desiccant air dehumidification [J].Applied Thermal Engineering,2013,57:90-98
    [60] Zhang H.Y., Wang R., Liang D.T., et al. Modeling and experimental study of CO2absorption in a hollow fiber membrane contactor [J]. Journal of Membrane Science,2006,279:301-310
    [61] Al-Marzouqia M.H., El-Naasa M.H., Marzoukb S.A.M., et al. Modeling of CO2absorption in membrane contactors [J]. Separation and Purification Technology,2008,59(3):286-293
    [62]陈冰冰.中空纤维膜组件膜蒸馏过程的数值模拟研究[D].浙江:浙江工业大学,2010
    [63] Asimakopoulou A.G., Karabelas A.J. Mass transfer in liquid-liquid membrane-basedextraction at small fiber packing fractions [J]. Journal of Membrane Science,2006,271:151-162
    [64] Gong Y.W., Wang Z., Wang S.C. Experiments and simulation of CO2removal by mixedamines in a hollow fiber membrane module [J]. Chemical Engineering and Processing:Process Intensification,2006,45(8):652-660
    [65] Keshavarz P., Ayatollahi S., Fathikalajahi J. Mathematical modeling of gas-liquidmembrane contactors using random distribution of fibers [J]. Journal of Membrane Science,2008,325:98-108
    [66] Rogers J.D., Long R.L. Modeling hollow fiber membrane contactors using film theory,Voronoi tessellations, and facilitation factors for systems with interface reactions [J]. Journalof Membrane Science,1997,134:1-17
    [67] Bao L.H., Liu B., Lipscomb G.G. Entry mass transfer in axial flows through randomlypacked fiber bundles [J]. AIChE Journal,1999,45(11):2346-2356
    [68] Bao L.H., Lipscomb G.G. Mass transfer in axial flows through randomly packed fiberbundles with constant wall concentration [J]. Journal of Membrane Science,2002,204:207-220
    [69] Bao L.H., Lipscomb G.G. Well-developed mass transfer in axial fows through randomlypacked fiber bundles with constant wall flux [J]. Chemical Engineering Science,2002,57:125-132
    [70]李利君,刘丽英,丁忠伟.装填分率对中空纤维膜组件壳程传质性能的影响[J].北京化工大学学报(自然科学版),2005,(03):1-4
    [71]陈冰冰,张元平,高增梁,等.随机分布纤维束间纵向层流时传质的数值模拟[J].化工学报,2010,(06):1406-1414
    [72]张晓光,丁卫平,赵刚,等.中空纤维管随机分布时透析器内的管外传质[J].化工学报,2006,(12):2823-2827
    [73]张晓光,丁卫平,赵刚,等.透析器中随机分布纤维管表面定浓度时传质模拟[J].膜科学与技术,2008,(01):21-25
    [74] Norfamilabinti C.M., Lou Y.C., Lipscomb G.G. Hollow fiber membrane modules [J].Current Opinion in Chemical Engineering,2014,4:18-24
    [75] Wickramasinghe S.R., Semmens M.J., Cussler E.L. Mass transfer in various hollow fibergeometries [J]. Journal of Membrane Science,1992,59:235-250
    [76] Kruelen H., Smolders C.A., Versteeg G.F., et al. Microporous hollow fibre membranemodules as gas-liquid contactors. Part1. Physical mass transfer processes: a specificapplication: mass transfer in highly viscous liquids [J]. Journal of Membrane Science,1993,78:197-216
    [77] Elmore S., Lipscomb G.G. Analytical approximations of the effect of a fiber sizedistribution on the performance of hollow fiber membrane separation devices [J]. Journal ofMembrane Science,1995,98:49-56
    [78] Lemanski J., Lipscomb G.G. Effect of fiber variation on the performance ofcounter-current hollow fiber gas separation modules [J]. Journal of Membrane Science,2000,167:241-252
    [79] Rautenbach R., Struck A., Roks M. A variation in fiber properties affects the performanceof defect-free hollow fiber membrane modules for air separation [J]. Journal of MembraneScience,1998,150:31-41
    [80] Lemanski J., Liu B., Lipscomb G.G. Effect of fiber variation on the performance ofcross-flow hollow fiber gas separation modules [J]. Journal of Membrane Science,1999,153:33-43
    [81] Sonalkar S., Hao P., Lipscomb G.G. Effect of fiber property variation on hollow fibermembrane module performance in the production of a permeate product [J]. IndustrialEngineering Chemistry Research,2010,49:12074-12083
    [82] Ding W., Gao D., Wang Z., et al. Theoretical estimation of shellside mass transfercoefficient in randomly packed hollow fiber modules with polydisperse hollow fiber outerradii [J]. Journal of Membrane Science,2006,284:95-101
    [83] Bechtolda G., Ye L. Influence of fibre distribution on the transverse flow permeability infibre bundles [J]. Composites Science and Technology,2003,63:2069-2079
    [84] Chen X.M., Papathanasiou T.D. On the variability of the Kozeny constant for saturatedflow across unidirectional disordered fiber arrays [J]. Composites: Part A,2006,37:836-846
    [85] Wang Y.J., Chen F., Wang Y., et al. Effect of random packing on shell-side flow and masstransfer in hollow fiber module described by normal distribution function [J]. Journal ofMembrane Science,2003,216(1-2):81-93
    [86]杨毅,王保国,彭勇.中空纤维膜组件壳程流动的数值模拟[J].化工学报,2008,(08):1979-1985
    [87]刘俊.纤维束不均一性对膜组件壳程传递性能影响的试验研究[D].浙江工业大学,2012
    [88]刘涛,李昌烽,邵霞,等.中空纤维管随机分布下透析器的管外传质特性[J].江苏大学学报(自然科学版),2010,(05):553-557
    [89] Zhang L.Z. Convective mass transport in cross-corrugated membrane exchangers [J].Journal of Membrane Science,2005,260:75-83
    [90] Hall D.W., Scott K., Jachuck R.J.J. Determination of mass transfer coefficient of across-corrugated membrane reactor by the limiting-current technique [J]. International Journalof Heat and Mass Transfer,2001,44(12):2201-2207
    [91] Scott K., Lobato J. Mass transfer characteristics of cross-corrugated membranes [J].Desalination,2002,146:255-258
    [92] Hall D.W., Scott K., Jachuck R.J.J. Determination of mass transfer coefficient of across-corrugated membrane reactor by the limiting-current technique [J]. International Journalof Heat and Mass Transfer,2001,44:2201-2207
    [93] Scott K., Lobato J. Mass transport in cross-corrugated membranes and the influence ofTiO2for separation processes [J]. Industrial&Engineering Chemistry Research,2003,42:5697-5701
    [94] Kovalenko L.M., Obolentsev Y.G. Plate heat exchangers with complex shaped heattransfer surfaces and their design [J]. Chemical and Petroleum Engineering,1974,10(4):315-319
    [95] Heggs P.J., Sandham P., Hallam R.A., et al. Local transfer coefficients in corrugated plateheat exchanger channels [J]. Chemical Engineering Research and Design,1997,75(7):641-645
    [96] Mehrabian M.A., Poulter R., Quarini G.L. Hydrodynamic and thermal characteristics ofcorrugated channels: experimental approach [J]. Experimental Heat Transfer,2000,13(3):223-234
    [97] Kanaris A.G., Mouza A.A., Paras S.V. Optimal design of a plate heat exchanger withundulated surfaces [J]. International Journal of Thermal Sciences,2009,48(6):1184-1195
    [98]赵伟杰.交叉三角形波纹板流道的传热与流动研究[D].广州:华南理工大学,2010
    [99] Zhang L.Z. Numerical study of periodically fully developed flow and heat transfer incross-corrugated triangular channels in transitional flow regime [J]. Numerical Heat Transfer,Part A: Applications,2005,48(4):387-405
    [100] Zhang L.Z. Turbulent three-dimensional air flow and heat transfer in a cross-corrugatedtriangular duct [J]. Journal of Heat Transfer,2005,127(10):1151-1158
    [101] Zhang L.Z., Chen Z.Y. Convective heat transfer in cross-corrugated triangular ductsunder uniform heat flux boundary conditions [J]. International Journal of Heat and MassTransfer,2011,54(1-3):597-605
    [102]陈作义.交叉三角形波纹板流道传热与流动特性的研究[D].华南理工大学,2012
    [103] Zhang L., Che D.F. Influence of corrugation profile on the thermal hydraulicperformance of cross-corrugated plates [J]. Numerical Heat Transfer Part A: Applications,2011,59:267-296
    [104] Hausen H. Heat transfer in counterflow, parallel flow and cross flow [M]. New York:McGraw-Hill, Inc,1983
    [105] Takemoto Y., Kawanishi K., Mizushima J. Heat transfer in the flow through a bundle oftubes and transitions of the flow [J]. International Journal of Heat and Mass Transfer,2010,53:5411-5419
    [106] Roychowdhury D.G., Das S.K., Sundararajan T. Numerical simulation of laminar flowand heat transfer over banks of staggered cylinders [J]. Internal Journal for NumericalMethods in Fluids,2002,39:23-40
    [107] Schoner P., Plucinski P., Nitsch W., et al. Mass transfer in the shell side of cross flowhollow fiber modules [J]. Chemical Engineering Science,1998,53(13):2319-2326
    [108] Wilson A.S., Bassiouny M.K. Modeling of heat transfer for flow across tube banks [J].Chemical Engineering and Processing,2000,39:1-14
    [109] Buyruk E. Numerical study of heat transfer characteristics on tandem cylinders, inlineand staggered tube banks in cross flow of air [J]. International Communications in Heat andMass Transfer,2002,29:355-366
    [110] Paul S.S., Ormiston S.J., Tachie M.F. Experimental and numerical investigation ofturbulent cross-flow in a staggered tube bundle [J]. International Journal of Heat and FluidFlow,2008,29:387-414
    [111] Zhang L.Z., Huang S.M., Pei L.X. Conjugate heat and mass transfer in a cross-flowhollow fiber membrane contactor for liquid desiccant air dehumidification [J]. InternationalJournal of Heat and Mass Transfer,2012,55(25-26):8061-8072
    [112] Zhang L.Z., Niu J.L. Laminar fluid flow and mass transfer in a standard field andlaboratory emission cell [J]. International Journal of Heat and Mass Transfer,2003,46:91-100
    [113]张敬华.浅谈测量不确定度的评估[J].河南冶金,2003,11(4):22-24
    [114]陶文铨.数值传热学[M].第二版.西安:西安交通大学出版社,2001
    [115] Taylor R., Krishna R. Multicomponent mass transfer [M]. New York: John Wiley&Sons, Inc.,1993
    [116] Yuan Z.X., Tao W.Q., Wang Q.W. Numerical prediction for laminar forced convectionheat transfer in parallel-plate channels with streamwise-periodic rod disturbances [J].International Journal for Numerical Methods,1998,28:1371-1387
    [117] Hamel S., Frechette L.G. Critical importance of humidification of the anode inminiature air-breathing polymer electrolyte membrane fuel cells [J]. Journal of Power Sources,2011,196:6242-6248
    [118] F. Lipnizki, Field R.W. Mass transfer performance for hollow fiber modules withshell-side axial feed flow using engineering approach to develop a framework [J]. Journal ofMembrane Science,2001,193:195-208
    [119] Mengual J.I., Khayet M., Godino M.P. Heat and mass transfer in vacuum membranedistillation [J]. International Journal of Heat and Mass Transfer,2004,47:865-875
    [120] Ding W.P., Gao D.Y., Wang Z., et al. Theoretical estimation of shell-side mass transfercoefficient in randomly packed hollow fiber modules with polydisperse hollow fiber outerradii [J]. Journal of Membrane Science,2006,284:95-101
    [121] Zhang L.Z. Heat and mass transfer in a randomly packed hollow fiber membranemodule: a fractal model approach [J]. International Journal of Heat Mass Transfer,2011,54:2921-2931
    [122] N. Kalogerakis, Behie L.A. Evaluation of a hollow fiber oxygenator for use inbubble-free mammalian cell bioreactors [J]. The Canadian Journal of Chemical Engineering,1991,69:444-449
    [123] Wang Y., Brannock M., Cox S., et al. CFD simulations of membrane filtration zone in asubmerged hollow fibre membrane bioreactor using a porous media approach [J]. Journal ofMembrane Science,2010,363:57-66
    [124] Zhang L.Z. Flow maldistribution and thermal performance deterioration in a cross flowair to air heat exchanger with plate-fin cores [J]. International Journal of Heat and MassTransfer,2009,52:4500-4509
    [125]张新儒.非对称透湿膜的制备以及热、湿和VOCs在膜中的传递特性研究[D].广州:华南理工大学,2012
    [126] Incropera F.P., Dewitt D.P. Introduction to Heat Transfer [M].3th ed. New York: JohnWiley&Sons publishers Inc.,2007
    [127] Thanedgunbaworn R., Jiraratananon R., Nguyen M.H. Shell-side mass transfer ofhollow fibre modules in osmotic distillation process [J]. Journal of Membrane Science,2007,290(1-2):105-113
    [128] Kapale U.C., Chand S. Modeling for shell-side pressure drop for liquid flow inshell-and-tube heat exchanger [J]. International Journal of Heat and Mass Transfer,2006,49:601-610
    [129] Lia H., Kottke V. Analysis of local shellside heat and mass transfer in the shell-and-tubeheat exchanger with disc-and-doughnut baffles [J]. International Journal of Heat and MassTransfer,1999,42:3509-3521
    [130] Ozden E., Tari I. Shell side CFD analysis of a small shell-and-tube heat exchanger [J].Energy Conversion and Management,2010,51:1004-1014
    [131] Wang Q.W., Chen Q.Y., Chen G.D., et al. Numerical investigation on combined multipleshell-pass shell-and-tube heat exchanger with continuous helical baffles [J]. InternationalJournal of Heat and Mass Transfer,2009,52:1214-1222
    [132] Zhang J.F., He Y.L., Tao W.Q.3D numerical simulation on shell-and-tube heatexchangers with middle-overlapped helical baffles and continuous baffles-Part I: Numericalmodel and results of whole heat exchanger with middle-overlapped helical baffles [J].International Journal of Heat and Mass Transfer,2009,52:5371-5380
    [133] Ding W.P., Gao D.Y., Wang Z., et al. Theoretical estimation of shell-side mass transfercoefficient in randomly packed hollow fiber modules with polydisperse hollow fiber outerradii [J]. Journal of Membrane Science,2006,284(1-2):95-101
    [134] Ding Z.W., Liu L.Y., Ma R.Y. Study on the effect of flow maldistribution on theperformance of the hollow fiber modules used in membrane distillation [J]. Journal ofMembrane Science,2003,215:11-23
    [135] Mauret E., Renaud M. Transport phenomena in multi-particle systems--l. Limits ofapplicability of capillary model in high voidage bedsapplication to fixed beds of fibers andfluidized beds of spheres [J]. Chemical Engineering Science,1997,52:1807-1817
    [136] Satheesh V.K., Chhabra R.P., Eswaran V. Steady Incompressible Fluid Flow Over aBundle of Cylinders at Moderate Reynolds Numbers [J]. The Canadian Journal of ChemicalEngineering,1999,77:978-987
    [137] Focke W.W., Zachariades J., Olivier I. The effect of the corrugation inclination angle onthe thermohydraulic performance of plate heat exchangers [J]. International Journal of Heatand Mass Transfer,1985,28:1469-1479
    [138] Ciofalo M., Stasiek J., Collins M.W. Investigation of flow and heat transfer incorrugated passages-II. Numerical simulations [J]. International Journal of Heat and MassTransfer,1996,39:165-192
    [139] Ergin S., Ota A., Yamaguchi H. Numerical study of periodic turbulent flow through acorrugated duct [J]. Numerical Heat Transfer,Part A: Applications,2001,40:139-156
    [140] Stasiek J., Ciofalo M., Smith I.K., et al. Investigation of flow and heat transfer incorrugated passages-I Experimental results [J]. International Journal of Heat Mass Transfer,1996,39:149-192
    [141] Biomerius H., Hoisken C., Mitra N.K. Numerical investigation of flow field and heattransfer in cross-corrugated ducts [J]. ASME Journal of Heat Transfer,1999,121:314-321
    [142] Freund S., Kabelac S. Investigation of local heat transfer coefficients in plate heatexchangers with temperature oscillation IR thermography and CFD [J]. International Journalof Heat and Mass Transfer,2010,53(19-20):3764-3781
    [143] Han X.H., Cui L.Q., Chen S.J., et al. A numerical and experimental study of chevron,corrugated-plate heat exchangers [J]. International Communications in Heat and MassTransfer,2010,37(8):1008-1014
    [144] Liu Z.Y., Wu H.Y. Steady-State and Transient Investigation of the Primary SurfaceRecuperator for Microturbines [J]. Heat Transfer Engineering,2013,34(10):875-886
    [145] Stasiek J.A. Experimental studies of heat transfer and fluid flow acrosscorrugated-undulated heat exchanger surfaces [J]. International Journal of Heat and MassTransfer,1998,41:899-914
    [146] Tsai Y.C., Liu F.B., Shen P.T. Investigations of the pressure drop and flow distribution ina chevron-type plate heat exchanger [J]. International Communications in Heat and MassTransfer,2009,36(6):574-578
    [147] Wang Q.W., Zhang D.J., Xie G.N. Experimental Study and Genetic-Algorithm-BasedCorrelation on Pressure Drop and Heat Transfer Performances of a Cross-Corrugated PrimarySurface Heat Exchanger [J]. Journal of Heat Transfer,2009,131(6):061802
    [148] Zhang L., Che D.F. Influence of Corrugation Profile on the ThermalhydraulicPerformance of Cross-Corrugated Plates [J]. Numerical Heat Transfer, Part A: Applications,2011,59(4):267-296
    [149] Tzanetakis N., Scott K., Taama W.M., et al. Mass transfer characteristics of corrugatedsurfaces [J]. Applied Thermal Engineering,2004,24(13):1865-1875
    [150] Zhang X.R., Zhang L.Z., Liu H.M., et al. One-step fabrication and analysis of anasymmetric cellulose acetate membrane for heat and moisture recovery [J]. Journal ofMembrane Science,2011,366(1-2):158-165
    [151] Bergman T.L., Lavine A.S., Incropera F.P., et al. Introduction to Heat Transfer [M]. JohnWiley&Sons, Inc,2011:W-38
    [152] Jones R.M., Harvey A.D., Acharya S. Two equation turbulence modeling for impellerstirred tanks [J]. Journal of Fluids Engineering,2001,123:640-648
    [153] Song B., Amano R.S. Application of non-linear k-model to a turbulent low inside asharp U-bend [J]. computational mechanics,2000,26:344-351
    [154] Spalding D.B. Concentration fluctuations in a round turbulent free jet [J]. Journal ofChemical Engineering Science,1971,26:95-107
    [155] Wang X., McNamara K.F. Evaluation of CFD simulation using RANS turbulencemodels for building effects on pollutant dispersion [J]. Environmental Fluid Mechanics,2006,6:181-202
    [156] Zhang L.Z. Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts [M].1sted. New York: Academic Press,2013
    [157] Zhang L.Z. Total Heat Recovery: Heat and Moisture Recovery from Ventilation Air [M].New York: Nova Sci. Pub. Co.,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700