用户名: 密码: 验证码:
塑料异型材气体辅助共挤出成型的实验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气辅共挤成型技术是一种新型的塑料成型工艺,因为口模内壁与塑料熔体表面之间存在稳定的气垫膜层,使得熔体在口模内的挤出方式由非滑移的黏着剪切流动转换为完全滑移的非黏着剪切流动,可有效减小共挤出胀大、黏性包围和界面不稳定等现象,基本能实现规则截面制品的精密共挤。本文将气体辅助技术与不规则截面塑料异型材共挤技术结合在一起,形成不规则截面塑料异型材气辅共挤成型技术,并采用实验和数值模拟相结合的研究方法对其进行深入研究,以期实现不规则截面制品的精密共挤。本文主要研究内容概括如下:
     1.搭建了直线型异型材气辅共挤实验装置,设计加工了L型截面异型材上下分层和芯壳分层气辅共挤口模,完成了整套直线型异型材气辅共挤实验装置的安装和调试,并进行了深入的实验研究。研究结果表明:(1)除气体压力、温度、螺杆与气阀的开启顺序外,口模设计时预留的气垫层厚、熔体流率(单位流率比)、物料特性、牵引力等都是影响稳定气垫膜层形成的重要因素;(2)在相同的工艺条件下,气辅共挤比传统共挤产量要大,而且产量增幅随着挤出熔体黏度的增大而增大,如两种PP共挤时,气辅共挤产量增率为1.76%~4.65%,而PP和比之黏度较高的HDPE共挤时,气辅共挤产量增率高达12.95%;(3)实验过程参数对传统共挤成型的影响较大,而对稳定气辅共挤成型的影响较小,无论实验过程参数如何变化,气辅共挤成型过程中,在无外力的作用下,熔体离开口模时,其截面形状和尺寸均能与口模截面形状和尺寸保持一致,实现了直线型异型材的精密共挤;(4)传统共挤制品与稳定气辅共挤制品表面质量无明显差异,且当两熔体流率相等、气体压力和温度接近熔体压力和温度时,气辅共挤制品表面质量达到最佳。
     2.将气体简化为不可压缩流体,建立了L型截面异型材上下分层气-液-液多相共挤成型的三维非等温数值模型;将气体简化为完全滑移边界条件,建立了两相气辅共挤成型的三维非等温数值模型。采用CFD软件对两种模型进行了数值模拟,并对模拟结果进行了对比和分析。研究结果表明:(1)气辅共挤段前设有5mm传统共挤段时,能保证两熔体在气体进入口模前已粘合紧密,共挤出过程中即使气压稍大也不会产生气槽;(2)在能实现稳定气辅共挤的条件下,选择较小的气压和较小的气垫层厚均有利于提高制品的形状和尺寸精度;(3)以两种不同方式简化气体模拟所得口模内熔体的流场基本一致,但两者模拟所得口模出口端熔体边界和层间界面形貌略有不同。
     3.建立了不规则截面形状异型材双层共挤成型口模内外熔体流动的三维数值模型,并对其进行了模拟研究。研究结果表明:(1)传统共挤成型时,因口模出口端面上熔体存在二次流动,使得熔体离开口模后出现离模膨胀现象,因沿挤出方向的速度呈梯度分布,且低黏度熔体速度大于高黏度熔体速度,使得熔体离开口模后出现低黏度熔体向高黏度熔体一侧偏转的现象,而气辅共挤成型时,口模出口端面上熔体不存在二次流动,且沿挤出方向的速度均匀一致,使得熔体离开口模后既无离模膨胀行为,亦无偏转变形行为;(2)传统共挤成型时,口模内熔体压力从入口处到出口处基本成线性减小至零值,且压力降随着熔体黏度的增大而增大,如黏度为15000Pa·s的HDPE熔体在口模内的压降为0.20MPa,黏度为4688Pa·s的PP熔体在口模内的压降为0.11MPa,而气辅共挤成型时,口模内整个气辅共挤段熔体的压力接近零值,不存在压力降;(3)传统共挤成型时,口模内壁熔体的剪切速率和应力分布不均匀,并在直线型异型材内直角处和曲线型异型材直线与圆弧交接处、圆弧与圆弧交接处集中且达到最大值,剪切速率和应力集中的部位即为熔体离开口模后变形最严重的部位,而气辅共挤成型时,口模内壁熔体的剪切速率和应力值均接近零值,表明异型材离开口模后无明显变形;(4)工艺参数和物料特性对传统共挤成型的影响较大,对气辅共挤成型的影响较小。模拟研究结果很好解释了实验过程中的现象,如相同能耗下,气辅共挤产量大于传统共挤产量;无外力作用时,传统共挤熔体离开口模后发生明显胀大和变形现象,而气辅共挤熔体离开口模后则能保持其形状和尺寸与口模一致。
Polymer gas-assisted co-extrusion is a new technique in the plastics processingindustry. It can effectively diminish the die swell, encapsulation and interfacialinstability phenomenon and make the cross-section profile of the products in keepingwith that of the die because the stable gas layer between the die wall and the surfaceof the polymer melt can make the melt flow by means of the fully slip non-adhesiveshearing co-extrusion instead of the no-slip adhesive shearing co-extrusion. In thispaper, the plastic profile co-extrusion technique was combined with the gas-assistedmolding technology to form the new plastic profile gas-assisted co-extrusiontechnique. The research on the new technology was carried out through experimentsand numerical simulations. The main study work is summarized as follows.
     1. The L-shaped profile gas-assisted co-extrusion experimental system wasestablished, and the L-shaped profile gas-assisted co-extrusion dies were designedand manufactured. Then the experimental research was carried thoroughly, and theexperimental studies reveal that:(1) In addition to gas pressure, gas temperature andthe startup sequence of the extruder screw and gas valve, the gas layer thickness, thepolymer melt flow rate (ratio), the polymer characteristics, the external force and soon are very important to form the stable gas layer between the die wall and thepolymer melts surface.(2) The output of the gas-assisted co-extrusion is more thanthat of the traditional co-extrusion under the same energy consumption, and theoutput growth rate increases with the increase of the polymer melt viscosity, forexample, the output growth rate of two kinds of PP melts co-extrusion is1.76%~4.65%, while the output growth rate of PP melt and the more viscous HDPE meltco-extrusion is as high as12.95%.(3) The technological parameters have a greatimpact on the traditional co-extrusion and a little effect on the stable gas-assistedco-extrusion.(4) It has little difference between the surface quality of traditionalco-extrusion products and that of gas-assisted co-extrusion products. What’s more,the surface quality of gas-assisted co-extrusion products is best when the two meltsflow rate are equal and the gas pressure and temperature are both close to the melts pressure and temperature.
     2. The three-dimensional non-isothermal multiphase gas-assisted co-extrusionmathematical models were established based on the gas layer was simplified as theincompressible fluid or the full-slip boundary condition. The numerical simulationswere presented using the finite element method and the results were compared andanalyzed. The simulation results show that:(1) The gas-assisted co-extrusion with afive-millimeter traditional co-extrusion flow can make the two polymer melts sticktogether and the interface between the polymer melts isn’t ready to separate under thegreater gas pressure, but the gas-assisted co-extrusion without a traditionalco-extrusion flow makes the interface ready to separate under the greater gas pressurebecause of the small interface adhesive force.(2) The smaller gas pressure and thethinner gas layer can improve the quality of products in the gas-assisted co-extrusion.(3) The flow field distribution of making gas layer as the incompressible fluidcoincides with that of making gas layer as the full-slip boundary condition, but themelt boundary and interface profile are different.
     3. The three-dimensional viscoelastic numerical simulation was developed fortwo-layer co-extrusion through an irregular cross-section channel using the finiteelement method. The Phan-Thien and Tanner (PTT) model was considered asviscoelastic constitutive equations and the Generalized Naviers’ law was adopted tofound the slip boundary condition. The simulation results display that:(1) In thetraditional co-extrusion, the secondary flow at the die exit leads to the die swell andthe unbalanced velocity distribution along the melts flow direction results in thedeflection deformation of the products. In the gas-assisted co-extrusion, it doesn’texist the secondary flow at the die exit and the velocity distribution along the meltsflow direction is uniform, so polymer melts have little die swell and little deflectiondeformation after leaving the metal die.(2) The polymer melts pressure linearlyreduces to zero from the die entrance to the die exit and the pressure drop increaseswith the increase of the melt viscosity in the traditional co-extrusion, for example, thepressure drop of more viscous HDPE is0.20MPa, and that of lower viscous PP is0.11MPa. But the melts pressure in the die is close to zero and there has little pressuredrop in the gas-assisted co-extrusion.(3) In the traditional co-extrusion, the distribution of the local shear-rate and the stress are uneven and concentrate in theinside right-angle, the line and arc junction and arc and arc junction of the irrelugarcross-section die. The concentration of the shear-rate and the stress will result indeforming the extrudates. In the gas-assisted co-extrusion, there has little localshear-rate and stress in the die, so melts have no deformation after leaving the die.(4)The simulation results also indicate that the process parameters and the polymercharacteristics have a great influence on the traditional co-extrusion and have littleeffect on the gas-assisted co-extrusion. The above results well explain theexperimental phenomena, such as the output of gas-assisted co-extrusion is greaterthan that of traditional co-extrusion under the same energy consumption, it exists dieswell and deformation phenomenon on the traditional co-extrusion products, and noton the gas-assisted co-extrusion ones.
引文
[1]李坚.进入WTO前夕的中国塑料机械行业[J].中国塑料,2000,14(7):1~9.
    [2]秦晓南,江波.复合共挤出技术的现状和发展[J].橡塑技术与装备,2001,27(4):1~6.
    [3]江波.我国塑料挤出成型机及辅机的发展现状与技术水平分析(上)[J].橡术技术与装备,2002,28(10):1~5.
    [4]高峰,李海梅,申长雨.塑料异型材的挤出成型[J].工程塑料应用,2003,31(9):58~62.
    [5]刘斌,马骏.塑料异型材软硬共挤技术的研究现状与趋势[J].塑料工业,2007,35(11):1~4(10).
    [6]肖运海,刘斌.浅析塑料异型材软硬共挤技术[J].塑料科技,2008,36(8):94~97.
    [7]陶宏.中国流延膜的现状与新发展[J].塑料制造,2009,(12):48~32.
    [8]周宏志,江波,许澍华.浅析高聚物共挤出技术[J].橡塑技术与装备,2004,30(9):4~14.
    [9]贾明印,薛平,朱复华,梁斌.共挤出技术在聚合物成型加工中的应用及其设备的最新进展[J].工程塑料应用,2006,34(1):66~69.
    [10]牟玥.挤出加工流场中聚合物成型机理及其工艺模拟与优化研究[D].山东大学,2008.
    [11]柳和生,涂志刚,孙燕萍,包忠诩.聚合物口模挤出流动分析方法[J].高分子通报,2001,(2):43~49.
    [12]黄益宾.聚合物气体辅助共挤成型的理论和实验研究[D].南昌大学,2011.
    [13]徐佩弦.高聚物流变学及其应用[M].北京:化学工业出版社,2003.
    [14]梁基照.聚合物短口型挤出胀大方程[J].合成橡胶工业,1995,18(3):171~173.
    [15]梁基照.混炼胶长口型挤出胀大的预测[J].合成橡胶工业,1997,20(3):44~5.
    [16]周彦豪.聚合物流变学基础[M].陕西:西安交通大学出版社,1987.
    [17]金日光.高聚物流变学[M].上海:华东理工大学出版社,2012.
    [18]Graessley WW, Glasscock SD, Crawley RL. Die Swell in Molten Polymers[J]. J Rheol.,1970,14(4):519~526.
    [19] L.A.Utracki, Z.Bakerdjian, R.Kamal M. A method of the measurement of the true die swell ofpolymer melts[J]. J Appl Polym Sci.,1975,19(2):481~501.
    [20] R.I.Tanner. A theory of die-swell[J]. Journal of Polymer Science Part A-2:Polymer Physics,1970,8(12):2067~2078.
    [21] Garcia-Rejon A, R.W.Diraddo, M.E.Ryan. Effect of die geometry and flow characteristics onviscoelastic annular swell[J]. J Non-Newton Fluid,1995,60(2-3):107~128.
    [22] N.Orbey, J.M.Dealy. Isothermal swell of extrudate from annular dies; effects of die geometry,flow rate, and resin characteristics[J]. Polym Eng Sci.,1984,24(7):511~518.
    [23] J.Z.Liang. Effects of extrusion conditions on die-swell behavior of polypropylene/diatomitecomposite melts[J]. Polymer Testing,2008,27(8):936~940.
    [24]邓小珍,柳和生,黄益宾,黄兴元,章凯.气体辅助对聚合物异型材多层共挤成型的影响[J].高分子材料科学与工程,2013,29(5):137~140(45).
    [25]邓小珍,柳和生,黄益宾. C形口模共挤出胀大的三维黏弹数值研究[J].中国塑料,2013,27(2):74~79.
    [26]张敏,黄传真,孙胜,贾玉玺,梁天将.聚合物熔体复合挤出胀大过程的数值模拟及可恢复弹性形变分析[J].高分子材料科学与工程,2012,28(6):176~179(85).
    [27]张敏.双组分聚合物异型材共挤出过程的数值模拟研究[D].山东大学,2007.
    [28]张敏,孙胜,贾玉玺,赵国群.聚合物共挤出过程的挤出胀大有限元分析[J].高分子材料科学与工程,2006,22(5):36~40.
    [29]吕静,陈晋南,胡冬冬.壁面滑移对两种聚合物熔体共挤出影响的数值研究[J].化工学报,2004,55(3):455~459.
    [30] Karagiannis A, Hrymak AN, Vlachopoulos J. Three-dimensional studies on bicomponentextrusion[J]. Rheol Acta.,1990,29(1):71~87.
    [31] Mitsoulis E, Heng FL. Numerical Simulation of Coextrusion from a Circular Die[J]. J ApplPolym Sci.,1987,34:1713~1725.
    [32] Mitsoulis E. Extrudate Swell in Double-Layer Flows[J]. J Rheol.,1986,30(4): S23~S44.
    [33]黄益宾,柳和生,黄兴元,赖家美.复合共挤成型中挤出胀大的三维粘弹数值模拟[J].高分子材料科学与工程,2010,26(3):160~163.
    [34]黄益宾,柳和生,黄兴元.聚合物双组分复合共挤成型的挤出胀大研究[J].应用基础与工程科学学报,2010,18(4):657~665.
    [35]周文彦,周国发.聚合物多层共挤成型离模膨胀过程的三维黏弹性数值模拟[J].化工学报,2008,59(12):3033~3041.
    [36]周文彦,周国发.熔体粘弹性对聚合物多层共挤成形离模膨胀影响的数值分析[J].机械工程学报.2010,46(6):111~119.
    [37]周国发,周文彦.熔体粘弹性流变性能参数对聚合物共挤成型离模膨胀影响的数值分析[J].塑性工程学报,2008,15(6):144~150.
    [38] Keawkanoksilp C, Apimonsiri W, Patcharaphun S, Sombatsompop N. Rheological propertiesand melt strength of LDPE during coextrusion process[J]. J Appl Polym Sci.,2012,125(3):2187~2195.
    [39].曾广胜,瞿金平.振动力场对聚合物挤出胀大的影响[J].材料科学与工艺,2008,16(2):235~238.
    [40]尹延国,朱元吉,王晓枫,解挺.润滑挤出方法与模具设计[J].塑料科技,1997,(3):44~46.
    [41]宋建辉,黄兴元. T型口模气辅挤出中挤出胀大和挤出物变形的影响因素[J].工程塑料应用,2013,41(10):60~63.
    [42]黄兴元,柳和生,周国发,罗忠民,李绅元.气体辅助挤出的实验研究[J].中国塑料,2005,19(3):17~19.
    [43]黄兴元,柳和生,周国发,罗忠民,李绅元.气辅挤出过程中挤出胀大的实验和模拟研究[J].塑料,2005,(6):55~59(44).
    [44]黄益宾,柳和生,黄兴元,徐磊.聚合物气辅共挤成型中挤出胀大的数值模拟[J].高分子材料科学与工程,2010,26(5):171~174.
    [45]邓小珍,柳和生,黄益宾,黄兴元,何建涛.非等温气辅共挤出胀大的三维粘弹数值模拟[J].高分子材料科学与工程,2013,29(3):169~172.
    [46] Joseph DD, Renardy M, Renardy Y. Instability of the flow of two immiscible liquids withdifferent viscosities in a pipe[J]. J Fluid Mech.,1984,141:309~317.
    [47] Takase M, Kihara S-i, Funatsu K. Three-dimensional viscoelastic numerical analysis of theencapsulation phenomena in coextrusion[J]. Rheol Acta.,1998,37:624~634.
    [48] Sunwoo KB, Park SJ, Lee SJ, Ahn KH, Lee SJ. Numerical simulation of three-dimensionalviscoelastic flow using the open boundary condition method in coextrusion process[J]. JNon-Newtonian Fluid Mech.,2001,99(2-3):125~144.
    [49] Sunwoo KB, Park SJ, Lee SJ, Ahn KH, Lee SJ. Three-dimensional viscoelastic simulation ofcoextrusion process:comparison with ecperimental data[J]. Rheol Acta.,2002,41:144~153.
    [50] Anderson PD, Dooley J, Meijer HEH. Viscoelastic effects in multilayer polymer extrusion[J].Applied Rheology,2006,16(4):198~205.
    [51] K.Matsunaga, T.Kajiwara, K.Funatsu. Numerical simulation of multi-layer flow for polymermelts—a study of the effect of viscoelasticity on interface shape of polymers within dies[J].Polym Eng Sci.,1998,38(7):1099~1111.
    [52] Puissant S, Demay Y, Vergnes B, Agassant JF. Two-dimensional multilayer coextrusion flowin a flat coat-hanger die. Part I: Modeling [J]. Polym Eng Sci.,1994,34(3):201~208.
    [53] Puissant S, Vergnes B, Agassant JF, Demay Y, Labaig JJ. Two-dimensional multilayercoextrusion flow in a flat coat-hanger die. Part2: Experiments and theoretical validation [J].Polym Eng Sci.,1996,36(7):936~942.
    [54] Zhang M, Jia YX, Sun S, Zhao GQ. Three-dimensional nonisothermal simulation ofmulti-layer extrusion processes of polymer melts[J]. Polym-Plast Technol.,2006,45(11):1257~1262.
    [55] Zhang M, Sun S, Jia YX. Three-dimensional finite element simulation and analysis ofhalf-club coextrusion processes[J]. Polym-Plast Technol.,2008,47(4):384~388.
    [56] Zhang M, Huang CZ, Sun S, Jia YX. The Finite Element Simulation of Polymer CoextrusionBased on the Slip Boundary[J]. Polym-Plast Technol.,2009,48(7):754~759.
    [57]黄益宾,柳和生,黄兴元,赖家美.聚合物共挤成型界面位置的三维黏弹数值模拟[J].中国塑料,2008,27(9):66~69.
    [58]黄益宾,熊爱华,黄兴元.聚合物共挤成型的黏性包围和界面不稳定现象[J].上饶师范学院学报,2011,(6):32~37.
    [59] Dooley J, Rudolph L. Viscous and elastic effects in polymer coextrusion[J]. J Plast FilmSheet.,2003,19(2):111~122.
    [60]Rajagopalan D, C.Armstrong R, A.Brown R. Finite element methods for calculation of steady,viscoelastic flow using constitutive equations with a newtonian viscosity[J]. Journal ofNon-Newtonian Fluid Mechanics,1990,36:159~192.
    [61] Holmes LT, Favero JL, Osswald TA. Modeling viscoelastic secondary flows inthree-dimensional noncircular ducts[J]. Polym Eng Sci.,2012,52(8):1715~1723.
    [62] Toure B, Vlcek J, Marin J, Hauko SJ. Interfacial Instabilities in a Two Layer Coextrusionduring Cable Coating[J]. Aip Conf Proc.,2011,43:1375~1384.
    [63] Bonhomme O, Morozov A, Leng J, Colin A. Elastic instability in stratified core annularflow[J]. Phys Rev E.,2011,83(6).
    [64] Alba K, Laure P, Khayat RE. Transient two-layer thin-film flow inside a channel[J]. Phys RevE.,2011,84(2).
    [65] Yue PT, Zhou CF, Dooley J, Feng JJ. Elastic encapsulation in bicomponent stratified flow ofviscoelastic fluids[J]. J Rheol.,2008,52(4):1027~1042.
    [66] Zatloukal M, Martyn MT, Coates PD, Vlcek J. Modelling of viscoelastic coextrusion flows inmulti-manifold flat dies[J]. Plast Rubber Compos.,2004,33(7):305~309.
    [67] Wilczynski K, Szymaniak Z, Nastaj A. Modeling of plastics coextrusion. Part I. Viscousflows[J]. Polimery-W.,2003,48(3):204~210.
    [68] Liu H, Deng X, Huang Y, Huang X, Li M. Three-dimensional viscoelastic simulation of theeffect of wall slip on encapsulation in the coextrusion process[J]. J Polym Eng.,2013,33(7):625~632.
    [69] Lee B-L, White JL. An Experimental Study of Rheological Properties of Polymer Melts inLaminar Shear Flow and of Interface Deformation and Its Mechanisms in Two-PhaseStratified Flow[J]. J Rheol.,1974,18(3):467~492.
    [70] Ranjbaran MM, Khomami B. The effect of interfacial instabilities on the strength of theinterface in two-layer plastic structures[J]. Polym Eng Sci.,1996,36(14):1875~1885.
    [71] Tzoganakis C, Perdikoulias J. Interfacial Instabilities in Coextrusion FLows of Low-densityPolyethylenes: Experimental Studies[J]. Polym Eng Sci.,2000,40(5):1056~1064.
    [72] Zatloukal M, Tzoganakis C, Vlcek J, Saha P. Numerical simulation of polymer coextrusionflows-A criterion for detection of "wave" interfacial instability onset[J]. Int Polym Proc.,2001,16(2):198~207.
    [73] Zatloukal M, Vlcek J, Tzoganakis C, Saha P. Viscoelastic stress calculation in multi-layercoextrusion dies: Die design and extensional viscosity effects on the onset of 'wave'interfacial instabilities[J]. Polym Eng Sci.,2002,42(7):1520~1533.
    [74] Zatloukal M, Kopytko W, Lengalova A, Vlcek J. Theoretical and experimental instabilities incoextrusion analysis of interfacial flows[J]. J Appl Polym Sci.,2005,98(1):153~162.
    [75] Zatloukal M, Kopytko W, Saha P, Martyn M, Coates PD. Theoretical and experimentalinvestigation of interfacial instability phenomena occurring during viscoelastic coextrusion[J].Plast Rubber Compos.,2005,34(9):403~409.
    [76] Zatloukal M, De Witte J, Lavalle C, Saha P. Investigation of PPA interactions with polymermelts in single layer extrusion and coextrusion flows[J]. Plast Rubber Compos.,2007,36(6):248~253.
    [77]朱文利,周南桥.共挤复合成型的界面不稳定性[J].中国塑料,2002,16(7):53~57.
    [78] Valette R, Laure R, Demay Y, Agassant JF. Investigation of the interfacial instabilities in thecoextrusion flow of PE and PS[J]. Int Polym Proc.,2003,18(2):171~178.
    [79] Valette R, Laure R, Demay Y, Agassant JF. Experimental investigation of the development ofinterfacial instabilities in two layer coextrusion dies[J]. Int Polym Proc.,2004,19(2):118~128.
    [80] Lamnawar K, Maazouz A. Rheology and morphology of multilayer reactive polymers: effectof interfacial area in interdiffusion/reaction phenomena[J]. Rheol Acta.,2008,47(4):383~397.
    [81] Lamnawar K, Maazouz A. Rheology at the interface and the role of the interphase in reactivefunctionalized multilayer polymers in coextrusion process[J]. Xvth International Congress onRheology-the Society of Rheology80th Annual Meeting, Pts1and2.,2008,1027:57~59.
    [82] Martyn MT, Spares R, Coates PD, Zatloukal M. Imaging and analysis of wave typeinterfacial instability in the coextrusion of low-density polyethylene melts[J]. J Non-NewtonFluid.,2009,156(3):150~164.
    [83]周国发.聚合物多相分层充模流动成型的界面不稳定形成的数值模拟[J].化工学报.2004;55(7):1173~8.
    [84]张效迅,崔振山,周国发.黏弹性聚合物熔体多相成型界面不稳定的机理分析[J].化工学报,2007,58(2):431~439.
    [85] Zatloukal M, De Witte J. Influence of process aids on zigzag type of interfacial instabilities inmultilayer flows: theoretical and experimental investigation [J]. Plastics, Rubber andComposites,2006,35(4):149~154.
    [86]张敏,孙胜,贾玉玺.基于有限元方法的聚合物共挤出界面形成过程数值研究[J].应用基础与工程科学学报,2008,16(5):712~718.
    [87]Liang RF, Mackley MR. The gas-assisted extrusion of molten polyethylene[J]. J Rheol.,2001,45(1):211~226.
    [88]何建涛,柳和生,黄兴元,邓小珍,黄益宾,周长长.壁面滑移对塑料异型材共挤影响的数值模拟研究[J].工程塑料应用,2013,41(6):43~46.
    [89]黄益宾,柳和生,黄兴元,熊爱华.聚合物气辅共挤成型界面的有限元模拟和分析[J].高分子材料科学与工程,2012,28(12):187~190.
    [90]鄢超,柳和生,黄兴元,周国发.聚合物气体辅助挤出成型[J].中国塑料,2003,17(11):15~18.
    [91]卢臣,柳和生,黄兴元.气体辅助挤出成型技术在塑料异型材中的应用[J].工程塑料应用,2006,34(11):77~79.
    [92]黄兴元,柳和生,周国发,鄢超.辅助挤出技术在聚合物挤出加工中的应用[J].工程塑料应用,2005,(3):34~37.
    [93]黄兴元.聚合物气体辅助口模挤出成型的理论及实验研究[D].南昌大学,2006.
    [94] Brzoskowski R, White JL, Szydlowski W, Weissert FC, Nakajima N, Min K. Air-LubricatedDie for Extrusion of Rubber Compounds[J]. Rubber Chemistry&Technology,1987,60(5):945~956.
    [95]黄立.橡胶挤出机气膜润滑口型中胶料流动行为的研究[D].北京化工大学,1993.
    [96]钱百年,童玉清,汪传生,瞿雄伟.气膜润滑剪切机头及其在短纤维增强胶管中的应用[J].橡胶工业,1997,44(6):323~326.
    [97] Arda DR, Mackley MR. Sharkskin instabilities and the effect of slip from gas-assistedextrusion[J]. Rheol Acta.,2005,44(4):352~359.
    [98]黄兴元,柳和生,周国发,罗忠民,李绅元.聚合物气辅挤出的挤出胀大研究[J].塑料工业,2005,(7):32~35.
    [99]黄兴元,柳和生,周国发,罗忠民,李绅元.气体辅助挤出中影响气垫形成及稳定性因素分析[J].塑性工程学报,200,(5):101~104(109).
    [100]孙阳.气辅挤出UHMW-PE板材的研究[D].四川大学,2006.
    [101]卢臣.塑料异型材气辅挤出口模流动的理论与实验研究[D].南昌大学,2007.
    [102]尹智龙.聚合物气辅共挤成型数值模拟研究[D].南昌大学,2007.
    [103]周国发,周文彦,胡晨章.三维粘弹性异型材气辅挤出成型过程的数值模拟研究[J].塑性工程学报,2008,(5):198~203.
    [104]周文彦,周国发.聚合物多层气辅共挤精密成型机制的数值分析[J].复合材料学报,2009,(3):90~98.
    [105]肖建华,柳和生,黄兴元.气辅挤出成型中两相流界面的稳定性[J].高分子材料科学与工程,2009,25(11):118~120(124).
    [106]肖建华,柳和生,黄兴元,熊爱华.气辅挤出胀大比与滑移段长度的关系[J].高分子材料科学与工程,2009,25(7):166~169(174).
    [107]申长雨,陈静波,刘春太,李倩.塑料成型加工过程的CAE技术[J].塑料加工,2005,40(2):32~37.
    [108] Tadmor Z, Klein I. Engineering Principles of Plasticating Extrusion[M]. New York:Wiley-Inter-science,1970.
    [109] Cheng HF., Manas-Zloczower I. Distributive mixing in conveying elements of a ZSK-53co-rotating twin screw extruder [J]. Polym Eng Sci.,1998,38(6):926~935.
    [110] Yao CH., Manas-Zloczower I. Influence of design on dispersive mixing performance in anaxial discharge continuous mixer-LCMAX40[J]. Polym Eng Sci.,1998,38(6):936~946.
    [111] Bravo VL., Wright JD., Hrymak AN. Numerical simulation of pressure and velocity profilesin kneading elements of a co-rotating twin screw extruder [J]. Polym Eng Sci.,2000,40(2):525~541.
    [112] Ahmed R., Liang R.F., Mackley M.R. The experimental observation and numericalprediction of planar entry flow and die swell for molten polyethylenes[J]. J Non-NewtonFluid.,1995,59(2):129~153.
    [113] Huynh BP. A numerical investigation of non-isothermal extrusion through annular dies [J].International Journal of Engineering Science,1998,36(2):171~188.
    [114] Rubin YD, Marchal TM. Coextrusion of an automotive profile with metal insert numericalsimulation and die design Polyflow[J]. Conference Proceedings Annual TechnicalConference-ANTEC, Soc Plast Eng.,199,1:299~303.
    [115] Mitsoulis E. Three-dimensional non-Newtonian computations of extrudate swell with thefinite element method[J]. Computer Methods in Applied Mechanics and Engineering,1999,180(3-4):333~344.
    [116] Funatsu K, Gouda T, Matsunaga K, Kihara S. Numerical simulation of three-dimensionalviscoelastic flow within dies [J]. Polym Eng Sci.,199,39(1):152~163.
    [117] P. J, J.M P, N. EK, J. C. The reduction of viscous extrusion stresses and extrudate swellcomputation using slippery exit surfaces[J]. J Non-Newton Fluid.,1998,79(2):599~617.
    [118]李鹏,耿孝正,马秀清.啮合同向双螺杆挤出机螺纹元件三维流场分析[J].中国塑料,2001,15(6):73~77.
    [119]马秀清,耿孝正,李鹏.非啮合双螺杆挤出过程中螺纹元件流道三维流场分析—等温牛顿模型[J].中国塑料,2000,14(10):78~85.
    [120]刘志芳,冯连勋,董力群.新型锥形双螺杆混合段三维流场分析[J].中国塑料,2001,15(5):86~91.
    [121]彭炯,陈晋南.同向旋转双螺杆机计量段中聚合物挤出的模拟[J].中国塑料,2001,15(7):39~42.
    [122]彭炯,胡冬冬,陈晋南,谭惠民.同向双螺杆挤出机捏合段三维非等温流动的数值模拟[J].工程塑料应用,2002,30(2):42~44.
    [123]彭炯,陈晋南.计算流体力学(CFD)在口模设计中的应用[J].现代塑料加工应用,2001,13(6):31~33.
    [124]柳和生,卢臣,黄兴元,邓小珍. T型异型材气辅口模挤出胀大的数值模拟和实验研究[J].塑性工程学报,2008,15(1):158~161.
    [125]肖建华,柳和生,黄兴元,熊爱华.气辅挤出口模中滑移段长度对压力降和第一法向应力差的影响[J].高分子材料科学与工程,2009,25(6):167~170.
    [126]戚宁.气辅共挤成型界面稳定性数值模拟及实验研究[D].南昌大学,2009.
    [127]魏汝梅.塑料模加热功率的计算[J].模具技术,1990,(4):18~23.
    [128]吴元微,赵利群.模具材料与热处理[M].大连:大连理工大学出版社,2007.
    [129]梁基照.应用熔体指数仪研究HDPE的流变特性II——剪切粘度与熔融流动指数的关系[J].塑料科技,1993,(5):39~42.
    [130]王贵恒.高分子材料成型加工原理[M].北京:化学工业出版社,1982.
    [131] L.ALVREZ-MARTINEZ, K.P.KONDURY, J.M.HARPER. A General Model for Expansionof Extruded Products[J]. Journal of Food Science,1988,53(2):609~615.
    [132] A.J.Giacomin, R.S.Jeyaseelan. A constitutive theory for polyolefins in large amplitudeoscillatory shear[J]. Polym Eng Sci.,1995,35(9):768~777.
    [133]古大冶.高分子流体动力学[M].成都:四川教育出版社,1988.
    [134] M.J.Crochet, R.Keunings. Journal of Non-Newtonian Fluid Mechanics[J]. J Non-NewtonFluid.,1980,7(2-3):199~212.
    [135] M.S.Darwish, J.R.Whiteman. Numerical modelling of viscoelastic liquids using afinite-volume method[J]. J Non-Newton Fluid.,1992,45(3):311~37.
    [136] U.Lang, W.Michaeli. Comparison of velocity measurements and different calculationmethods in silt dies[J]. ANTEC.1997,2289~2293.
    [137] Clermont J-R, Normandin M. Numerical simulation of extrudate swell for Oldroyd-B fluidsusing the stream-tube analysis and a streamline approximation[J]. J Non-Newton Fluid.,1993,50(2-3):193~215.
    [138] R.Rao R, A.Finlayson B. Viscoelastic flow simulation using cubic stress finite elements[J]. JNon-Newton Fluid.,1992,43(1):61~68.
    [139] Chang R-Y, Shiao F-C, Yang W-L. Simulation of director orientation of liquid crystallinepolymers in2-D flows[J]. J Non-Newton Fluid.,1994,55(1):1~20.
    [140][美]S.米德尔曼(著),赵得禄(译).聚合物加工基础[M].北京:科学出版社,1984.
    [141] X.F.Yuan, R.C.Ball, S.F.Edwards. Dynamical modelling of viscoelastic extrusion flows[J]. JNon-Newton Fluid.,1994,54:423~435.
    [142] T.Kajiwara, S.Ninomiya, Y.Kuwano, K.Funatsu. Numerical simulation of converging flowof polymer melts through a tapered slit die[J]. J Non-Newton Fluid.,1993,48(1-2):111~124.
    [143] C.Beraudo, A.Fortin, T.Coupez, Y.Demay, B.Vergnes, J.F.Agassant. A finite element methodfor computing the flow of multi-mode viscoelastic fluids:comparison with experiments[J]. JNon-Newton Fluid.,1998,75(1):1~23.
    [144] Fortin A, Zine A. Computing viscoelastic fluid flow problems at low cost[J]. J Non-NewtonFluid.,1992,45(2):209~229.
    [145] Thien NP, I.Tanner R. A new constitutive equation derived from network theory[J]. JNon-Newton Fluid.,1977,2(4):353~365.
    [146] Mostafaiyan M, Khodabandehlou K, Sharif F. Analysis of a viscoelastic fluid in an annulususing Giesekus model[J]. J Non-Newton Fluid.,2004,118(1):49~55.
    [147] Mohseni MM, Rashidi F. Viscoelastic fluid behavior in annulus using Giesekus model[J]. JNon-Newton Fluid.,2010,165(21-22):1550~1553.
    [148] S.Surana K, M.Deshpande K, Romkes A, J.N.Reddy. Numerical Simulations of BVPs andIVPs in Fiber Spinning Using Giesekus Constitutive Model in hpk Framework[J].International Journal for Computational Methods in Engineering Science and Mechanics,2009,10(2):143~157.
    [149] Ravanchi MT, Mirzazadeh M, Rashidi F. Flow of Giesekus viscoelastic fluid in a concentricannulus with inner cylinder rotation[J]. International Journal of Heat and Fluid Flow,2007,28(4):838~845.
    [150]陈卓如.工程流体力学[M].北京:高等教育出版社,1992.
    [151] Polyflow3.10User's Guide[M]. Belgium: Fluent Inc.,2003.
    [152]申长雨.塑料模具计算机辅助工程[M].郑州:河南科学出版社,1998.
    [153] X.L.Luo, R.I.Tanner. A pseudo-time intergral method for non-isothermal viscoelastic flowsand its applications to extrusion simulation[J]. Rheol Acta.,1987,26(6):499~507.
    [154] J.M.Marchal, M.J.Crochet. A new mixed finite element for calculating viscoelastic flow[J].J Non-Newton Fluid.,1987,26(1):77~114.
    [155] Takase M, Kihara S, Funatsu K. Three-dimensional viscoelastic numerical analysis of theencapsulation phenomena in coextrusion[J]. Rheol Acta.,1998,37(6):624~634.
    [156] Sunwoo KB, Park SJ, Lee SJ, Ahn KH, Lee SJ. Numerical simulation of three-dimensionalviscoelastic flow using the open boundary condition method in coextrusion process[J]. JNon-Newton Fluid.,2001,99(2-3):125~144.
    [157] Sunwoo KB, Park SJ, Lee SJ, Ahn KH, Lee SJ. Three-dimensional viscoelastic simulationof coextrusion process:comparison with experimental data[J]. Rheol Acta.,2002,(41):144~153.
    [158] Shin DM, Kim JM, Jung HW, Hyun JC. Transient and steady-state solutions of2Dviscoelastic nonisothermal simulation model of film casting process via finite elementmethod[J]. J Rheol.,2007,51(3):393~407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700