用户名: 密码: 验证码:
化学机械抛光试验及其材料去除机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪六十年代,化学机械抛光技术开始应用于半导体材料工业。从此,化学机械抛光技术一直伴随着半导体技术的发展、特别是微电子行业的集成电路的发展而不断发展。目前,化学机械抛光技术已经运用于多种不同材料的精细抛光,例如:半导体材料、宝石、特殊用途的高光洁度光学玻璃等硬脆性材料。但是,迄今为止的研究并没有充分认识化学机械抛光的材料去除机理,特别是纳米尺度的抛光磨粒的性能以及单晶硅晶圆表面的微纳尺度的摩擦磨损性能等因素与材料去除机理之间的关系尚不清楚,相关的研究亦处于初始阶段。深入研究化学机械抛光过程的材料去除机理,研究抛光工艺的各技术要素:抛光压力、速度、抛光液的化学成分、抛光液中的磨粒等对抛光过程中的材料去除的作用,将有助于优选抛光工艺参数,从而更好地控制抛光过程,获得高光洁、无损伤的表面。
     首先,本论文建立了考虑磨粒变形的化学机械抛光材料去除模型。通过计算磨粒的变形量,更加精确地计算出磨粒压入晶圆表面的深度。由这个压入深度,计算出单位时间内磨粒在晶圆表面去除的材料体积。同时,磨粒压入晶圆表面的深度决定了抛光后的晶圆表面质量。进一步研究决定磨粒变形量的因素:施加在磨粒上的来自晶圆和抛光垫的力、以及磨粒自身的因素:磨粒的尺寸、硬度、弹性模量等,得出:①新的考虑磨粒变形因素的化学机械抛光材料去除模型可以更加准确地预测材料去除率;②在纳米级的材料去除研究中,磨粒本身的尺寸在纳米尺度,此时磨粒的变形量不可忽视;③硬度值低的磨粒,磨粒更易变形,磨粒在抛光表面形成的擦划沟槽的深度更浅,意味着抛光后表面粗糙度值更小。
     其次,本论文研究不同润滑条件下的单晶硅晶圆化学机械抛光的材料去除机理。基于纳米划痕实验,研究了抛光力与摩擦系数之间的关系以及抛光速度与摩擦系数之间的关系。计算划痕的长度、宽度和深度得出材料的去除率,从而得出抛光力与材料去除率之间的关系以及抛光速度与材料去除率之间的关系。实验研究的结果表明:在纳米尺度条件下,抛光力与材料去除率成正比,而抛光速度的提高并不能一味提高材料去除率;抛光界面的不同润滑条件决定着材料去除机理的不同:在干摩擦条件下,单晶硅晶圆在化学机械抛光过程中表现出粘着磨损的材料去除机理;在过氧化氢润滑条件下,材料的去除表征出一种因微裂纹而导致剥落的材料去除机理;而在去离子水的润滑条件下,纳米划痕实验中的单次磨痕的最小深度为0.063nm,充分证明了此条件下的单分子层的材料去除机理。
     再者,本论文研究了单晶硅晶圆化学机械抛光后表面层及亚表层的损伤。利用中国科学院苏州纳米技术研究所的先进设备条件,成功制备单晶硅晶圆表面纳米划痕的透射电子显微镜分析用试样,并对试样进行高分辨的透射电子显微分析。通过此项研究,掌握了水润滑和过氧化氢润滑条件下的单晶硅晶圆纳米划痕实验得到的划痕表面层及亚表层在不同的力的作用下以及在不同的材料去除速度下产生的晶格畸变、相变等晶体缺陷的规律。
     进一步的研究,通过对比水润滑条件下和过氧化氢润滑条件下的划痕表面层及亚表层的晶体结构,得到:抛光液中的化学成分与被抛光材料的表面发生化学反应后,材料界面化学性能发生变化,易于被机械能去除;但是,过度的化学反应则将更易带来表面层及亚表层损伤。研究结果充分证明了化学机械抛光过程中抛光力和抛光液中的化学成分的相互影响关系亦即在此过程中的机械能和化学能的协同作用,以及这种协同作用的演变对化学机械抛光工艺结果的影响。在水润滑和过氧化氢润滑条件下的单晶硅晶圆表面的纳米划痕实验中,当材料去除速度保持不变,抛光力在30mN至70mN之间,摩擦界面发生摩擦化学反应,并产生具有润滑作用的润滑膜。由此可见,在这样的条件下机械作用可以实现加速或者说具有促进化学反应的作用。这样,在实现机械能与化学作用的平衡、机械能促进化学反应、机械能控制化学能的条件下,化学机械抛光的能量消耗将最少、材料消耗最低,而材料去除率则可以达到最大值,表面层及亚表层无损伤、少无化学污染。
     在化学机械抛光过程中通过调整工艺的机械和化学参数可以实现机械能对化学能的控制。研究成果为少无化学污染的绿色无损伤精密抛光技术奠定了基础,为最终实现清洁的机械能为主导的、高效、绿色的精密抛光,获得理想的抛光表面提供了理论和实践依据。
Since1960s, the chemical mechanical polishing has been applied in the semiconductorindustry. From that time, the chemical mechanical polishing technology has been developingwith the development of the semiconductor industry, especially with the development ofintegrated circuit in the microelectronics industry. Currently, the chemical mechanicalpolishing technology has been widely used for precision polishing of many different materials,for example, hard and fragile material like: semiconductor material, jewel, optic glass withsuper cleanness requirements for special utilization. However, the research in this area by nowdoes not fully recognize the material removal mechanism of the chemical mechanicalpolishing, the relationship between the nanoscale sized abrasive particle, the micro-andnano-scale frictional and wear properties of single crystal silicon wafer and the materialremoval mechanism is not clearly understood, the related research is still in the beginningphase. Study on material removal mechanism in chemical mechanical polishing, study on thefunctions of these parameters of polishing load, speed, slurry chemical compositions, abrasiveparticles in the slurry, helps best select the polishing parameters, helps understand on thepolishing process deeply, it is conducive to well control and use this technology, to obtainhigh clean and non-damaged surface.
     Firstly, this paper built the mathematic model on material removal with consideration ofthe deformation of abrasive particle. Through calculation of the deformation of the abrasiveparticle, it is possible to calculate more precisely the depth of the abrasive particle embeddinginto the surface of the silicon wafer. With this depth, the removed material per unit time by theabrasive particle can be obtained. Simultaneously, the depth of the abrasive particleembedding into the surface of the silicon wafer determines the surface quality of the polishedsilicon wafer. Further study on the elements which are influencing the deformation of theabrasive particle, like: the size of the particle, its hardness, its elastic Young’s modulus, etc.The following results can be achieved:①using the new model, the material removal ratecan be more precisely predicted, it is very close to the material removal rate obtained from theexperiments in this paper;②in the nanometer sized material removal research, the sizes ofthe particle itself is in nanoscale, its deformation can’t be neglected;③the particle which isin a less hardness is more easily deformed by the outside force, the ploughed groove on thepolished surface is more shallow, it means that the roughness of polished surface is more less.
     Secondly, this paper studies the material removal mechanism of chemical mechanicalpolishing of single crystal silicon wafer under different lubrication conditions. By means ofnanoscale scratching experiments, the relationship between the polishing load and frictioncoefficient and the relationship between the polishing speed and the friction coefficient havebeen studied. The material removal rate is able to be obtained by calculation of the length,width and depth of the scratched groove, in this way, the relationship between the polishedload and the material removal rate and the relationship between the polishing speed and thematerial removal rate are obtained. The results from the experimental studies show that, in the nanoscale the material removal rate is direct proportional to the polishing load, but theincreasing of the polishing speed does not means that a higher material removal rate is surelyto be reached. At the same time, the different lubrication conditions in the polished interfacesinduce different material removal mechanisms: in the dry frictional condition, the singlecrystal silicon wafer presents a kind of material removal mechanism of adhesion wear in thechemical mechanical polishing; under the hydrogen peroxide lubrication, the materialremoval is a kind of material spalling which is induced by the micro cracks; under thedeionized water lubrication, the smallest scratching depth is0.0063nanometer in thenanoscale scratching experiments, it proves that the material removal mechanism is amolecular-scale material removal.
     Moreover, the reseach work of this paper also explored a novel research method forstudy on the surface and subsurface damage of polished single crystal silicon wafer. Byutilizing the modern devices and equipments in Suzhou Nano Science and TechnologyResearch Institute of China Academy of Sciences, the specimen of the single crystal siliconwafer with the nanoscale scratching from the nanoscale scratching experiments aresuccessfully prepared for the further study by the Transmission Electron Microscopy, and thestudy in a high resolution scope has been successfully carried out. Through this study, the lawof the damages and disfigurements like aberration and phase changing of crystal lattice etc.which are caused in the nanoscale scratching experiments in the surface and subsurface ofsingle crystal silicon wafer under different loads and speeds in the deionized water lubricationand hydrogen peroxide lubrication conditions has been mastered.
     Further study on the crystal structure of the nanoscale scratched surface and subsurfaceunder deionized water lubrication and hydrogen peroxide lubrication by comparison, reachesthat the chemical composition in the slurry reacts with the polishing surface material, thechemical features of the surface have been changed, the surface material becomes easy to beremoved by the mechanical effects; but, excessive chemical reactions will easily bring surfacedamage and subsurface damage also. The research results have proven that the synergiceffects of mechanical function and chemical function in the chemical mechanical polishing,and its influence to the outcome of the chemical mechanical polishing by the evolvement ofthe synergy of mechanical effects and chemical effects. In the nanoscale scratchingexperiments with deionized water lubrication and hydrogen peroxide lubrication, thefrictional chemical reactions happened in the frictional interface, and generate lubricatingfilms when the sliding speed unchanging and the load is between30mN and70mN. Hence,under this condition, mechanical effects can accelerate, or in other words, can expedite thechemical effects. Thus, the consumption of total energy and material will reach the minimumand the material removal rate may reach the maximum, no surface damage and no subsurfacedamage, less or no chemical pollution when the balance of mechanical energy and chemicaleffects, mechanical energy accelerating chemical effects, mechanical effects controlling thechemical effects are realized.
     Through the adjustment of mechanical and chemical parameters in the chemicalmechanical polishing processes, the mechanical effects dominating chemical effects may berealized. This research result in this dissertation built the foundation of less/non chemical pollution, green, undamaged and precise polishing technology, and the results providedsupplied the theoretical and experimental foundation for the clean mechanical effectsdominated high efficient green precise polishing so as to obtain the ideal surface from thechemical mechanical polishing.
引文
1Fury Michael A. The early days of CMP [J]. Solid State Technology,1997,40(5):81-84
    2张厥宗.硅片加工技术[M].北京:化学工业出版社,2009.1-28
    3Kilby Jack S. Invention of the Integrated Circuit [J]. Transactions on Electron Device,1976,23(7):648-654
    4史西蒙主编.超大规模集成电路工艺学[M].史常忻等译.上海:上海交通大学出版社,1987.316-358
    5周海兰.水基抛光材料去除机理的微观试验研究[D]:[硕士学位论文].无锡:江南大学机械工程学院,2012
    6厥端霖,陈治修.硅材料科学与技术[M].杭州:浙江大学出版社,2000.
    7杰克逊主编.半导体工艺[M].屠海令,万群等译.北京:科学出版社,1999.5-9
    8中国国家标准化管理委员会.中华人民共和国国家标准GB/T12964-2003硅单晶抛光片[S].北京:中国标准出版社,2004
    9上海元件五厂,复旦大学.二氧化硅抛光工艺小结[J].半导体技术,1976(1):4-8
    10汤锡松.二氧化硅抛光片表面质量分析中的一点体会[J].半导体技术,1980(6):18-21
    11刘玉岭,韩清涛,徐晓辉,等.硅单晶研磨片表面状态的分析研究[J].半导体技术,1994(5):35-36
    12张银霞.单晶硅片超精密磨削加工表层损伤的研究[D]:[博士学位论文].大连:大连理工大学机械制造及其自动化,2004
    13Cameron Eugene N, Rensberg Willem C J Van. Chemical-Mechanical Polishing of Ores[J]. Economic Geology,1965,60(3):630-632
    14Preston F W. The Nature of the Polishing Operation [J]. Transactions of the OpticalSociety,1926,27(3):181-190
    15陈清华.玻璃的化学抛光[J].化学世界,1958(12):547-548
    16吕仁源,智承先.化学机械抛光制金相样[J].钢铁,1960(5):302
    17书玉.有色金属的化学机械抛光[J].无线电技术,1964(2):27
    18Walsh Robert J, Herzog Arno H, Louis St. Process for Polishing SemiconductorMaterials [P]: United States Patent Office,3170273.1965-02-23
    19Zantye Parshuram B, Kumar Ashok, Sikder A K. Chemical mechanical planarization formicroelectronics applications [J]. Materials Science and Engineering,2004, R45:89-220
    20Zant P V.芯片制造-半导体工艺制程实用教程[M].第4版.赵树武等译.北京:电子工业出版社,2004.40-43
    21高文泉,丁彭刚,徐存良.化学机械抛光设备关键技术研究[J].电子工业专业设备,2012(204):12-15
    22董伟.化学机械抛光技术研究现状及进展[J].制造技术与机床,2012(7):93-97
    23吕玉山,张辽远,王军,等.抛光垫提高化学机械抛光接触压强分布均匀性研究[J].兵工学报.2012,33(5):617-622
    24王同庆,路新春,赵德文,等.300mm晶圆化学机械抛光机关键技术研究与实现[Eb/OL]. http://www.cnki.net/kcms/detail/11.2187.TH.20131220.0955.015.html,2013-12-20
    25方照蕊,魏昕,杨向东,等.新型抛光垫沟槽及其在化学机械抛光中的作用研究进展[J].金刚石与磨料磨具工程,2012,32(2):77-81
    26胡伟,魏昕,谢小柱,等. CMP抛光半导体晶片中抛光液的研究[J].金刚石与磨料磨具工程,2006,156(6):78-80
    27Gokhale Kalyan S,Moudgil Brij M.化学机械抛光中的颗粒技术[J].涂佃柳,刘晓斌译.电子工业专用设备,2011(193):1-7
    28邹微波,魏昕,杨向东,等.化学机械抛光过程抛光液作用的研究进展[J].金刚石与磨料磨具工程,2012,32(187):53-59
    29彭进,夏琳,邹文俊.化学机械抛光液的发展现状与研究方向[J].表面技术,2012,41(4):95-98
    30Joslyn Michael J. Planarizing machines and methods for dispensing planarizing solutionsin the processing of microelectronic workpieces [P]. US Patent,6722943.2004-04-20
    31Liu Xiaopeng, Chen Xiaochun, Li Qingzhong. Principle and Experiment of UltrasonicSubtle Atomization in CMP [J]. Advanced Materials Research,2011,279:287-290
    32Tsai Dong-tay, Kaohsiung, Tseng Hua-jen, etc. Slurry Nozzle [P]. US Patent,6149078.2000-11-21
    33Lu Y, Tani Y, Kawata K. Proposal of New Polishing Technology without Using aPolishing Pad [J]. Manufacturing Technology,2002,51(1):255-258
    34许雪峰,郭权,黄亦申,等.磁性复合磨粒化学机械抛光技术及其加工试验研究[J].机械工程学报,2011,47(21):186-192
    35Zhao Yongwu, Chang L, Kim S H. A mathematical model for chemical-mechanicalpolishing based on formation and removal of weakly bonded molecular species [J]. Wear,2003(254):332-339
    36Wang Y G, Zhang L C, Biddut A. Chemical effect on the material removal rate in theCMP of silicon wafers [J]. Wear,2011(270):312-316
    37Park B, Jeong S, Lee H, etc. Experimental Investigation of Material RemovalCharacteristics in Silicon Chemical Mechanical Polishing [J]. Japanese Journal ofApplied Physics,2009,48(11):1165051-1165059
    38康自卫,王丽.硅片加工技术[M].北京:化学工业出版社,2010.120-150
    39Preston F. The theory and design of plate glass polishing machines [J]. Journal of theSociety of Glass Technology,1927(11):214-256
    40Burke Peter A. Semi-Empirical Modelling of SiO2Chemical-Mechanical PolishingPlanarization [C]. VMIC Conference. IEEE,1991.379-384
    41Luo Jianfeng, Dornfeld David A. Material Removal Mechanism in Chemical MechancialPolishing: Theory and Modeling [J]. Transactions on Semiconductor Manufacturing,2001,14(2):112-133
    42Ahmadi Goodarz, Xia Xun, A model for mechanical wear and abrasive particle adhesionduring the chemical mechanical polishing process [J]. Journal of The ElectrochemicalSociety,2001,148(3): G99-G109
    43Zhang Fan, Busnaina Ahmed. The role of particle adhesion and surface deformation inthe chemical mechanical polishing process [J]. Electrochemical and Solid-State Letters,1998,1(4):184-187
    44Runnels S R. Featured-scale fluibased erosion modeling for chemical mechanicalpolishing [J]. Journal of The Electrochemical Society,1994,141(7):1900-1905
    45Levert J A, Mess F M, Salant M F, etc. Mechnism of chemical-mechanical polishing ofSiO2dielectric on integrated circuits [J]. Tribology Transaction.1998,41(4):593-599
    46Larsen-Basse J, Liang H. Probable role of abrasion in chemo-mechanical polishing oftungsten [J]. Wear,1999(233-235):647-654
    47Lin J F, Chern J D, Chang Y H, etc. Analysis of the tribological mechanisms arising inthe chemical mechanical polishing of copper film wafers [J]. Journal of Tribology,2004(126):185-198
    48Christopher L B, Dipto G T, William N G, etc. Surface kinetics model for SiLK chemicalmechanical polishing [J]. Journal of The Electrochemical Socirty,2002(149):G118-G127
    49David J S, Hetherington D L, Cecchi J L. Investigation of the Kinetics of TungstenChemical Mechanical Polishing in Potassium Iodate-Based Slurries I. Role of Aluminaand Potassium Iodate [J]. Journal of The Electrochemical Socirty,1999,146(1):376-381
    50David J S, Hetherington D L, Cecchi J L. Investigation of the kinetics of tungstenchemical mechanical polishing in potassium iodate-based slurriesⅡroles of colloidspecies and slurry chemistry [J]. Journal of The Electrochemical Society,1999,146(5):1934-1938
    51Luo J F, Dornfeld D A. Material removal regions in chemical mechanical planarizationfor submicron integrated circuit fabrication: Coupling effects of slurry chemicals,abrasive size distribution, and wafer-pad contact area [J]. Transactions on SemiconductorManufacturing,2003,16(1):45-56
    52Bielmann M, Mahajan U, Singh R K. Effect of particles size during tungsten chemicalmechanical polishing [J]. Electrochemical and Soild-State Letters,1999,2(8):401-403
    53Choi W, Singh R K. Roles of colloidal silicon dioxide particles in chemical mechanicalpolishing of dielectric silicon dioxide Part1-Regular Papers Brief Communications&Review Papers [J]. Japanese Journal of Applied Physics,2005,44(12):8383-8390
    54Jeng Yeau-Ren, Huang Pay-Yau. A Material Removal Rate Model ConsideringInterfacial Micro-Contact Wear Behavior for Chemical Mechanical Polishing [J]. Journalof Tribology,2005,127(1):190-197
    55Lu Z Y, Ryde N P, Babu S V, etc. Particle adhesion studies relevant to chemicalmechanical polishing [J]. Langmuir,2005,21(22):9866-9872
    56Bastaninejad M, Ahmadi G. Modeling the effects of abrasive size distribution, adhesion,and surface plastic deformation on chemical-mechanical polishing [J]. Journal of TheElectrochemical Society,2005,152(9): G720-G730
    57Shi F G, Zhao B. Modeling of chemical-mechanical polishing with soft pads. AppliedPhysics A-Materials Science&Processing [J].1998,67(2):249-252
    58Zhao B, Shi F G. Chemical mechanical polishing: threshold pressure and mechanism [J].Electrochemical and Solid-State Letters.1999,2(3):145-147
    59Homma Y. Dynamical mechanism of chemical mechanical polishing analyzed to correctPreston's empirical model [J]. Journal of The Electrochemical Society,2006,153(6):G587-G590
    60Fu G H, Chandra A, Guha S, etc. A plasticity-based model of material removal inchemical-mechanical polishing (CMP)[J]. Transactions on SemiconductorManufacturing,2001,14(4):406-417
    61Zeng T F, Sun T. Size effect of nanoparticles in chemical mechanical polishing-Atransient model [J]. Transactions on Semiconductor Manufacturing,2005,18(4):655-663
    62Kaufman F B, Thompson D B, Broadie R E, etc. Chemical mechanical polishing forfabricating patterned W metal features as chip interconnects [J]. Journal of TheElectrochemical Society,1991,138(11):3460-3465
    63王亮亮,路新春,潘国顺,等.硅片化学机械抛光中表面形貌问题的研究[J].润滑与密封,2006(174):66-75
    64Liu Xiaoyan, Liu Yuling, Liang Yan, etc. Kinetics model incorporating both the chemcialand mechanical effects on material removal for copper chemical mechanical polishing [J].Microelectronic Engineering,2012(91):19-23
    65Biddut A Q, Zhang L C, Ali Y M, etc. Damage-free polishing of monocrystalline siliconwafers without chemical additives [J]. Scripta Materialia,2008,59(11):1178-1181
    66Song Xiao-lan, Xu Da-yu, Zhang Xiao-wei, etc. Electrochemical behavior and polishingproperties of silicon wafer in alkaline slurry with abrasive CeO2[J]. Transactions ofNonferrous Metals Society of China,2008,18(1):178-182
    67Estragnat E, Tang G, Liang H, etc. Experimental investigation on mechanisms of siliconchemical mechanical polishing [J]. Journal of Electronic Materials.2004,33(4):334-339
    68Lee Myung, Kang Hyun-Goo, Kanemoto Manabu, etc. Effect of alkaline agent incolloidal silica slurry for polycrystalline silicon chemical mechanical polishing [J].Japanese Journal of Applied Physics Part1.2007,46(8A):5089-5094
    69Basim G B, Vakarelski I U, Moudgil B M. Role of interaction forces in controlling thestability and polishing performance of CMP slurries [J]. Journal of Colloid and InterfaceScience,2003,263(2):506-515
    70Mahajan U, Bielmann M, Singh R K. Dynamic lateral force measurements duringchemical mechanical polishing of silica [J]. Electrochemical and Solid-State Letters,1999,2(2):80-82
    71宋晓岚,李宇焜,江楠,等.化学机械抛光技术研究进展[J].化工进展,2008,27(1):26-31
    72章建群,张朝辉.非接触化学机械抛光的材料去除模型[J].科学通报,2008,53(10):1228-1234
    73Pallinti J, Burke P, Barth W, etc. Removing copper over low-k films using stress-freepolishing [J]. Solid State Technology,2004,47(8):69-72
    74刘向阳,王立江,高春甫.光学材料无磨料低温抛光的试验研究[J].机械工程学报,2002(6):47-50
    75肖保其,雷红.纳米SiO2/CeO2复合磨粒的制备及其抛光特性研究[J].摩擦学学报,2008,28(2):103-107
    76Lin J F, Chen S C, Ouyang Y L, etc. Analysis of the tribological mechanisms arising inthe chemical mechanical polishing of copper-film wafers when using a pad withconcentric grooves [J]. Journal of Tribology,2006,128(3):445-459
    77翟文杰.摩擦电化学与摩擦电化学研磨抛光研究进展[J].摩擦学学报,2006,26(1):92-96
    78Jiang J, Wu Y B, Wang X Y, etc. A new magnetic polishing liquid (MPL) for precisionsurface finishing [J]. Trans Tech Publications,2006,315-316:671-675
    79Lamikiz A, Sanchez J A, Lacalle L N L de, etc. Surface roughness improvement usinglaser-polishing techniques [J]. Trans Tech Publications,2006,526:217-222
    80Qin K, Moudgil B, Park C W. A chemical mechanical polishing model incorporatingboth the chemical and mechanical effects [J]. Thin Solid Films,2004,446(2):277-286
    81Chen P, Shih H, Huang B, etc. Catalytic-pad chemical kinetics model of CMP [J].Electrochemical and Solid-State Letters,2003,6(12): G140-G142
    82Chen Ping Hsun, Huang Bing Wei, Shih Han-C. A chemical kinetics model for amixed-abrasive chemical mechanical polishing [J]. Thin Solid Films,2005(483):239-244
    83Borst C L, Thakurta D G, Gill W N, etc. Surface kinetics model for SiLK chemicalmechanical polishing [J]. Journal of The Electrochemical Society,2002,149(2):G118-G127
    84Zhao Yongwu, Chang L. A micro-contact and wear model for chemical–mechanicalpolishing of silicon wafers [J]. Wear,2002(252):220-226
    85Stein D J, Cecchi J L. Atomic force microscopy, lateral force microscopy, andtransmission electron microscopy investigations and adhesion force measurements forelucidation of tungsten removal mechanisms [J]. Journal of Material Research,1999,14(9):3695-3706
    86Moon Y, Bevans K, Dornfield D A. Identification of the mechanical aspects of materialremoval mechanisms in chemcial mechanical polishing (CMP), in: Proceedings of theFinishing of Advanced Ceramics and Glassess Symposium at the101stAnnual Meetingof the American Ceramic Society [C]. Indianapolis:1999.269-279
    87ITRS.国际半导体技术发展路线图2009年版综述(1)[J].为国译.中国集成电路,2010(129):14-21
    88Wang Y, Zhao Y W, Chen X. Chemical Mechanical Planarization from Macro-Scale toMolecular-Scale [J]. Materials and Manufacturing Process,2012(27):641-649
    89曹丽梅,胡岳华,徐兢,覃文庆.半导体工业中的化学机械抛光(CMP)技术[J].湖北化工,2000(4):7-9
    90Kumar S. A comprehensive materematical model to calculate polish time for oxidechemical mechancial process (CMP)[J]. Int J Manufacturing Technonlogy andManagement,2011,22(2):145-159
    91Hahn P O. The300mm silicon wafer-a cost and technology challenge [J].Microelectronic Engineering,2001,56(1-2):3-13
    92Wang Y, Zhao Y W, Chen X. Chemical Mechanical Planarization from Macro-Scale toMolecular-Scale [J]. Materials and Manufacturing Processes.2012,27:641-649
    93Wang Y G, Zhang L C. On the chemo-mechanical polishing for nano-scale surface finishof brittle wafers [J]. Recent Patents on Nanotechnology,2010(4):70-77
    94Luo J, Guo D. Tribology in nanomanufacturing-interaction between nanoparticles and asolid surface [J]. Advanced Tribology,2010,1-5
    95Lawing A. Pad conditioning and pad surface characterization in oxide chemicalmechanical polishing [J]. Mat. Res. Soc. Symp. Proc.,2002(732E):1531-1536
    96Nanz G, Camilletti L E. Modeling of chemical mechanical polishing-a review [J].Transactions on Semiconductor Manufacturing,1995,8(4):382-389
    97Wang Yongguang, Zhao Yongwu, Li Xufeng. Modeling the effects of abrasive size,surface oxidizer concentration and binding energy on chemical mechanical polishing atmolecular scale [J]. Tribology International,2008,41(3):202-210
    98Xu J, Luo J B, Lu X C, etc. Progress in material removal mechanisms of surfacepolishing with ultra precision [J]. Chinese Science Bulletin,2004,49(16):1687-1693
    99Xin J, Cai W, Tichy J A. A fundamental model proposed for material removal inchemical-mechanical polishing [J]. Wear,2010(268):837-844
    100Tseng W T, Wang Y L. Re-examination of pressure and speed dependences of removalrate during chemical-mechanical polishing processes [J]. Journal of The ElectrochemicalSociety,1997,144(2): L15-L17
    101Tamboli D, Banerjee G, Waddell M. Novel interpretations of CMP removal ratedependencies on slurry particle size and concentration [J]. Electrochemical andSolid-State Letters,2004,7(10): F62-F65
    102Xie Yongsong, Bhushan Bharat. Effects of particle size, polishing pad and contactpressure in free abrasive polishing [J]. Wear,1996(200):281-295
    103Zhou C H, Shan L, Hight J R, etc. Influence of colloidal abrasive size on MRR andsurface finish in SiO2chemical mechanical polishing [J]. Tribology Transactions,2002,45(2):232-238
    104Che W, Guo Y J, Chandra A, etc. A scratch intersection model of material removal duringchemical mechanical planarization (CMP)[J]. Journal of Manufacturing Science andEngineering-transactions,2005,127(3):545-554
    105Wang Yongguang, Zhao Yong-Wu, Jian, Gu Jian. A new nonlinear-micro-contact modelfor single particle in the chemical-mechanical polishing with soft pad [J]. Journal ofMaterials Processing Technology,2007(183):374-379
    106Paul E. CMP or M-C(P): The balance in chemical mechanical polishing [J].Electrochemical and Solid-State Letters,2007,10(7): H213-H216
    107Chang L. On the CMP material removal at the molecular scale [J]. Journal ofTribology-transactions,2007,129(2):436-437
    108Katsuki F, Kamei K, Saguchi A, etc. AFM studies on the difference in wear behaviorbetween Si and SiO2in KOH solution [J]. Journal of The Electrochemical Society,2000,147(6):2328-2331
    109Cook L M. Chemical processs in glass polishing [J]. Journal of Non-crystalline Solids,1990,120(1-3):152-171
    110Pietsch G J, Chabal Y J, Higashi G S. The atomic-scale removal mechanism duringchemomechanical polishing of Si(100) and Si(111)[J]. Surface Science,1995(331-333):395-401
    111Miyoshi A, Nakagawa H, Matsukawa K. Simulation on chemical mechanical polishingusing atomic force microscope [J]. Microsystem Technologies,2005,11(8-10):1102-1106
    112Nishizawa H, Tateyama Y, Saitoh T. Ellipsometry characterization of oxidized copperlayers for chemical mechanical polishing process [J]. Thin Solid Films,2004(455-456):491-494
    113王永光,赵永武.基于分子量级的化学机械抛光界面动力学模型研究[J].摩擦学学报,27(3):259-263
    114WANG Yongguang, ZHAO Yongwu. Research on the molecular scale material removalmechanism in chemical mechanical polishing [J]. Chinese Science Bulletin,2008,53(13):2084-2089
    115王永光,赵永武.化学机械抛光材料分子去除机理的研究[J].科学通报,2008,53(3):359-363
    116Jiang Jian-Zhong, Zhao Yong-Wu, Wang Yong-Guang, etc. A chemical mechanicalpolishing model based on the viscous flow of the amorphous layer [J]. Wear,2008(265):992-998
    117王永光,赵永武.粘着力对化学机械抛光芯片分子去除机理影响的数学模型[J].半导体学报,2007,28(12):2018-2022
    118Si Lina, Guo Dan, Luo Jianbin, etc. Monoatomic layer removal mechanism in chemicalmechanical polishing process: A molecular dynamics study [J]. Journal of AppliedPhysics,2010,107(064310):1-7
    119Chen R L, Luo J B, Guo D, etc. Phase transformation during silica cluster impact oncrystal silicon substrate studied by molecular dynamics simulation, in Physics ResearchSection B-Beam Interactions with Materials and Atoms [J]. Nuclear Instruments&Methods,2008,266(14):3231-3240
    120Chen R L, Luo J B, Guo D, etc. Energy transfer under impact load studied by moleculardynamics simulation [J]. Journal of Nanoparticle Research,2009,11(3):589-600
    121Chen R L, Luo J B, Guo D, etc. Extrusion formation mechanism on silicon surface underthe silica cluster impact studied by molecular dynamics simulation [J]. Journal ofApplied Physics,2008,104(10)
    122Rajendran A, Takahashi Y, Koyama M, etc. Tight-binding quantum chemical moleculardynamics simulation of mechano-chemical reactions during chemical-mechanicalpolishing process of SiO2surface by CeO2particle [J]. Applied Surface Science,2005,244(1-4):34-38
    123Paul E, Boning D S, Devriendt K, etc. A model of chemical mechanical polishing: Therole of inhibitors [J]. In Chemical-Mechanical Planarization,2003,767:9-14
    124Paul E. A model of chemical mechanical polishing-II. Polishing pressure and speed [J].Journal of The Electrochemical Society,2002,149(5): G305-G308
    125Paul E, Kaufman F, Brusic V, etc. A model of copper CMP [J]. Journal of TheElectrochemical Society,2005,152(4): G322-G328
    126Wang Yongguang, Zhao Yongwu. Modeling the effects of oxidizer, complexing agentand inhibitor on material removal for copper chemical mechanical polishing [J]. AppliedSurface Science,2007(254):1517-1523
    127Wang Yongguang, Zhao Yongwu, Jiang Jianzhong, etc. Modeling effect ofchemical-mechanical synergy on material removal at molecular scale in chemicalmechanical polishing [J]. Wear,2008(265):721-728
    128Hocheng H, Tsai H Y, Su Y T. Modeling and experimental analysis of the MRR in thechemical mechanical planarization of dielectric films and bare silicon wafers [J]. Journalof The Electrochemical Society,2001,148(10): G581-G586
    129Wang Yongguang, Zhao Yongwu, An Wei, etc. Modeling the effects of cohesive energyfor single particle on the material removal in chemical mechanical polishing at atomicscale [J]. Applied Surface Science,2007(253):9137-9141
    130Xu J, Luo J B, Lu X C, etc. Atomic scale deformation in the solid surface induced bynanoparticle impacts [J]. Nanotechnology,2005(16):859-864
    131Eom D H, Kim I K, Han J H, etc. The effect of hydrogen peroxide in a citric acid basedcopper slurry on Cu polishing [J]. Journal of The Electrochemical Society,2007,15(41):D38-D44
    132Feng Xiangdong, Sayle Dean C, Wang Zhong Lin, etc. Converting ceria polyhedralnanoparticles into single-crystal nanospheres [J]. Science,2006,312(5779):1504-1508
    133Singh R Arvind, Yoon Eui-Sung. Friction of chemical and topographically modifiedSi(100) surfaces [J]. Wear,2007(263):912-919
    134Hu XiaoKai, Song Zhitang, Wang Haibo, etc. Investigation on the controllable growth ofmonodisperse silica colloid abrasives for the chemical mechanical polishing application[J]. Microelectronic Engineering,2010(87):1751-1755
    135Wei Chin-Chung, Horng Jeng-Haur, Lee An-Chen, etc. Analyses and experimentalconfrmation of removal performance of silicon oxide flm in the chemical mechanicalpolishing (CMP) process with pattern geometry of concentric groove pads [J]. Wear,2011(270):172-180
    136Youn S W, Kang C G. Effect of nanoscratch conditions on both deformation behavior andwet-etching characteristics of silicon (100) surface [J]. Wear,2006(261):328-337
    137Luo Jianfeng, Dornfeld David A. Effects of abrasive size distribution in chemicalmechanical planarization: modeling and verification [J]. Transactions on SemiconductorManufacturing,2003,16(3):469-476
    138董国全,万群,陈坚邦. GaAs抛光表面损伤的RBS研究[J].稀有金属,1998,22(4):317-320
    139郑红军,卜俊鹏,何宏家,等. GaAs化学机械抛光引入亚表面损伤层的分析[J].固体电子学研究与进展,1999,19(1):111-115
    140卜俊鹏,郑红军,赵冀,等.超低亚表面损伤层GaAs抛光晶片的工艺[J].半导体学报,2003,24(4):445-448
    141Ahn Yoomin, Yoon Joon-Yong, Baek Chang-Wook, etc. Chemical mechancial polishingby colloidal silica-based slurry fro micro-scratch reduction [J]. Wear,2004(257):785-789
    142Kim Hong Jin, Yang Ji Chul, Yoon Bo Un, etc.Nano-Scale Stick-Slip Friction Model forthe Chatter Scratch Generated by Chemical Mechanical polishing Process [J]. Journal ofNanoscience and Nanotechnology,2012,12(7):5683-5686
    143朱永法,宗瑞隆,姚文清.材料分析化学[M].北京:化学工业出版社,2009
    144蓝闽波.纳米材料测试技术[M].上海:华东理工大学出版社,2009
    145黄惠忠等.纳米材料分析[M].北京:化学工业出版社,2004
    146Liang H, Kaufman F, Sevilla R, etc. Wear phenomena in chemical-mechanical polishing[J]. Wear,1997(211):271-279
    147Jeng Yeau-Ren, Huang Pay-Yau. Impact of abrasive particles on the material removalrate in CMP [J]. Electrochemical and Solid-State Letters,2004,7(2): G40-G43
    148Chen Ping Husun, Huang Bing Wei, Shih Han-C. A chemical kinetics model to explainthe abrasive size effect on chemical mechanical polishing[J]. Thin Solid Films,2005(476):130-136
    149Ihnfeldt R, Talbot Jan B. Modeling of copper CMP using the colloidal behavior of anAlumina slurry with copper nanoparticles [J]. Electrochmemical Solid-State Letters,2007,154(12): H1018-H1026
    150Wang Yongguang, Zhao Yongwu, An Wei, etc. Modeling effects of abrasive particle sizeand concentration on material removal at molecular scale in chemical mechanicalpolishing [J]. Applied Surface Science,2010(257):249-253
    151Wang Yao-Chen, Yang Tian-Shiang. Modeling and calculation of slurry-chemistry effectson chemical-mechanical planarization with a groove pad [J]. J Eng Math,2009(63):33-50
    152Coutinho C A, Mudhivarthi S R, Kumar A, etc. Novel ceria-polymer microcompositesfor chemical mechanical polishing [J]. Applied Surface Science,2008(255):3090-3096
    153Lee Hyunseop, Jeong Haedo. A wafer-scale material removal rate profile model forcopper chemical mechanical planarization [J]. International Journal of Machine Tools&Manufacture,2011(51):395-403
    154陈志刚,陈扬.纳米磨料硬度对超光滑表面抛光粗糙度耳朵影响[J].中国有色金属学报,2005,15(7):1075-1080
    155Johnson K L. Contact Mechanics [M]. Cambridge: Cambridge University Press,1985
    156Timoshenko S, Goodier J N. Theory of Elasticity [M]. New York Toronto London:McGraw-Hill Book Company, Inc.,1951
    157Murarka S, Gutmann R J. Chemical-mechanical Planarization of MicroelectronicMaterials [M]. New York: Wiley,1997
    158Roff W J, Scott J R. Handbook of Common Polymers [M]. London: Butterworth,1971
    159Roylance D. Mechanics of Materials [M]. New York: Wiley,1996
    160Zhao Yongwu, Maietta David M, Chang L. An asperity micro-contact modelincorporating the transition from elastic deformation to fully plastic flow [J]. Journal ofTribology,2000,122:86-93
    161Lassner E, Schubert W. Tungsten Properties, Chemistry, Technology of the Element,Alloys, and Chemical Compounds [M]. New York: Kluwer Academic Publishers/PlenumPress,1999
    162Kervelen D W Van, Hoftyzer P J. Properties of Polymers, Correlations with ChemicalStructure [M]. Amsterdam: Elsevier,1972
    163Rabinowicz E. Friction and Wear of Materials [M].2nd Edition. New York: Wiley,1995
    164秦善.晶体学基础[M].北京:北京大学出版社,2004
    165张克从.近代晶体学[M].第2版.北京:科学出版社,2011
    166黄孝瑛.材料微观结构的电子显微学分析[M].北京:冶金工业出版社,2008
    167赵元元.硅晶圆环保型水基复合磨料超精密抛光实验与理论研究-磨料制备及其应用研究[D]:[硕士学位论文].无锡:江南大学机械工程学院,2013
    168陈扬.核壳结构SiO2/CeO2、PS/CeO2复合微球的可控合成及其CMP性能研究[D]:[博士学位论文].常州:江苏大学材料学专业,2012
    169李小成,吕晋军,杨生容.单晶硅滑动磨损性能及其相变研究[J].摩擦学学报,2004,24(4):326-331
    170张银霞,郜伟,康仁科,等.单晶硅片磨削损伤的透射电子显微分析[J].半导体学报,2008,29(8):1552-1556
    171Liu Cheng-Yang, Fu Wei-En, Lin Tzeng-Yow, etc. Nanoscale surface roughnesscharacterization by full feld polarized light-scattering [J]. Optics and Lasers inEngineering,2011(49):145-151
    172Wang X D, Yu J X, Chen L, etc. Effects of water and oxygen on the tribochemical wearof monocrystalline Si(100) against SiO2sphere by simulating the contact conditions inMEMS [J]. Wear,2011(271):1681-1688
    173Varenberg M, Etsion I, Halperin G. Nanoscale fretting wear study by scanning probemicroscopy [J]. Tribology Letters,2005,18(4):493-498
    174Han Xuesong, Hu Yuanzhong, Yu Siyuan. Investigation of material removal mechanismof silicon wafer in the chemical mechanical polishing process using molecular dynamicssimulation method [J]. Applied Physics A,2009(95):899-905
    175Etsion Izhak. Revisiting the Cattaneo-Mindlin Concept of Intefacial Slip in TangentiallyLoaded Compliant Bodies [J]. Journal of Tribology,2010,132(020801):1-9
    176OMara Willian C, Herring Robert B, Hunt Lee P. Handbook of Semiconductor SiliconTechnology [M]. Park Ridge: Noyes Publications,1990
    177Zhao Yongwu, Chang L. A model of asperity interactions in elastic-plastic contact ofrough surfaces [J], Journal of Tribology,2001123:857-864
    178Zhang Xiaoge Gregory. Electrochemistry of Silicon and Its Oxide [M]. New York:Kluwer Academic Publishers,2001
    179Liu Huiwen, Bhushan Bharat. Nanotribological characterization of molecularly thicklubricant films for application to MEMS/NEMS by AFM [J]. Ultramicroscopy,2003(97):321-340
    180曹立礼.材料表面科学[M].第2版.北京:清华大学出版社,2009
    181Biswas R, Han Y Y, Karra P, etc. Diffusion-limited agglomeration and defect generationduring chemical mechanical planarization [J]. Journal of the Electrochemical Society,2008,155(8): D534-D537
    182Ball R C, Weitz D A, Witten T A, etc. Universal kinetics in reaction limited aggregation[J]. Physical Review Letters,1987,58(3):274-277
    183Chandra A, Karra P, Bastawros A F, etc. Prediction of scratch generation in chemicalmechanical planarization [J]. Manufacturing Technology,2008,57(1):559-562
    184Saka N, Eusner T, Chun J–H. Nano-scale scratching in chemical-mechanical polishing[J]. Manufacturing Technology,2008,57(1):341-344
    185Kang R K, Wang K, Wang J, etc. Removal of scratch on the surface of MgO singlecrystal substrate in chemical mechanical polishing process [J]. Applied Surface Science,2008(254):4856-4863
    186Lee H S, Jeong H D. Chemical and mechanical balance in polishing of electronicmaterials for defect-free surfaces [J]. Manufacturing Technology,2009,58(1):485-490
    187Yu Tat-Kwan, Yu C C, Orlowski M. A statistical polishing pad model for chemicalmechancial polishing [R]. International Electron Devices Meeting, Washington DC,1999
    188Hickenboth C R, Moore J S, White S R, etc. Biasing reaction pathways with mechanicalforce [J]. Nature,2007,446(7134):423-427
    189Xu J, Luo J B, Wang L L, etc. The crystallographic change in sub-surface layer of thesilicon single crystal polished by chemical mechanical polishing [J]. TribologyInternational,2007(40):285-289
    190Ogawa H, Yanagisawa M, Kikuchi J, etc. Study on the mechanism of silicon chemicalmechanical polishing employing in situ infrared spectroscopy [J]. Japanese Journal ofApplied Physics Part1,2003,42(2A):587-592

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700