用户名: 密码: 验证码:
亚硝酸甲酯再生反应动力学及鼓泡塔中的反应过程模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以合成气为原料制备草酸酯并进一步加氢制乙二醇是一条具有良好发展前景的绿色化学新工艺。该工艺的核心步骤是CO气相催化偶联制备草酸酯,包括CO气相催化偶联反应和亚硝酸酯再生反应。以甲醇(或乙醇)为原料经亚硝酸甲酯(或亚硝酸乙酯)合成草酸二甲酯(或草酸二乙酯),均可实现乙二醇生产,但对同一催化剂上合成草酸二甲酯和草酸二乙酯两个过程的对比还未见报道。
     本论文在固定床反应器中对比了Pd-Fe/Al2O3催化剂上CO气相催化偶联制备草酸二甲酯和草酸二乙酯的反应性能。结果显示,与亚硝酸乙酯相比,亚硝酸甲酯具有更高的CO偶联反应活性。对亚硝酸酯的热分解反应以及在Pd-Fe/Al2O3催化剂上的催化分解反应进行了考察,并采用密度泛函理论(DFT)对亚硝酸酯的分解反应机理进行了研究。结果表明,催化剂对亚硝酸酯分解生成RCH2O·的过程有促进作用,并且亚硝酸酯分解反应和CO偶联合成草酸酯的反应为平行反应。DFT计算结果显示亚硝酸乙酯更易发生分解,这使得其在CO偶联反应中活性降低。另外,进一步对比研究了填料鼓泡塔反应器中亚硝酸酯再生反应,结果显示,相同反应条件下,亚硝酸甲酯再生反应的收率高于亚硝酸乙酯再生反应。因此,选择草酸二甲酯路线生产乙二醇更具有竞争力。基于此结论,本文进一步对亚硝酸甲酯再生反应动力学以及再生过程模拟进行了系统研究。
     亚硝酸甲酯再生反应是一个串联反应过程:第一步为NO的氧化反应,第二步为NO、NO2与甲醇的反应。中间产物NO2是再生反应过程的主要副产物。本文建立了适宜测定气液反应动力学的双搅拌气液反应器装置,并考察了各参数对于动力学测定的影响,在双搅拌气液反应器中对NO、NO2与甲醇反应生成亚硝酸甲酯这一过程的动力学进行了研究,并得到了亚硝酸甲酯再生反应动力学方程。
     基于得到的宏观动力学方程,并结合反应器内的流体力学特性,建立了描述填料鼓泡塔反应器中亚硝酸甲酯再生反应的数学模型,对填料鼓泡塔反应器中不同操作参数下亚硝酸甲酯再生反应过程进行了模拟计算。计算结果证明该模型能够较好地模拟不同工艺条件下的亚硝酸甲酯再生反应结果。计算结果和实验结果均表明,填料鼓泡塔反应器中亚硝酸甲酯再生反应适宜的工艺条件为:甲醇浓度不低于40wt.%,气相流量400~500mL/min,惰性组分氮气体积分数60~80%,NO/O2的摩尔比为5:1~6:1,反应温度30~40°C,反应器高径比8~10。另外,气相原料组成和气体流量是亚硝酸甲酯收率的敏感影响因素。
     在填料鼓泡塔反应器中进一步研究了系统压力和杂质气体对亚硝酸甲酯再生反应的影响。实验结果表明,适宜的反应压力0.2~0.3MPa。将一定比例的氮气分别以CO和CO2代替,在不同操作条件下考察了CO和CO2杂质气体对再生反应收率的影响。研究表明CO2存在时再生反应的转化率和收率显著下降,而CO对再生反应的影响很小。
Ethylene glycol is an important organic compound. The hydrogenation of dialkyl oxalate from syngas to ethylene glycol is considered as a green chemical process with potential benefits in both environmental and economic consideration. The key step is the synthesis of dialkyl oxalate via CO gaseous phase coupling reaction, which involves two reactions: CO coupling reaction to produce dialkyl oxalate and the regeneration of alkyl nitrite. Either methanol or ethanol can be used in this process to produce dimethyl oxalate and diethyl oxalate respectively but the comparison of dimethyl oxalate and diethyl oxalate synthesis on same catalyst was not reported.
     In this paper, the synthesis of dimethyl oxalate and diethyl oxalate by CO coupling reaction in gaseous phase was investigated in a fixed bed reactor over a Pd/Fe-Al2O3catalyst. The results showed that the space time yield of dimethyl oxalate was higher than that of diethyl oxalate under same reaction conditions. The different performance of dimethyl oxalate and diethyl oxalate formation was attributed to the different decomposition performance of methyl nitrite and ethyl nitrite. Moreover, Density Functional Theory (DFT) was used to simulate the decomposition process of methyl nitrite and ethyl nitrite and the results indicated that ethyl nitrite can be decomposed more easily than methyl nitrite. Regeneration reaction of methyl nitrite and ethyl nitrite was further compared. The results showed that the yield of methyl nitrite was higher than that of ethyl nitrite under same reaction conditions. So the production of ethylene glycol through dimethyl oxalate was more competitive than the route through diethyl oxalate. The regeneration of methyl nitrite was studied in detail.
     A model-reactor system suitable for kinetics study of gas-liquid reaction was set up and the kinetics of methyl nitrite synthesis from NO, NO2and methanol was obtained in the consideration of NO2as the main by-product accompany with methyl nitrite regeneration. The methyl nitrite regeneration reaction was considered as a two-step irreversible series reaction: the first reaction was NO oxidation to form NO2; the second reaction was the reaction of NO, NO2with methanol to form methyl nitrite, whose kinetics was obtained at atmospheric pressure by using the model reactor in this work.
     Based on the kinetics equation and simplified plug flow model, a mathematical model depicting methyl nitrite regeneration reaction in a packed bubble column reactor was proposed to predict methyl nitrite yield at varied conditions. As a result, the calculated results by the model coincided well with the experimental data, which proved that the model was effective for guiding the scaling-up of methyl nitrite regeneration process. Using this model, the effect of reaction temperature, N2volume fraction, NO/O2molar ratio and superficial gas velocity on methyl nitrite yield was predicted and compared with the experimental data. The suitable operation conditions were determined to be as follows: methanol concentration of40~99.9wt.%, gas flow rate of400~500mL/min, NO/O2molar ratio of5:1~6:1and N2content of60~80%volume fraction, reaction temperature of30~40°C,. the ratio of height to diameter of8~10. The gaseous composition and gas flow rate are considered the most sensitive factors affecting on the yield.
     The effect of reaction pressure and other gases on the methyl nitrite regeneration was further discussed. It was found that the suitable pressure is0.2~0.3MPa. The effect of CO on methyl nitrite is not obvious, while the existence of CO2in the system will decrease the O2conversion and methyl nitrite yield.
引文
[1] B. M. Trost. The atom economy-A search for synthetic efficiency, Science,1991,254(5037):1471-1477.
    [2] R. A. Sheldon. Organic synthesis. Past, present and future, Chemistry andIndustry,1992,(23):903-906.
    [3] R. A. Sheldon, I. Arends, U. Hanefeld, Weinheim: Wiley-VCH,2007.
    [4] P. T. Anastas, J. C. Warner, Oxford: Oxford University Press,1998.
    [5] T. Hudlicky, D. A. Frey, L. Koroniak, C. D. Claeboe, L. E. Brammer Jr.Toward a 'reagent-free' synthesis: Tandem enzymatic and electrochemicalmethods for increased effective mass yield (EMY), Green Chemistry,1999,1(2):57-59.
    [6] D. J. C. Constable, A. D. Curzons, V. L. Cunningham. Metrics to 'green'chemistry-Which are the best?, Green Chemistry,2002,4(6):521-527.
    [7] R. A. Sheldon. E factors, green chemistry and catalysis: An odyssey,Chemical Communications,2008,(29):3352-3365.
    [8] A. Agullo, J. Alder, D. Freemcm. Focus on C1chemistry, C1Chemistry,1983,62(3):57-65.
    [9]朱永健,徐安阳.煤和天然气路线合成乙二醇研究进展,精细石油化工进展,2007,8(8):47-50.
    [10]陈贻盾,李国方.“用煤代替石油乙烯合成乙二醇”的技术进步,中国科学技术大学学报,2009,39(1):1-10.
    [11]卢贵平,杨建萍,郑舟.草酸二乙酯的合成研究,浙江化工,1999,30(4):18-21.
    [12]殷元骐,羰基合成化学,北京:化学工业出版社,1996.
    [13]郭三阳.一次酯化法生产草酸二乙酯工艺探讨,湖南化工,1996,26(2):12-13.
    [14]加藤顺,小林博行,村田义夫,碳一化学生产技术,北京:化学工业出版社,1990.
    [15]陈维善.一氧化碳偶联法生产草酸新工艺,江苏化工,1989,17(3):40-42.
    [16] T. Chiba. Process for the preparation of oxalate by ethylene glycol, TheJournal of Chemical Physics,1964,41(1):1352.
    [17]郭学阳.玉米秆制草酸的研究,天然气化工,1990,15(4):28-43.
    [18]魏文德,有机化工原料大全,北京:化学工业出版社,1999.
    [19] D. M. Fenton, P. J. Steinwand. Noble metal catalysis. III. Preparation ofdialkyl oxalates by oxidative carbonylation, Journal of Organic Chemistry,1974,39(5):701-704.
    [20] D. M. Fenton, P. J. Steinwand. Preparation of oxalates US3,393,136,1968.
    [21] E. D. Dobrzynski, R. J. Angelici. Alkoxalyl complexes of palladium (II) andplatinum (II), Inorganic Chemistry,1975,14(1):59-63.
    [22]西平圭吾,内海晋一郎.宇部兴产的草酸制造技术,化学と工业,1982,35(4):243-246.
    [23] Y. Yamamoto, T. Matsuzaki, K. Ohdan, Y. Okamoto. Structure and electronicstate of PdCl2-CuCl2catalysts supported on activated carbon, Journal ofCatalysis,1996,161(2):577-586.
    [24] S. I. Uchiumi, K. Ataka, T. Matsuzaki. Oxidative reactions by a palladium-alkyl nitrite system, Journal of Organometallic Chemistry,1999,576(1-2):279-289.
    [25] K. Nishimura, K. Fujii, K. Nishihira, M. Matsuda, S. Uchiumi. Process forpreparing a diester of oxalic acid in the gaseous phase, US4,229,591,1980.
    [26] T. Yamasaki, M. Eguchi, S. Uchiumi, K. Nishihira, M. Yamashita, H. Itatani.Process for the preparation of dialkyl oxalates, US4,138,587,1979.
    [27]陈庚申,薛彪,严慧敏.钯络合物催化剂上CO和亚硝酸酯的偶联反应和机理,催化学报,1992,13(4):291-295.
    [28]陈庚申,薛彪.在Pd(acac)2络合催化剂上CO偶联合成草酸二酯的研究,天然气化工: C1化学与化工,1991,16(004):23-25.
    [29]卓广澜,姜玄珍.负载钯催化剂上亚硝酸乙酯的催化分解,催化学报,2003,24(7):509-512.
    [30] G. L. Zhuo, X. Z. Jiang. An attractive synthetic approach to methyl formatefrom methanol via methyl nitrite, Catalysis Letters,2002,80(3-4):171-174.
    [31] G. L. Zhuo, X. Z. Jiang. Catalytic decomposition of methyl nitrite oversupported palladium catalysts in vapor phase, Reaction Kinetics andCatalysis Letters,2002,77(2):219-226.
    [32]宋若钧.草酸酯合成中载体孔结构对钯催化剂活性和选择性的影响,天然气化学,1992,3(2):21-26.
    [33] X. Gao, Y. Zhao, S. Wang, Y. Yin, B. Wang, X. Ma. A Pd-Fe/α-Al2O3/Cordierite monolithic catalyst for CO coupling to oxalate, ChemicalEngineering Science,2011,66(15):3513-3522.
    [34] G. Xu, X. Ma, F. He, H. F. Chen. Characteristics of catalyst for carbonmonoxide coupling reaction, Industrial and Engineering Chemistry Research,1995,34(7):2379-2382.
    [35]王保伟,马新宾.一氧化碳偶联制草酸酯反应工程研究,化学工业与工程,1998,15(3):10-14.
    [36] X. G. Zhao, Q. Lin, W. D. Xiao. Characterization of Pd-CeO2/α-aluminacatalyst for synthesis of dimethyl oxalate, Applied Catalysis A: General,2005,284(1-2):253-257.
    [37] Q. Lin, Y. Ji, Z. D. Jiang, W. D. Xiao. Effects of precursors on preparation ofPd/α-alumina catalyst for synthesis of dimethyl oxalate, Industrial andEngineering Chemistry Research,2007,46(24):7950-7954.
    [38] X. Zhao, X. Lü, H. Zhao, Y. Zhu, W. Xiao. Study on Pd/α-Al2O3catalyst forvapor-phase coupling reaction of CO with CH3ONO to (CH3OOC)2, ChineseJournal of Catalysis,2004,25(2):125-128.
    [39] X. Z. Jiang, Y. H. Su, B. J. Lee, S. H. Chien. Study on the synthesis of diethyloxalate over Pd/α-Al2O3catalysts, Applied Catalysis A: General,2001,211(1):47-51.
    [40]刘秀芳,计扬,李伟,肖文德.蛋壳型Pd/α-Al2O3催化剂的制备及活性,催化学报,2009,30(3):213-217.
    [41]宋若钧,张秀辉,贺德华.一氧化碳气相催化氧化偶合制草酸酯的研究,天然气化工,1987,12(2):14-19.
    [42] F. Meng, G. Xu, R. Guo, H. Yan, M. Chen. Kinetic study of carbon monoxidecoupling reaction over supported palladium catalyst, Chemical Engineeringand Processing: Process Intensification,2004,43(6):785-790.
    [43]陈庚申,严慧敏,薛彪.一氧化碳和亚硝酸合成草酸酯和草酸,天然气化工,1995,20(4):5-10.
    [44]陈锦文,马新宾.一氧化碳气相催化偶联合成草酸二乙酯的研究,燃料化学学报,1994,22(1):37-42.
    [45] X. Ma, M. Fan, P. Zhang. Study on the catalytic synthesis of diethylcarbonate from CO and ethyl nitrite over supported Pd catalysts, CatalysisCommunications,2004,5(12):765-770.
    [46]徐艳,李瑞,陈明鸣,马新宾. CO气相偶联制草酸二乙酯工艺流程模拟,高校化学工程学报,2010,24(2):208-213.
    [47]孟凡东,许根慧,王保伟,马新宾,郭荣群. CO合成草酸二乙酯偶联与再生反应匹配的研究,石油学报,2003,19(3):58-63.
    [48]马新宾,许根慧,陈锦文,陈洪钫. CO气相催化偶联合成草酸二乙酯动力学,化工学报,1995,46(2):50-56.
    [49] F. Meng, G. Xu, Q. Guo. Kinetics of the catalytic coupling reaction of carbonmonoxide to diethyl oxalate over Pd-Fe/α-Al2O3catalyst, Journal ofMolecular Catalysis A: Chemical,2003,201(1-2):283-288.
    [50]宋瑛,刘崇微.钯系催化剂上CO气相催化偶联合成草酸二乙酯的原位红外研究,催化学报,2000,21(6):537-541.
    [51] Y. Yamamoto. Vapor phase carbonylation reactions using methyl nitrite overPd catalysts, Catalysis Surveys from Asia,2010,14(3):103-110.
    [52]林茜,赵秀阁,毕伟,肖文德. α-Al2O3的性质对负载钯催化剂催化CO偶联反应的影响,催化学报,2006,27(10):911-915.
    [53] F. Meng, G. Xu, B. Wang, X. Ma. Synthesis of diethyl oxalate by acoupling-regeneration reaction of carbon monoxide, Journal of Natural GasChemistry,2002,11(1-2):57-62.
    [54] L. Batt, R. T. Milne, R. D. McCulloch. The gas-phase pyrolysis of alkylnitrites. IV. Ethyl nitrite, International Journal of Chemical Kinetics,1977,9(4):567-587.
    [55] T. Matsuzaki, A. Nakamura. Dimethyl carbonate synthesis and otheroxidative reactions using alkyl nitrites, Catalysis Surveys from Japan,1997,1(1):77-88.
    [56] A. Nakamura, T. Matsuzaki. A new oxidation system using nitrite oxidants,Research on Chemical Intermediates,1998,24(2):213-225.
    [57] G. H. Xu, X. Ma, F. He, H. F. Chen. Characteristics of catalyst for carbonmonoxide coupling reaction, Industrial and Engineering Chemistry Research,1995,34(7):2379-2382.
    [58] N. Keller, G. Rebmann, V. Keller. Catalysts, mechanisms and industrialprocesses for the dimethylcarbonate synthesis, Journal of MolecularCatalysis A: Chemical,2010,317(1–2):1-18.
    [59] D. Delledonne, F. Rivetti, U. Romano. Developments in the production andapplication of dimethylcarbonate, Applied Catalysis A: General,2001,221(1-2):241-251.
    [60] C. Hao, S. Wang, X. Ma. Gas phase decarbonylation of diethyl oxalate todiethyl carbonate over alkali-containing catalyst, Journal of MolecularCatalysis A: Chemical,2009,306(1-2):130-135.
    [61] W. G. Lloyd, B. J. Luberoff. Oxidations of olefins with alcoholic palladium(II)salts, Journal of Organic Chemistry,1969,34(12):3949-3952.
    [62] M. Better, A. M. Tafesh, Applied homogeneous catalysis with organometalliccompounds: A comprehensive handbook in two volumes, Weinheim:Wiley-VCH Verlag GmbH,1996.
    [63] J. M. Takacs, X. T. Jiang. The Wacker reaction and related alkene oxidationreactions, Current Organic Chemistry,2003,7(4):369-396.
    [64] J. Fable. New synthesis with carbon monoxide, Journal Of MolecularCatalysis,1980,31:123-126.
    [65] Y. Yamamoto, T. Matsuzaki, S. Tanaka, K. Nishihira, K. Ohdan, A.Nakamura, Y. Okamoto. Catalysis and characterization of Pd/NaY fordimethyl carbonate synthesis from methyl nitrite and CO, Journal of theChemical Society-Faraday Transactions,1997,93(20):3721-3727.
    [66] H. Yue, Y. Zhao, X. Ma, J. Gong. Ethylene glycol: Properties, synthesis, andapplications, Chemical Society Reviews,2012,41(11):4218-4244.
    [67] F. E. Celik, H. Lawrence, A. T. Bell. Synthesis of precursors to ethyleneglycol from formaldehyde and methyl formate catalyzed by heteropoly acids,Journal of Molecular Catalysis A: Chemical,2008,288(1-2):87-96.
    [68] G. H. Xu, Y. C. Li, Z. H. Li, H. J. Wang. Kinetics of the hydrogenation ofdiethyl oxalate to ethylene glycol, Industrial and Engineering ChemistryResearch,1995,34(7):2371-2378.
    [69]计扬,张博,柳刚,李伟,肖文德.亚硝酸甲酯再生反应的动力学研究,天然气化工: C1化学与化工,2010,35(4):12-15.
    [70] H. Tsukahara, T. Ishida, M. Mayumi. Gas-phase oxidation of nitric oxide:Chemical kinetics and rate constant, Nitric Oxide-Biology and Chemistry,1999,3(3):191-198.
    [71] M. P. Pradhan, J. B. Joshi. Absorption of NOx gases in plate column:Selective manufacture of sodium nitrite, Chemical Engineering Science,2000,55(7):1269-1282.
    [72] M. P. Pradhan, J. B. Joshi. Absorption of NOx gases in aqueous NaOHsolutions: Selectivity and optimization, AIChE Journal,1999,45(1):38-50.
    [73] J. B. Joshi, V. V. Mahajani, V. A. Juvekar. Absorption of NOx gases,Chemical Engineering Communications,1985,33(1-4):1-92.
    [74] J. L. De Paiva, G. C. Kachan. Modeling and simulation of a packed columnfor NOx absorption with hydrogen peroxide, Industrial and EngineeringChemistry Research,1998,37(2):609-614.
    [75] O. Lagrille, J. Taillades, L. Boiteau, A. Commeyras. Investigation ofN-carbamoylamino acid nitrosation by {NO+O2} in the solid-gas phase.Effects of NOx speciation and kinetic evidence for a multiple-stage process,Journal of Physical Organic Chemistry,2007,20(4):271-284.
    [76]宋若钧.亚硝酸乙酯生成的热力学分析和最佳工艺条件,天然气化工,1987,5:1-5.
    [77]姜信真,气液反应理论与应用基础,北京:烃加工出版社,1989.
    [78]李风岭,气相CO偶联催化反应性能及再生动力学的研究,硕士学位论文,天津大学,1990.
    [79] G. Liu, Y. Ji, W. Li. Kinetic study on methyl nitrite synthesis from methanoland dinitrogen trioxide, Chemical Engineering Journal,2010,157(2–3):483-488.
    [80]陈锦文,许根慧,李振花,陈洪钫.一氧化碳偶联再生反应动力学研究,化工学报,1993,44(1):66-72.
    [81]计杨, CO催化偶联制草酸二甲酯反应机理、催化剂和动力学的研究,博士学位论文,上海:华东理工大学,2010.
    [82]闫永娟,亚硝酸乙酯再生反应工艺及动力学研究,硕士学位论文,天津:天津大学,2008.
    [83] D. Wójcik-Pastuszka, A. Gola, E. Ratajczak. Gas phase kinetics of thereaction system of2NO2N2O4and simple alcohols between293-358K,Polish Journal of Chemistry,2005,79(8):1301-1313.
    [84] H. Takagi, S. Hatakeyama, H. Akimoto, S. Koda. Formation of methyl nitritein the surface reaction of nitrogen dioxide and methanol.1. Dark reaction,Environmental Science and Technology,1986,20(4):387-393.
    [85] A. M. Fairlie Jr, J. J. Carberry, J. C. Treacy. A study of the kinetics of thereaction between nitrogen dioxide and alcohols, Journal of the AmericanChemical Society,1953,75(15):3786-3789.
    [86] H. Akimoto, H. Takagi. Formation of methyl nitrite in the surface reaction ofnitrogen dioxide and methanol.2. Photoenhancement, EnvironmentalScience and Technology,1986,20(4):393-397.
    [87] S. Koda, K. Yoshikawa, J. Okada, K. Akita. Reaction kinetics of nitrogendioxide with methanol in the gas phase, Environmental Science andTechnology,1985,19(3):262-264.
    [88]苏跃华,周水鹤.亚硝酸乙酯再生的研究,化学反应工程与工艺,2000,16(1):45-49.
    [89] R. Sugise, S. Tanaka, H. Ii, K. Mii. Process for producing alkyl nitrite, US7,714,160,2010.
    [90] H. Wang, G. Li. Kinetic study on the synthesis of ethyl nitrite by the reactionof C2H5OH, O2, and NO in a trickle bed reactor, Chemical EngineeringJournal,2010,163(3):422-428.
    [91]胡仲才,尹东学,何翠英,马新宾,李振花.亚硝酸乙酯再生新工艺,化学工业与工程,2008,25(2):112-115.
    [92] K. Nishihira, S. Tanaka, S. Yoshida. Process for producing alkyl nitrite, US6191302,2001.
    [93]单文波,黄飚,鲁文质,吴良泉.一种制备C1~C4烷基亚硝酸酯的方法,CN200610028187,2006.
    [94] J. Doumaux, R. Arthur, M. James. Preparation og nitrite esters, US4,353,843,1982.
    [95]李振花,闫永娟,吕静,胡仲才,马新宾.气相法亚硝酸乙酯再生反应的研究,天然气化工: C1化学与化工,2008,33(2):29-32.
    [96]刘娜,亚硝酸酯溶解度的测定及其传质研究,硕士学位论文,天津:天津大学,2009.
    [97] G. Carta, R. L. Pigford. Absorption of nitric oxide in nitric acid and water,Industrial and Engineering Chemistry Fundamentals,1983,22(3):329-335.
    [98]孙志勇,李增生,崔巧云.用硝酸吸收法脱除氮氧化物的实验研究,科学技术与工程,2009,9(19):5928-5931.
    [99] N. D. Ingale, I. B. Chatterjee, J. B. Joshi. Role of nitrous acid decompositionin absorber and bleacher in nitric acid plant, Chemical Engineering Journal,2009,155(3):851-858.
    [100] W. Weisweiler, K. Eidam, M. Thiemann, E. Scheibler, K. W. Wiegand.Absorption of NO2/N2O4in nitric acid, Chemical Engineering andTechnology,1990,13(2):97-101.
    [101]胡仲才,滴流床反应器中亚硝酸乙酯合成新工艺研究,硕士学位论文,天津:天津大学,2007.
    [102]柳刚,傅金彦,计扬,金璐,李伟.亚硝酸甲酯在甲醇溶剂中的亨利常数测定,化学工程,2010,38(6):61-63.
    [103] N. Kantarci, F. Borak, K. O. Ulgen. Bubble column reactors, ProcessBiochemistry,2005,40(7):2263-2283.
    [104] P. Therning, A. Rasmuson. Liquid dispersion and gas holdup in packedbubble columns at atmospheric pressure, Chemical Engineering Journal,2001,81(1–3):69-81.
    [105] G. J. Stiegel, Y. T. Shah. Backmixing and liquid holdup in a gas-liquidcocurrent upflow packed column, Industrial and Engineering ChemistryProcess Design and Development,1977,16(1):37-43.
    [106] M. Abraham, S. B. Sawant. Hydrodynamics and mass transfer characteristicsof packed bubble columns, The Chemical Engineering Journal,1990,43(3):95-105.
    [107] K. Niranjan, V. G. Pangarkar. Gas holdup and mixing characteristics ofpacked bubble columns, The Chemical Engineering Journal,1984,29(2):101-111.
    [108] M. Shah, A. A. Kiss, E. Zondervan, J. Van Der Schaaf, A. B. De Haan. Gasholdup, axial dispersion, and mass transfer studies in bubble columns,Industrial and Engineering Chemistry Research,2012,51(43):14268-14278.
    [109] R. Maceiras, E. álvarez, M. A. Cancela. Experimental interfacial areameasurements in a bubble column, Chemical Engineering Journal,2010,163(3):331-336.
    [110] P. V. Danckwerts. Gas-Liquid Reactions,1970.
    [111] S. Moustiri, G. Hebrard, S. S. Thakre, M. Roustan. A unified correlation forpredicting liquid axial dispersion coefficient in bubble columns, ChemicalEngineering Science,2001,56(3):1041-1047.
    [112] M. I. Urseanu, J. Ellenberger, R. Krishna. A structured catalytic bubblecolumn reactor: Hydrodynamics and mixing studies, Catalysis Today,2001,69(1-4):105-113.
    [113] A. V. Raghavendra Rao, R. Kishore Kumar, T. Sankarshana, A. Khan.Interfacial area for concurrent gas-liquid upflow through packed bed,Canadian Journal of Chemical Engineering,2010,88(6):929-935.
    [114] B. Bhatia, K. D. P. Nigam, D. Auban, G. Hebrard. Effect of a new highporosity packing on hydrodynamics and mass transfer in bubble columns,Chemical Engineering and Processing: Process Intensification,2004,43(11):1371-1380.
    [115] F. R. Birrer, U. B hm. Gas-liquid dispersions in structured packing withhigh-viscosity liquids, Chemical Engineering Science,2004,59(20):4385-4392.
    [116]邹华生,陈焕钦.鼓泡填料塔中水与餐厅污水氧传递特征,化工学报,2003,54(8):1049-1054.
    [117]郝军,刘铤元.多维气相色谱法快速分析裂解气的组成,甘肃科技,2008,24(21):64-66.
    [118]李孝国,张晓彤,桂建舟,刘丹,王荧光,孙兆林.多维气相色谱在线分析轻烃芳构化产物的研究,石油化工高等学校学报,2004,17(2):6-8.
    [119] J. Luong, R. Gras, H. Cortes, R. Shellie. Multi-dimensional gaschromatography with a planar microfluidic device for the characterization ofvolatile oxygenated organic compounds, Journal of Chromatography A,2012,1255(14):216-220.
    [120] J. B. Levy. The thermal decomposition of nitrate esters. I. Ethyl nitrate,Journal of the American Chemical Society,1954,76(12):3254-3257.
    [121] J. B. Levy. The thermal decomposition of ethyl nitrite, AIChE Journal,1956,78(9):1780-1783.
    [122]高正虹, CO催化偶联反应机理和杂质对催化剂活性影响研究,博士毕业论文,天津:天津大学,2002.
    [123] Y. He, W. A. Sanders, M. C. Lin. Thermal decomposition of methyl nitrite:Kinetic modeling of detailed product measurements by gas-liquidchromatography and Fourier transform infrared spectroscopy, Journal ofPhysical Chemistry,1988,92(19):5474-5481.
    [124] Y. Ji, G. Liu, W. Li, W. Xiao. The mechanism of CO coupling reaction toform dimethyl oxalate over Pd/α-Al2O3, Journal of Molecular Catalysis A:Chemical,2009,314(1–2):63-70.
    [125] Z. Xunsheng, B. Desong. ARUPS of the adsorption of CH3ONO on Pdsurface, Vacuum and Technology,1995,1(15):7-13.
    [126] A. D. Becke. Density-functional exchange-energy approximation withcorrect asymptotic behavior, Physical Review A,1988,38(6):3098-3100.
    [127] R. E. Ressert, K. J. Laidler. Kinetics of the decomposition of diethyl peroxide,The Journal of Chemical Physics,1952,20(4):574-577.
    [128] R. Atkinson, D. Baulch, R. Cox, J. Crowley, R. Hampson, R. Hynes, M.Jenkin, M. Rossi, J. Troe. Evaluated kinetic and photochemical data foratmospheric chemistry: Volume I-gas phase reactions of gas phase reactionsof Ox, HOx, NOx and SOx species, Atmospheric chemistry and physics,2004,4(6):1461-1738.
    [129] J. Chao, R. C. Wilhoit, B. J. Zwolinski. Gas phase chemical equilibrium indinitrogen trioxide and dinitrogen tetroxide, Thermochimica Acta,1974,10(4):359-371.
    [130]马沛生,徐明.各种气体在甲醇中的溶解度,天然气化工,1991,16(6):45-55.
    [131] C. Young, IUPAC solubility data series, Pergamon: Oxford,1981.
    [132]徐英年,胡英,刘国杰.气体溶解度的分子热力学(II)——气体在极性溶剂中的Henry常数,化工学报,1987,(2):137-145.
    [133] P. C. Luo, Z. B. Zhang, Z. Jiao, Z. X. Wang. Investigation in the design of aCO2cleaner system by using aqueous solutions of monoethanolamine anddiethanolamine, Industrial and Engineering Chemistry Research,2003,42(20):4861-4866.
    [134]李瑞, CO偶联-再生制草酸二乙酯过程模拟研究,硕士学位论文,天津:天津大学,2009.
    [135] G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical reactor analysis anddesign, New York: Wiley,1990.
    [136] K. Akita, F. Yoshida. Bubble size, interfacial area, and liquid-phase masstransfer coefficient in bubble columns, Industrial and Engineering ChemistryProcess Design and Development,1974,13(1):84-91.
    [137] I. Iliuta, M. C. Iliuta, F. C. Thyrion. Gas-liquid mass transfer in trickle-bedreactors: Gas-side mass transfer, Chemical Engineering and Technology,1997,20(9):589-595.
    [138]宋瑛, Pd系催化剂上CO偶联反应机制及临氢失活作用研究,博士学位论文,天津:天津大学,2000.
    [139] P. Therning, A. Rasmuson. Liquid dispersion, gas holdup and frictionalpressure drop in a packed bubble column at elevated pressures, ChemicalEngineering Journal,2001,81(1–3):331-335.
    [140] D. Fu. Investigation of the interfacial properties for CO2-methanol andCO2-ethanol mixtures, Science China Chemistry,2011,54(5):856-862.
    [141] J. Xia, M. J decke, A. P. S. Kamps, G. Maurer. Solubility of CO2in (CH3OH+H2O), Journal of Chemical and Engineering Data,2004,49(6):1756-1759.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700