用户名: 密码: 验证码:
ZnO基磁性光催化材料的制备及其降解四环素类抗生素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类健康及生活质量的大幅提高,药品及个人护理品(PPCPs)在日常生活中被广泛使用,环境对其负载量大,由于这类化学物质具有环境效应、遗传毒性效应和生理生态毒性,对这种新型污染物的处理技术正受到人们的密切关注,抗生素就是其中代表性化合物。目前,生物处理、物理吸附和光解作用等传统处理技术降解抗生素效率低且受水体环境限制,高级氧化技术利用高反应活性的羟基自由基可降解持久型生物难降解的有机物从而被广泛应用于污水处理过程。
     半导体光催化剂高级氧化过程是基于n型半导体在一定波长的光辐射下,半导体的能带中产生光生电子与空穴,与表面吸附的有机物发生氧化还原反应使其被降解去除。ZnO生产成本低,具有宽带隙可在紫外光照射下具有很强的光催化活性,但在实际应用中光催化剂存在太阳光利用率低、光生载流子重新复合降低催化活性和催化剂回收利用难等缺点。本论文通过改变ZnO的纳米结构,通过与不同功能材料复合影响其禁带宽度同时引入磁性性能,利用低温水热合成技术设计制备了四类ZnO基微纳米光催化材料;通过系统的测试方法对制备的四类光催化剂的晶相、形貌、元素组成、光学、磁性及重复利用性等特征进行研究;对四环素(TC),土霉素(OTC)和强力霉素(DC)三种四环素类抗生素进行了光催化降解并探讨其降解动力学行为。本论文主要研究结果如下:
     1.硅基衬底水热法合成ZnO纳米材料及其光催化性能的研究
     (1)利用水热法以Si(100)作为基材,通过简易两步合成了中空六棱柱ZnO纳米材料,并利用多种表征手段对ZnO的结构、形貌、光学和磁学性质进行表征。结果表明,以硝酸锌为锌盐,KOH浓度为1.6M时得到了结构规整的高纯度中空六棱形ZnO纳米材料,单个中空六棱柱的长和高均为200nm,中空结构直径为100nm。这种中空ZnO样品显示了一定的铁磁性,其饱和磁化强度在5K和300K下分别为2.38×10-2emu/g和0.42×10-2emu/g。光催化性能测试表明,中空ZnO具有丰富的吸附位点,在暗反应吸附过程中吸附量大,纳米材料在UV辐射下对TC,OTC和DC具有很高的光催化降解效率,分别达到96.44%,77.83%和84.83%,且光催化反应符合一级反应动力学模型,反应速率常数为2.013×10-2min-1,1.272×10-2min-1和1.561×10-2min-1。
     (2)利用Si(111)作为基材,水热法两步合成了花状ZnO微纳米结构,利用多种表征手段对ZnO的晶相、形貌、光学和磁学性质进行分析。结果显示,当KOH浓度为1.5M时,100oC反应12h可制得包含多个花瓣和一个花簇中心的花状结构ZnO,其中花瓣大小为500nm,一个完整花朵尺寸为1μm。这种花状ZnO的铁磁性较高,饱和磁化强度为3.6×10-2emu/g。光催化性能测试表明,花状ZnO纳米材料在UV辐射下对TC,OTC和DC可分别达到96.47%,63.77%和91.15%的降解率,且光催化反应为一级动力学反应,反应速率常数为2.414×10-2min-1,1.03×10-2min-1和1.976×10-2min-1。
     2. Fe3O4复合ZnO制备磁性核壳结构光催化剂及其光催化性能的研究
     利用共沉淀及煅烧两步法合成了锥形核壳结构的磁性Fe3O4/ZnO纳米材料。对材料的组分、形貌、结构、光学及磁力性质进行表征发现,类似锥形的核壳Fe3O4/ZnO尺寸在100nm,以Fe3O4纳米簇为核,ZnO为壳;这种复合材料具有很强的铁磁性,Fe3O4/ZnO的饱和磁矩(Ms)为46.89emu/g,Fe3O4/ZnO光催化剂在外加磁场作用下能够实现有效的回收并显示了较高的再利用性。Fe3O4的复合使ZnO的带隙能有效降低至2.83eV;光催化性能测试表明,Fe3O4/ZnO光催化剂较纯ZnO显示了很高的可见光利用率,对TC、DC和OTC的降解率分别为81.02%,70.94%和63.67%,通过对光催化反应动力学分析发现Fe3O4/ZnO对四环素的降解符合一级动力学方程,反应速率大于纯ZnO和P25TiO2。另外对表面活性剂改性的磁性核Fe3O4的分散性,并对Fe3O4本身作为一种磁性载体的吸附行为进行分析。结果显示,改性后纳米Fe3O4结晶度及分散性明显提高,较尺寸为25nm的未改性Fe3O4,PVP和PEG–4000改性Fe3O4颗粒尺寸分别减小至20nm和10nm;同时改性产物均保持了较高的磁性。在吸附四环素(TC)过程中,静态吸附实验表明,PEG–4000改性Fe3O4吸附容量最高(47.62%),PVP改性Fe3O4的吸附能力(36.1%)优于未改性Fe3O4(13.45%);PEG–4000改性Fe3O4吸附TC过程中,主要的吸附机制是氢键作用,Langmuir等温线模型更好地拟合了吸附平衡数据,其吸附动力学遵循孔内扩散模型,并以表面吸附为主,粒内扩散为辅。再生实验表明经过三次解析与重复利用实验后仍显示较高的吸附容量。
     3. CoFe2O4复合ZnO制备空心圆锥结构光催化剂及其光催化性能的研究
     利用Si(100)衬底辅助两步法水热合成了具有中空圆锥结构的磁性ZnO/CoFe2O4纳米材料。通过对材料的组分、形貌、比表面积、孔隙率、磁学和光学性质进行表征。结果表明,以择优刻蚀过程和磁性纳米颗粒的吸引效应共同作用制备了以中空圆锥形ZnO为骨架,CoFe2O4纳米粒子包覆在其表面,形成了长为200-300nm,圆锥底面直径为200nm的核壳结构。与ZnO的带隙能3.22eV相比,CoFe2O4的复合使得ZnO/CoFe2O4的带隙能降低至2.68eV。通过BET和BJH计算可知这种中空圆锥结构ZnO/CoFe2O4的高比表面积88.1593m2/g和孔体积0.18cm3/g使光催化剂具有更多反应位点。ZnO/CoFe2O4光催化剂在外加的磁场作用下能够实现有效回收,经过四个循环光催化反应,降解率几乎没有发生明显下降。ZnO/CoFe2O4光催化剂对TC、DC和OTC的降解率分别达到72.42%,66.18%和55.92%,比较光催化降解率及反应速率常数,ZnO/CoFe2O4的光催化活性明显高于P25TiO2。
     4. CdS-CoFe2O4复合ZnO磁性光催化剂的制备及其光催化性能的研究
     (1)利用水热法调节不同物料配比、反应时间合成了ZnO/CdS复合纳米材料。采用多种表征手段分析材料的组分、形貌和光学性质。结果表明,当锌源与镉源的物料摩尔比为25:1,反应时间10h可获得形貌最佳的ZnO/CdS复合物,即尺寸为1μm的多孔棒状ZnO骨架表面粘附了尺寸在几十纳米的CdS粒子。ZnO/CdS复合物的带隙能为2.87eV,在日光照射下反应120min,对TC、DC和OTC的光催化降解率分别达到81.65%,70.68%和54.61%,ZnO/CdS对四环素的降解符合一级动力学方程,且降解反应速率很快;在紫外光照射下,ZnO/CdS催化剂几乎可以完全降解这三种抗生素,证明了该复合物催化剂的高催化效率。
     (2)利用ZnO、CdS和CoFe2O4三组份前驱体溶液水热合成了磁性ZnO/CdS/CoFe2O4纳米材料。通过对材料的组分、形貌、磁学和光学性质进行表征,并对这种磁性复合物的光催化效率以及重复利用率进行测试。结果表明,圆柱形ZnO尺寸在500nm,其表面粘附了大量尺寸在100nm的块状CdS/CoFe2O4纳米粒子。三组份的复合使得ZnO/CdS/CoFe2O4的带隙能降低至2.07eV,同时该复合材料的饱和磁化强度为6.65emu/g。利用ZnO/CdS/CoFe2O4分别催化TC、DC和OTC三种抗生素,降解率分别达到82.96%,68.93%和58.53%,降解反应速率很快,符合一级动力学方程;重复使用四个循环,ZnO/CdS/CoFe2O4对TC的降解率仍保持65%以上。
With the substantial improvements in human health and living quality, Pharmaceuticaland Personal Care Products (PPCPs) are widely used in daily life, and there are large load ofthe effluents discharged into the environment. Because the PPCPs like antibiotics haveenvironmental effects, genotoxic effects and toxicity of physiology and ecology, publicconcern has been aroused of the wastewater treatment technique on removing these emergingcontaminants for their possible threats to aquatic environment and human health. Currently,the traditional techniques including biological treatment, physical adsorption and photolysisdegradation have restricted by the water condition with disadvantages of low degradabilityand intricate procedure. Advanced oxidation processes make use of highly reactive hydroxylradical degrading the persistent and refractory biodegradation organic compound, which arewidely used in the sewage treatment process.
     Advanced Oxidation of semiconductor photocatalyst is typically based on n-typesemiconductor, the photogenerated electrons and holes generated from the energy band underirradiation at certain wavelength range, which lead to the degradation of pollutants absorbedon the surface of photocatalyst by the redox reaction. ZnO has a wide bandgap and lowproduction cost standing out of the semiconductor photocatalysts. However, the lowutilization of sunlight and electron–hole pair recombination reduced the the catalytic activityand recycling of ZnO. In this paper, four kind of ZnO-based magnetic photocatalysts designedby changing the ZnO nanostructures, hybrid the different band structure composite materialsand bring in the magnetic materials prepared by low-temperature hydrothermal method. Byarious of characterization, the crystalline phase, morphology, chemical composition, opticaland magnetic properties and the reusability were investigated. Meanwhile, their behaviours ofphotocatalytic degradation of three tetracyclines antibiotics were studied by the batchphotoreaction operations.
     The main conclusions included the following items:
     1. Hydrothermal synthesis of ZnO nanomaterials on silicon substrate and theirphotocatalytic properties
     (1) Hollow hexahedral ZnO nanocrystals were prepared by using a facile two-step ofhydrothermal procedure on a Si(100) substrate. The structure, morphology, photocatalytic andmagnetic properties of the products were examined. The results demonstrated that theuniformly sized ZnO of hexahedral structure is200nm and a hole with diameter of100nm,when the zinc source is Zinc nitrate and the concentration of KOH is1.6M. Hollow ZnOnanocrystals were proved having ferromagnetic property, the Ms is2.38×10-2emu/g at5Kand0.42×10-2emu/g at300K. Further investigation on the photocatalytic activity of theproducts showed the degradation of TC, OTC and DC is96.44%,77.83%and84.83%, whichcan be described by the frst order kinetic model, the rate constant is2.013×10-2min-1,1.272×10-2min-1and1.561×10-2min-1, respectively.
     (2) Flower-like ZnO micro and nano structures were prepared by using a facile two-stepof hydrothermal procedure on a Si(111) substrate. The structure, morphology, photocatalyticand magnetic properties of the products were examined. The results showed that flower-likestructure nanoparticles with the size of1μm can be obtained at100oC with1.5M KOH,which contains multiple petals with the diameter of500nm and a flower cluster center.Flower-like ZnO structures showed positive ferromagnetic property, the Ms is3.6×10-2emu/gtested at room temperature. Further investigation on the photocatalytic activity of the productsshowed the degradation of TC, OTC and DC under mercury lamp is96.47%,63.77%and91.15%, respectively, which can be described by the frst order kinetic model, and the rateconstant is2.414×10-2min-1,1.03×10-2min-1and1.976×10-2min-1, respectively.
     2. Preparation of ZnO/Fe3O4magnetic core-shell structure composite and theirphotocatalytic properties
     Magnetic Fe3O4/ZnO core-shell nanomaterials have been successfully prepared by usingtwo-step method with coprecipitation and annealing treatment. The material composition,morphology and magnetic properties were examined and verified. The results showed that thestrongly-magnetic materials have the diameter of100nm, the Fe3O4nanoparticles work as themagnetic core while ZnO is the photocatalytic shell, and the nanocomposites can be recycledunder magnetic field since the Ms is46.89emu/g. The recombination action of Fe3O4reducedthe bandgap energy to2.83eV, leading to high photocatalytic degradation on TC, DC andOTC, and the degradation rate is81.02%,70.94%,63.67%, respectively. The photocatalysis of Fe3O4/ZnO can be described by the frst order kinetic model, the low reaction rate requiredlong reaction process. Meanwhile, The nano-Fe3O4was modified by surfactants working asan magnetic adsorbent to remove TC from aqueous solutions. The nano-Fe3O4crystalline anddispersion was improved significantly by PEG-4000, the particle diameter of unmodifiedFe3O4, PVP-Fe3O4and PEG-4000-Fe3O4is25nm,20nm and10nm, respectively. The resultsof batch adsorption experiments suggested hydrogen bonds formation between hydroxylgroups played a leading role in removing TC, and PEG-4000-Fe3O4has the greatestabsorption capacity(47.62mg/g) comparing with PVP-Fe3O4(36.1mg/g) and Fe3O4(13.45mg/g), the equilibrium data was fitted to the Langmuir isotherm model better than theFreundlich model The kinetic property of modified Fe3O4was well described by theintraparticle diffusion model, dominated by surface adsorption and intraparticle diffusionacted as auxiliary adsorption.
     3. Hydrothermal synthesis of hollow cone-like ZnO/CoFe2O4heterostructures andtheir photocatalytic properties
     Heterostructures of hollow cone-like ZnO/CoFe2O4nanocomposites are successfullyfabricated by a two-step hydrothermal route with assistance of Si(100) substrate. The materialstructure, composition, morphology, specific surface area, the magnetic and optical propertieswere investigated. The findings illustrated that through preferential etching process and theattractive effects of magnetic nanoparticles, hollow cone-like nanocomposites were assembledby CoFe2O4coated on the ZnO bone-structure with diameter of200-300nm in length and200nm in hole. Band gap energy of the nanocomposites (2.68eV) is lower than that of pure ZnO(3.22eV). This special heterostructures brought novel surface area of88.1593m2/g and thetotal porosity of0.18cm3/g. The degradation on TC, DC and OTC of nanocomposites underxenon light reaches72.42%,66.18%and55.92%, and the photocatalysis can be described bythe frst order kinetic model.
     4. Preparation of CdS/ZnO and CdS/CoFe2O4/ZnO composite photocatalyst andtheir photocatalytic properties
     (1) ZnO/CdS nanocomposites were synthesized by hydrothermal method with optimumthe ratio of raw materials and reaction time. The structure, morphology and photocatalyticproperty of the products were examined. The results demonstrated that the ZnO/CdS of optimal morphology was obtained at zinc and cadmium molar ratio of25:1reacted for10h,there are several CdS nanoparticles adhere to the surface of porous ZnO rod skeleton. Theband gap energy of nanocomposites is about2.87eV, leading to the degradation on TC, DCand OTC under xenon light reached81.65%,70.68%and54.61%respectively. Moreover,ZnO/CdS catalyst almost completely removed three antibiotics under UV irradiation, provedhigh catalytic efficiency of the composite catalyst.
     (2) Using ZnO, CdS and CoFe2O4as precursor solution, ZnO/CdS/CoFe2O4nanocomposites were synthesized by hydrothermal method. The morphology, magnetic andoptical properties of nanomaterials were characterized, also the photocatalytic efficiency andreusability were tested. The results showed that the cylindrical ZnO with the size of500nmwas coated by a large number of block CdS/CoFe2O4nanoparticles with the diameter of100nm. The complex photocatalysts have a narrow bandgap of2.07eV because of themulti-componets, while the saturation magnetization of the composite material is6.65emu/g.TC, DC and OTC were photocatalyzed by ZnO/CdS/CoFe2O4under xenon light, anddegradation rate were82.96%,68.93%and58.53%, respectively. The degradation reactionrate worked in line with first-order kinetics. The TC degradability of ZnO/CdS/CoFe2O4remained above65%after repeated three cycles.
引文
[1] Daughton C. G, Ternes T. A. Pharmaceuticals and personal care products in theenvironment: agents of subtle change?[J]. Environmental Health Perspectives,1999,107:907-938.
    [2] Smital T., Luckenbach T., Sauerborn R., et al. Emerging contaminants-pesticides, PPCPs,microbial degradation products and natural substances as inhibitors of multixenobioticdefense in aquatic organisms[J]. Fundamental and Molecular Mechanisms of Mutagenesis,2004,552(1-2):101-117.
    [3]张亚雷,周雪飞.药物和个人护理品的环境污染与控制[M].北京:科学出版社,2012:10.
    [4] Carballa M., Omil F., Lema J. M., et al. Behavior of pharmaceuticals, cosmetics andhormones in a sewage treatment plant[J]. Water Research,2004,38,2918-2926.
    [5] Brown K. D., Kulis J., Thomson B., et al. Occurrence of antibiotics in hospital, residential,and dairy effuent, municipal wastewater, and the Rio Grande in New Mexico[J]. Scienceof the Total Environment,2006,366:772-783.
    [6] Brix R., Postigo C., González S., et al. Analysis and occurrence of alkylphenoliccompounds and estrogens in a European river basin and an evaluation of their importanceas priority pollutants[J]. Analytical and Bioanalytical Chemistry,2009,396,1301-1309.
    [7] Bu Q., Wang B., Huang J, et al. Pharmaceuticals and personal care products in the aquaticenvironment in China: A review[J]. Journal of Hazardous Materials,2013,262,189-211.
    [8] Liu J. L., Wong M. H. Pharmaceuticals and personal care products (PPCPs): A review onenvironmental contamination in China[J]. Environment International,2013,59,208-224.
    [9] Oulton R. L., Kohn T., Cwiertny D. M. Pharmaceuticals and personal care products ineffuent matrices: A survey of transformation and removal during wastewater treatmentand implications for wastewater management[J]. Journal of Environmental Monitoring,2010,12,1929-2188.
    [10] Salyers A. A. An overview of the genetic basis of antibiotic resistance in bacteria and itsimplications for agriculture[J]. Animal biotechnology,2002,13(1):1-5.
    [11] Sassman S. A., Lee L. S. Sorption of three tetracyclines by several soils: assessing therole of pH and cation exchange[J]. Environment Science Technology,2005,39,7452–7459.
    [12] Gartiser S., Urich E., Alexy R., et al. Ultimate biodegradation and elimination ofantibiotics in inherent tests[J]. Chemosphere,2007,67,604-613.
    [13] Gu C., Karthikeyan K. G. Sorption of the antibiotic tetracycline to humic-mineralcomplexes[J]. Journal of Environment Quality,2008,37,704-711.
    [14] Samuelsen O. B. Degradation of oxytetracycline in seawater at two differenttemperatures and light intensities, and the persistence of oxytetracycline in the sedimentfrom a fsh farm[J].Aquaculture,1989,83,7-16.
    [15] Werner J. J., Arnold W. A., McNeill K. Water hardness as a photochemical parameter:tetracycline photolysis as a function of calcium concentration, magnesium concentration,and pH[J]. Environment Science Technology,2006,40,7236-7241.
    [16] Andreozzi R., Caprio V., Insola A., et al. Advanced oxidation processes (AOP) for waterpurifcation and recovery[J]. Catalysis Today,1999,53,51-59.
    [17] Li K., Yediler A., Yang M., et al. Ozonation of oxytetracycline and toxicologicalassessment of its oxidation by-products[J]. Chemosphere,2008,72,473-478.
    [18] Bernal-Martíneza L. A., Barrera-Díaza C., Solís-Morelos C., et al. Synergy ofelectrochemical and ozonation processes in industrial wastewater treatment[J].Chemical Engineering Journal,2010,165,71-77.
    [19] Arslan-Alaton I., Dogruel S. Pre-treatment of penicillin formulation effuent by advancedoxidation processes[J]. Journal of Hazardous materials,2004,112,105-113.
    [20] Bernal-Martíneza L. A., Barrera-Díaza C., Natividad R., et al. Effect of the continuousand pulse in situ iron addition onto the performance of an integratedelectrochemical–ozone reactor for wastewater treatment[J]. Fuel,2013,110,133-140.
    [21] Bautitz I. R., Nogueira R. F. P. Degradation of tetracycline by photo-Fentonprocess—Solar irradiation and matrix effects[J]. Journal of Photochemistry andPhotobiology A: Chemistry,2007,187(1):33-39.
    [22] Lucas M. S., Peres J. A. Decolorization of the azo dye Reactive Black5by Fenton andphoto-Fenton oxidation[J]. Dyes and Pigment,2006,71,236-244.
    [23] El-Desoky H. S., Ghoneim M. M., El-Sheikh R., et al. Oxidation of Levafx CA reactiveazo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton’sreagent[J]. Journal of Hazardous materials,2010,175,858-865.
    [24] Chiang L. C., Chang J. E., Wen T. C. Indirect oxidation effect in electrochemicaloxidation treatment of landfll leachate[J]. Water Research,1995,29,671-678.
    [25] Panizza M., Cerisola G. Direct and mediated anodic oxidation of organic pollutants[J].Chemical Reviews,2009,109,6541-6569.
    [26] Brinzila C. I., Pacheco M. J., Ciríaco L., et al. Electrodegradation of tetracycline on BDDanode[J]. Chemical Engineering Journal,2012,209,15,54-61.
    [27] Fujishima A., Zhang X., Tryk D. A. Heterogeneous photocatalysis: from water photolysisto applications in environmental cleanup[J]. International Journal of Hydrogen Energy,2007,32,2664-2672.
    [28]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003:310.
    [29] Gaya U. I., Abdullah A. H. Heterogeneous photocatalytic degradation of organiccontaminants over titanium dioxide: A review of fundamentals, progress and problems[J].Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2008,9(1):1-12.
    [30] Palominos R., Mondaca M. A., Giraldo A., et al. Photocatalytic oxidation of theantibiotic tetracycline on TiO2and ZnO suspensions[J]. Catalysis Today,2009,144,100-105.
    [31] Ozgur U., Alivov Y. I., Liu C., et al. A comprehensive review of ZnO materials anddevices[J]. Journal of Applied Physics,2005,98(4):041301.
    [32] Park H. Y., Go H. Y., Kalme S., et al. Protective Antigen Detection Using HorizontallyStacked Hexagonal ZnO Platelets[J]. Analytical Chemistry,2009,81(11):4280-4284.
    [33] Fu Y. Q., Luo J. K., Du X. Y., et al. Recent developments on ZnO films for acoustic wavebased bio-sensing and microfluidic applications: a review[J]. Sensors and Actuators B:Chemical,2010,143(2):606-619.
    [34] Wang Z. L. Zinc oxide nanostructures: growth, properties and applications[J]. Journal ofPhysics: Condensed Matter,2004,16,829-858.
    [35] Hahn Y. B. Zinc oxide nanostructures and their applications[J]. Korean Journal ofChemical Engineering,2011,28(9):1797-1813.
    [36] Wei A., Pan L., Huang W. Recent progress in the ZnO nanostructure-based sensors[J].Materials Science and Engineering: B,2011,176(18):1409-1421.
    [37] Ahmad M., Zhu J. ZnO based advanced functional nanostructures: synthesis, propertiesand applications[J]. Journal of Materials Chemistry,2011,21,599-614.
    [38] Ali A. M., Emanuelsson E. A. C., Patterson D. A. Photocatalysis with nanostructured zincoxide thin films: The relationship between morphology and photocatalytic activity underoxygen limited and oxygen rich conditions and evidence for a Mars Van Krevelenmechanism[J]. Applied Catalysis B: Environmental,2010,97,168-181.
    [39] Pardeshi S. K., Patil A. B. Effect of morphology and crystallite size on solarphotocatalytic activity of zinc oxide synthesized by solution free mechanochemicalmethod[J]. Journal of Molecular Catalysis A: Chemical,2009,308,32-40.
    [40] Qamar M., Muneer M. A comparative photocatalytic activity of titanium dioxide and zincoxide by investigating the degradation of vanillin[J]. Desalination,2009,249(2):535-540.
    [41] Poulios I., Makri D. Photocatalytic treatment of olive milling waste water: oxidation ofprotocatechuic acid[J]. Global Nest: The International Journal,1999,1,55-62.
    [42] Carraway E. R., Hoffman A. J., Hoffmann M. R. Photocatalytic Oxidation of OrganicAcids on Quantum-Sized Semiconductor Colloids[J]. Environmental Science&Technology,1994,28(5):786-793.
    [43] Wagner R. S., Ellis W. C. Vapor-liquid-solid mechanism of single crystal growth[J].Applied Physics Letters,1964,4,89-90.
    [44] Song J., Wang X., Riedo E., et al. Systematic study on experimental conditions forlarge-scale growth of aligned ZnO nanwires on nitrides[J]. Journal of Physical Chemistry:B,2005,109,9869-9872.
    [45] Chu F. H., Huang C. W., Hsin C. L., et al. Well-aligned ZnO nanowires with excellentfield emission and photocatalytic properties[J]. Nanoscale,2012,4,1471-1475.
    [46] Protasova L. N., Rebrov E. V., Choy K. L., et al. ZnO Based Nanowires Grown byChemical Vapor Deposition for Selective Hydrogenation of Acetilene Alcoholes[J].Catalysis Science and Technology,2011,1(5):768-777.
    [47] Ashraf S., Jones A. C., Bacsa J., et al. MOCVD of vertically aligned ZnO nanowiresusing bidentate ether adducts of dimethylzinc[J]. Chemical Vapor Deposition,2011,17,45-53.
    [48] Zeng Y. J., Ye Z. Z., Xu W. Z., et al. Well-aligned ZnO nanowires grown on Si substratevia metal–organic chemical vapor deposition[J]. Applied Surface Science,2005,250,280–283.
    [49] Tigli O., Juhala J. ZnO nanowire growth by physical vapor deposition[A]. Proceedings11th IEEE Nanotechnology Conference[C].2011,608-611.
    [50] Zhang B., Zhou S., Liu B., et al. Fabrication and green emission of ZnO nanowirearrays[J]. Science in China Series E: Engineering&Materials Science,2009,52(4):883-887.
    [51] Liao Q. L., Yang Y., Xia L. S., et al. High intensity plasma-induced emission from Largearea ZnO nanorods array cathodes[J]. Physics of Plasmas,2008,15:114505.
    [52] Tan W. K., Razak K. A., Lockman Z., et al. Synthesis of ZnO nanorod–nanosheetcomposite via facile hydrothermal method and their photocatalytic activities undervisible-light irradiation[J]. Journal of Solid State Chemistry,2014,211,146-153.
    [53] Zhao X. Q., Kim C. R., Lee J. Y., et al. Effects of buffer layer annealing temperature onthe structural and optical properties of hydrothermal grown ZnO[J]. Applied SurfaceScience,2009,255,4461-4465.
    [54] Kim C. R., Lee J. Y., Shin C. M., et al. Effects of annealing temperature of buffer layeron structural and optical properties of ZnO thin film grown by atomic layer deposition[J].Solid State Communications,2008,148,395-398.
    [55] Ryan M. P., McLachlan M. A., Downing J. M. Hydrothermal growth of ZnO nanorods:The role of KCl in controlling rod morphology[J]. Thin Solid Films,2013,539,18-22.
    [56] Wang Y., Fan X., Sun J. Hydrothermal synthesis of phosphate-mediated ZnOnanosheets[J]. Materials Letters,2009,63,350-352.
    [57] Suwanboon S., Amornpitoksuk P., Bangrak P., et al. Physical and chemical properties ofmultifunctional ZnO nanostructures prepared by precipitation and hydrothermalmethods[J]. Ceramics International,2014,40,975-983.
    [58] Ma J., Liu J., Bao Y., et al. Synthesis of large-scale uniform mulberry-like ZnO particleswith microwave hydrothermal method and its antibacterial property[J]. CeramicsInternational,2013,39,2803-2810.
    [59] Wang F., Qin X., Guo Z., et al. Hydrothermal synthesis of dumbbell-shaped ZnOmicrostructures[J]. Ceramics International,2013,39,8969-8973.
    [60] Zhou Y., Liu C., Li M., et al. Fabrication and optical properties of ordered sea urchin-likeZnO nanostructures by a simple hydrothermal process[J]. Materials Letters,2013,106,94-96.
    [61] Wojciech W. L. Systematic study of hydrothermal crystallization of zinc oxide (ZnO)nano-sized powders with superior UV attenuation[J]. Journal of Crystal Growth,2009,312,100-108.
    [62] Duan J. X., Huang X. T., Wang E. K. PEG-assisted Synthesis of ZnO nanotubes[J].Materials Letters,2009,60,918-1921.
    [63] Usui H. Infuence of surfactant micelles on morphology and photoluminescence of zincoxide nanorods prepared by one-step chemical synthesis in aqueous solution[J]. Journalof Physical Chemistry C,2007,111,9060-9065.
    [64] Yang L. L., Yang J. H., Liu X. Y., et al. Low-temperature Synthesis and characterizationof ZnO quantumdots[J]. Journal of Alloys and Compounds,2008,463,92-95.
    [65] Wang Y. X., Sun J., Fan X. Y., et al. A CTAB-assisted hydrothermal and solvothermalsynthesis of ZnO nanopowders[J]. Ceramics International,2011,37(8):3431-3436.
    [66] Mari B., Mollara M., Mechkour A., et al. Optical properties of nanocolumnar ZnOcrystals[J]. Mircoelectronics Journal,2004,35,79-82.
    [67] Zhao J., Jin Z. G., Li T., et al. Preparation and characterization of ZnO nanorods fromNaOH solutions with assisted electrical field[J]. Applied Surface Science,2006,252(23):8287-8294.
    [68] Pradhan D., Su Z., Sindhwani S., et al. Electrochemical Growth of ZnO Nanobelt-LikeStructures at0°C: Synthesis, Characterization, and in-Situ Glucose OxidaseEmbedment[J]. Journal of Physical Chemistry C,2011,115(37):18149-18156.
    [69] Stafniak A., Boratyński B., Baranowska-Korczyc A., et al. A novel electrospun ZnOnanofibers biosensor fabrication[J]. Sensors and Actuators B: Chemical,2011,160(1):1413-1418.
    [70] Ahmad M., Pan C., Luo Z., et al. A single ZnO nanofiber-based highly sensitiveamperometric glucose biosensor[J]. Journal of Physical Chemistry C,2010,114(20):9308-9313.
    [71] Deng Z., Rui Q., Yin X., et al. In vivo detection of superoxide anion in bean sprout basedon ZnO nanodisks with facilitated activity for direct electron transfer of superoxidedismutase[J]. Analytical Chemistry,2008,80(15):5839-5846.
    [72] Bai H. P., Lu X. X., Yang G. M., et al. Hydrogen peroxide biosensor based onelectrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode[J].Chinese Chemical Letters,2008,19(3):314-318.
    [73] Wang Y. L., Bouchaib S., Brouri T., et al. Fabrication of ZnO micro-and nano-structuresby electrodeposition using nanoporous and lithography defined templates[J]. MaterialsScience and Engineering B,2010,170,107-112.
    [74] Li Y., Meng G. W., Zhang L. D., et al. Ordered semiconductor ZnO nanowires arrays andtheir photoluminescence properties[J]. Applied Physics Letters,2000,76(15):2011-2013.
    [75] Zhang M. J., Zhang L. D., Li G. H., et al. Fabrication and optical properties of large-scaleuniform zinc oxide nanowires arrays by one step electrochemical deposition technique[J].Chemical Physics Letters,2002,363(1-2):123-128.
    [76] Wu G. S., Zhuang Y. L., Lin Z. Q., et al. Synthesis and photoluminescence of Dy-dopedZnO nanowires[J]. Physics E: Low-dimensional Systems and Nanostructures,2006,31(1):5-8.
    [77] Wu H. Q., Wei X. W., Shao M. W., et al. Synthesis of zinc oxide nanorods using carbonnanotubes as templates[J]. Journal of Crystal Growth,2004,265(1-2):184-189.
    [78] Lia M., Riley D. J. Templated Electrosynthesis of Zinc Oxide Nanorods[J]. Chemistry ofMaterials,2006,18(9):2233-2237.
    [79] Rout C. S., Krishna S. H., Vivekchand S. R. C., et al. Hydrogen and ethanol sensor basedon ZnO nanorods, nanowires and nanotubes[J]. Chemical Physics Letters,2006,418(4-6):586-590.
    [80] Wu G. S., Xie T., Yuan X. Y., et al. Controlled synthesis of ZnO nanowires or nanotubesvia sol-gel template process[J]. Solid State Communication,2005,134(7):485-489.
    [81] Singh N., Pandey P., Haque F. Z. Effect of heat and time-period on the growth of ZnOnanorods by sol–gel technique[J]. Optik,2012,123,1340-1342.
    [82] Huanga N., Zhub M. W., Gao L. J., et al. A template-free sol–gel technique for controlledgrowth of ZnO nanorod arrays[J]. Applied Surface Science,2011,257,6026-6033.
    [83] Kashif M., Ali M. E., Ali S. M. U., et al. Sol–gel synthesis of Pd doped ZnO nanorods forroom temperature hydrogen sensing applications[J]. Ceramics International,2013,39(6):6461-6466.
    [84] Ayd n C., Abd El-sadek M. S., Zheng K., et al. Synthesis, diffused refectance andelectrical properties of nanocrystalline Fe-doped ZnO via sol–gel calcinationtechnique[J]. Optics&Laser Technology,2013,48,447-452.
    [85] Chen Z., Zhan G., Wu Y., et al. Sol–gel-hydrothermal synthesis and conductive propertiesof Al-doped ZnO nanopowders with controllable morphology[J]. Journal of Alloys andCompounds,2014,587(25):692-697.
    [86] Jiang Y., Wang W., Jing C., et al. Sol–gel synthesis, structure and magnetic properties ofMn-doped ZnO diluted magnetic semiconductors[J]. Materials Science and EngineeringB,2011,176,1301-1306.
    [87] Vettumperumala R., Kalyanaramana S., Santoshkumara B., et al. Magnetic properties ofhigh Li doped ZnO sol–gel thin films[J]. Materials Research Bulletin,2014,50,7-11.
    [88] Unalan H. E., Hiralal P., Rupesinghe N., et al. Rapid synthesis of aligned zinc oxidenanowires[J]. Nanotechnology,2008,19,255608.
    [89] Jung S. H., Oh E., Lee K. H., et al. A sonochemical method for fabricating aligned ZnOnanorods[J]. Advanced Materials,2007,19(5):749-753.
    [90] Vayssieres L., Beermann N., Lindquist S. E., et al. Controlled Aqueous Chemical Growthof Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III)Oxides[J]. Chemistry of Materials,2001,13(2):233-235.
    [91] Cheng C. W., Yan B., Wong S. M., et al. Fabrication and SERS Performance ofSilver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays[J]. ACS AppliedMaterials&Interfaces,2010,2(7):1824-1828.
    [92] Greene L. E., Law M., Goldberger J., et al. Low-temperature wafer-scale production ofZnO nanowire arrays[J]. Angewandte Chemie International Edition,2003,42(26):3031-3034.
    [93] Liu T. Y., Liao H. C., Lin C. C., et al. Biofunctional ZnO nanorod arrays grown onflexible substrates[J]. Langmuir,2006,22(13):5804-5809.
    [94] Manekkathodi A., Lu M. Y., Wang C. W., et al. Direct Growth of Aligned Zinc OxideNanorods on Paper Substrates for Low-Cost Flexible Electronics[J]. Advanced Materials,2010,22(36):4059-4063.
    [95] Na J. S., Gong B., Scarel G., et al. Surface Polarity Shielding and Hierarchical ZnONano-Architectures Produced Using Sequential Hydrothermal Crystal Synthesis andThin Film Atomic Layer Deposition[J]. ACS Nano,2009,3(10):3191-3199.
    [96] Cheng J. P., Zhang X. B., Luo Z. Q. Oriented growth of ZnO nanostructures on Si and Alsubstrates[J]. Surface&Coatings Technology,2008,202,4681-4686.
    [97] Xu F., Yuan Z. Y., Du G. H., et al. High-yield synthesis of single-crystalline ZnOhexagonal nanoplates and accounts of their optical and photocatalytic properties[J].Applied Physics A,2007,86(2):181-185.
    [98] Jang J. M., Kim C. R., Ryu H., et al. ZnO3D flower-like nanostructure synthesized onGaN epitaxial layer by simple route hydrothermal process[J]. Journal of Alloys andCompounds,2008,463(1-2):503-510.
    [99] Peng W., Qu S., Cong G., et al. Synthesis and Structures of Morphology-Controlled ZnONano and Microcrystals[J]. Crystal Growth&Design,2006,6(6):1518-1522.
    [100] Guo X. D., Pi H. Y., Zhao Q. Z., et al. Controllable growth of flowerlike ZnOnanostructures by combining laser direct writing and hydrothermal synthesis[J].Materials Letters,2012,66(1):377-381.
    [101] Qin Y., Wang X. D., Wang Z. L. Microfibre–nanowire hybrid structure for energyscavenging[J]. Nature,2008,451,809-813.
    [102] Kong X. Y., Wang Z. L. Spontaneous Polarization-Induced Nanohelixes, Nanosprings,and Nanorings of Piezoelectric Nanobelts[J]. Nano Letters,2003,3(12):1625-1631.
    [103] Wang J. X., Sun X. W., Huang H., et al. A two-step hydrothermally grown ZnOmicrotube array for CO gas sensing[J]. Applied Physics A,2007,88(4):611-615.
    [104] Downing J., Ryan M. P., Stingelin N., et al. Solution processed hybrid photovoltaics:preparation of a standard ZnO template[J]. Journal of Photonics for Energy,2011,1(1):011117.
    [105] Govender K., Boyle D. S., Kenway P. B., et al. Understanding the factors that governthe deposition and morphology of thin films of ZnO from aqueous solution. Journal ofMaterials Chemistry,2004,14,2575-2591.
    [106] Yang J. H., Zheng J. H., Zhai H. J., et al. Growth mechanism and optical properties ofZnO nanotube by the hydrothermal method on Si substrates[J]. Journal of Alloys&Compound,2009,475(1-2):741-744.
    [107] Ichikawa T., Shiratori S. The Influence of the Organic/Inorganic Interface on theOrganicInorganic Hybrid Solar Cells[J]. Journal of Nanoscience and Nanotechnology,2012,12,3725-3731.
    [108] Wang H. Q., Li G. H., Jia L. C., et al. Controllable Preferential-Etching Synthesis andPhotocatalytic Activity of Porous ZnO Nanotubes[J]. Journal of Physical Chemistry C,2008,112(31):11738-11743.
    [109] Yang J. Y., Lin Y., Meng Y. M., et al. A two-step route to synthesize highly oriented ZnOnanotube arrays[J]. Ceramics International,2012,38(6):4555-4559.
    [110] Yao K. X., Zeng H. C. ZnO/PVP Nanocomposite Spheres with Two Hemispheres[J].Journal of Physical Chemistry C,2007,111(36):13301-13308.
    [111] Straumal B. B., Mazilkin A. A., Protasova S. G., et al. Grain boundaries as thecontrolling factor for the ferromagnetic behaviour of Co-doped ZnO[J]. PhilosophicalMagazine,2013,93(10–12):1371-1383.
    [112] Hu Y. M., Wang C. Y., Lee S. S., et al. Raman scattering studies of Mn-doped ZnO thinfilms deposited under pure Ar or Ar+N2sputtering atmosphere[J]. Thin Solid Films,2010,519(4):1272-1276.
    [113] Straumal B. B., Mazilkin A. A., Straumal P. B., et al. Grain Boundary PhaseTransformations in Nanostructured Conducting Oxides[J]. Nanoscale Phenomena,NanoScience and Technology,2009,75-88.
    [114] Hao Y., Yang X., Cong J., et al. Engineering of highly efficient tetrahydroquinolinesensitizers for dye-sensitized solar cells[J]. Tetrahedron,2012,68(2):552-558.
    [115] Wang H. H., Dong S. J., Chang Y., et al. Microstructures and photocatalytic propertiesof porous ZnO films synthesized by chemical bath deposition method[J]. AppliedSurface Science,2012,258(10):4288-4293.
    [116] Rahman Q. I., Ahmad M., Misra S. K., et al. Hexagonal ZnO nanorods assembledfowers for photocatalytic dye degradation: Growth, structural and optical properties[J].Superlattices and Microstructures,2013,64,495-506.
    [117] Musi S., Drag evi D., Popovi S. Influence of synthesis route on the formation ofZnO particles and their morphologies[J]. Journal of Alloys and Compounds,2007,429(1-2):242-249.
    [118] Musi S., ari A., Popovi S. Dependence of the microstructural properties of ZnOparticles on their synthesis[J]. Journal of Alloys and Compounds,2008,448(1-2):277-283.
    [119] Adhyapak V., Meshram S. P., Amalnerkar D. P., et al. Structurally enhancedphotocatalytic activity of flower-like ZnO synthesized by PEG-assited hydrothermalroute[J]. Ceramics Internationa,2014,40(1):1951-1959.
    [120] Wu S., Jia Q., Sun Y., et al. Microwave-hydrothermal preparation of flower-like ZnOmicro-structure and its photocatalytic activity[J]. Transactions of Nonferrous MetalsSociety of China,2012,22(10):2465-2470.
    [121] Zhao X., Lou F., Li M., et al. Sol gel-based hydrothermal method for the synthesis of3D flower-like ZnO microstructures composed of nanosheets for photocatalyticapplications[J]. Ceramics International,2014,40(4):5507-5514.
    [122] Chen M., Wang Z., Han D., et al. High-sensitivity NO2gas sensors based on flower-likeand tube-like ZnO nanomaterials[J]. Sensors and Actuators B: Chemical,2011,157(2):565-574.
    [123] Shi R., Yang P., Zhang S., et al. Growth of flower-like ZnO on polyhedron CuOfabricated by a facile hydrothermal method on Cu substrate[J]. Ceramics International,2014,40(2):3637-3646.
    [124] Zhu J., Hang J., Zhou H., et al. Microwave-assisted synthesisand characterization of ZnO-nanorod arrays[J]. Transactions of NonferrousMetals Society of China,2009,19(6):1578-1582.
    [125] Ashoka S., Nagaraju G., Tharamani C. N.,et al. Ethylene glycol assisted hydrothermalsynthesis of fower like ZnO architectures[J]. Materials Letters,2009,63:873-876.
    [126] Vinu R., Madras G. J. Environmental remediation by photocatalysis[J]. Indian Instituteof Science,2010,90(2):189-230.
    [127] Wu W., He Q. G., Jiang C. Z. Magnetic Iron Oxide Nanoparticles: Synthesis andSurface Functionalization Strategies[J]. Nanoscale Research Letters,2008,3(11):397-415.
    [128] Kim H., Achermann M., Balet L. P., et al. Synthesis and Characterization of Co/CdSeCore/Shell Nanocomposites: Bifunctional Magnetic-Optical Nanocrystals[J]. Journalof the American Chemical Society,2005,127(2):544-546.
    [129] Gu H. W., Zheng R. K., Zhang X. X., et al. Facile one-pot synthesis of bifunctionalheterodimers of nanoparticles: a conjugate of quantum dot and magneticnanoparticles[J]. Journal of the American Chemical Society,2004,126(18):5664-5665.
    [130] Chu D. W., Zeng Y. P., Jiang D. L. Synthesis of Room-Temperature FerromagneticCo-Doped ZnO Nanocrystals under a High Magnetic Field[J]. Journal of PhysicalChemistry C,2007,111(16):5893-5897.
    [131] Dicarlo J., Albert M., Dwight K., et al. Preparation and properties of iron-doped II–VIchalcogenides[J]. Journal of Solid State Chemistry,1990,87(2):443-448.
    [132] Furdyna, J. K. Diluted magnetic semiconductors[J]. Journal of Applied Physics,1988,64(4): R29.
    [133] Kundaliya D. C., Ogale S. B., Lofland S. E., et al. On the origin of high-temperatureferromagnetism in the low-temperature-processed Mn–Zn–O system[J]. NatureMaterials,2004,3,709-714.
    [134] Wang H., Chen Y., Wang H. B. High resolution transmission electron microscopy andRaman scattering studies of room temperature ferromagnetic Ni-doped ZnOnanocrystals[J]. Applied Physical Letters,2007,90,052505.
    [135] Wang L. Y., Yang Z. H., Zhang Y., et al. Bifunctional nanoparticles with magnetizationand luminescence[J]. Journal of Physical Chemistry,2009,113(10):3955-3959.
    [136]季俊红,季生福,杨伟,等.磁性Fe3O4纳米晶制备及应用[J].化学进展,2010,22(8):1566-1574.
    [137]贺全国,黄春艳,刘军,等.温敏聚甲基丙烯酸甲酯包覆空心Fe3O4纳米粒子的载药控释性能[J].高分子材料科学与工程,2013,29(8):63-67.
    [138] Guan W. S., Lei J. R., Wang X., et al. Selective recognition of beta-cypermethrin bymolecularly imprinted polymers based on magnetite yeast composites[J]. Journal ofApplied Polymer Science,2013,129(4):1952-1958.
    [139] Cullity B. D. Elements of X-ray diffraction[M]. Addison Wesley Pub. Co,1978,100.
    [140] Chiu W., Khiew P., Cloke M., et al. Heterogeneous Seeded Growth: Synthesis andCharacterization of Bifunctional Fe3O4/ZnO Core/Shell Nanocrystals[J]. Journal ofPhysical Chemistry C,2010,114(18):8212-8218.
    [141] Zhou T. J., Lu M. H., Zhang Z. H., et al. Synthesis and Characterization ofMultifunctional FePt/ZnO Core/Shell Nanoparticles[J]. Advanced Materials,2010,22(3):403-406.
    [142]陶新永,张孝彬,孔凡志, et al. PEG辅助氧化锌纳米棒的水热法制备[J].化学学报,2004,6262(17):1658-1662.
    [143] Li G. S., Li L. P., Smith R. L., et al. Characterization of the Dispersion Process forNiFe2O4Nanocrystals in a Silica Matrix with Infrared Spectroscopy and ElectronParamagnetic Resonance[J]. Journal of Molecular Structure,2001,560(1–3):87-93.
    [144] Svetozar M., Dur ica D., Stanko P. Infuence of Synthesis Route on the Formation ofZnO Particles and their Morphologies[J]. Journal of Alloys and Compounds,2007,42,242-249.
    [145] Hu H. B., Wang Z. H., Pan L. Synthesis of monodisperse Fe3O4@silica core-shellmicrospheres and their application for removal of heavy metal ions from water[J].Journal of Alloys and Compounds,2010,492,656-661.
    [146] Mazzotti M. Equilibrium theory based design of simulated moving bed processes for ageneralized Langmuir isotherm[J]. Journal of Chromatography A,2006,1126,311-322.
    [147] Allen S. J., Mckay G., Porter J. F. Adsorption isotherm models for basic dye adsorptionby peat in single and binary component systems[J]. Journal of Colloid and InterfaceScience,2004,280(2):322-333.
    [148] Ho Y. S., Mckay G. The sorption of lead(II) ions on peat[J]. Water Research,1999,33(2):578-584.
    [149] Ho Y. S., Mckay G. Pseudo-second order model for sorption processes[J]. ProcessBiochemistry,1999,34(5):451-465.
    [150] Weng C. H., Pan Y. F. Adsorption of a cationic dye (methylene blue) onto spentactivated clay[J]. Journal of Hazardous Materials,2007,144,355-362.
    [151]林本兰,崔升,沈晓冬.四氧化三铁纳米粉的制备方法及应用[J].无机盐工业,2011,43(8):25-28.
    [152] Gu X. H., Xu R., Yamg G. L., et al. Preparation of chlorogenic acid surface-imprintedmagnetic nanoparticles and their usage in separation of traditional Chinese medicine[J].Analytica Chimica Acta,2010,675(1):64-70.
    [153] Smith A. M., Mohs A. M., Nie S. Tuning the Optical and Electronic Properties ofColloidal Nanocrystals by Lattice Strain[J]. Nature Nanotechnology,2009,4,56-63.
    [154] Maki H., Sato T., Ishibashi K. Direct Observation of the Deformation and the Band GapChange from an Individual Single-Walled Carbon Nanotube under Uniaxial Strain[J].Nano Letters,2007,7(4):890–895.
    [155] Danek M. Jensen K. F., Murray C. B., et al. Synthesis of Luminescent Thin-FilmCdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with anOverlayer of ZnSe[J]. Chemistry of Materials,1996,8(1):173-180.
    [156] Talapin D. V., Nelson J. H., Shevchenko E. V., et al. Seeded Growth of HighlyLuminescent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies[J].Nano Letters,2007,7(10):2951-2959.
    [157] Tsunekawa S., Fukuda T., Kasuya A. Blue shift in ultraviolet absorption spectra ofmonodisperse nanoparticles[J]. Journal of Applied Physics,2000,87(3),1318-1321.
    [158] Jeong J. S., Song W. H., William J. C., et al. Degradation of Tetracycline Antibiotics:Mechanisms and Kinetic Studies for Advanced Oxidation/Reduction Processes[J].Chemosphere,2010,78(5):533-540.
    [159] Wu W., Xiao X. H., Peng T. C., et al. Controllable Synthesis and Optical Properties ofConnected Zinc Oxide Nanoparticles[J]. Chemistry-An Asian Journal,2010,5(2):315-321.
    [160] Fu W. Y., Yang H. B., Li M. H., et al., Preparation and photocatalytic characteristics ofcore-shell structure TiO2/BaFe12O19nanoparticles[J]. Materials Letters,2006,60(21-22):2723-2727.
    [161] Kurinobua S., Tsurusakib K., Natuic Y., et al., Decomposition of pollutants inwastewater using magnetic photocatalyst particles[J]. Journal of Magnetism andMagnetic Materials,2007,310(2):1025-1027.
    [162] Zhang G., Xu W., Li Z., et al. Preparation and characterization of multi-functionalCoFe2O4–ZnO nanocomposites[J]. Journal of Magnetism and Magnetic Materials,2009,321(10):1424-1427.
    [163]高帅,李忠义,张秀玲.核壳型CoFe2O4/TiO2磁载纳米光催化剂制备及性能[J].功能材料与器件学报,2009,15(2):201-205.
    [164]张秀玲,孙东峰,韩一丹,等. TiO2-CoFe2O4磁性复合材料制备及太阳光催化性能[J].无机化学学报,2011,27(7):1373-1377.
    [165] Yan X., Chen J., Xue Q., et al. Synthesis and magnetic properties of CoFe2O4nanoparticles confined within mesoporous silica[J]. Microporous Mesoporous Materials,2010,135(1-3):137-142.
    [166] Grigorova M., Blythe H. J., Blaskov V., et al. Magnetic properties and M ssbauerspectra of nanosized CoFe2O4powders[J]. Journal of Magnetism and MagneticMaterials,1998,183(1-2):163-172.
    [167] Zhu Z., Li X., Zhao Q., et al. Surface photovoltage properties and photocatalyticactivities of nanocrystalline CoFe2O4particles with porous superstructure fabricated bya modifed chemical coprecipitation method[J]. Journal of Nanoparticle Research,2011,13,2147-2155.
    [168] Liu S. Q. Magnetic semiconductor nano-photocatalysts for the degradation of organicpollutants[J]. Environmental Chemistry Letters,2012,10(2):209-216.
    [169] Jonker G. H. Analysis of the semiconducting properties of cobalt ferrite[J]. Journal ofPhysics and Chemistry of Solids,1959,9(2):165-175.
    [170] Wang X., Hu P., Fangli Y., et al. Preparation and Characterization of ZnO HollowSpheres and ZnO-Carbon Composite Materials Using Colloidal Carbon Spheres asTemplates[J]. Journal of Physical Chemistry C,2007,111(18):6706-6712.
    [171] Yu J., Yu X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollowspheres[J]. Environmental Science and Technology,2008,42(13):4902-4907.
    [172] Li B. X., Xie Y., Jing M., et al. In2O3Hollow Microspheres: Synthesis from DesignedIn(OH)3Precursors and Applications in Gas Sensors and Photocatalysis[J]. Langmuir,2006,22(22):9380-9385.
    [173] Li H. X., Bian Z. F., Zhu J., et al. Mesoporous Titania Spheres with Tunable ChamberStucture and Enhanced Photocatalytic Activity[J]. Journal of the American ChemicalSociety,2007,129(27):8406-8407.
    [174] Wang W. W., Zhu Y. J., Yang L. X. ZnO–SnO2Hollow Spheres and HierarchicalNanosheets: Hydrothermal Preparation, Formation Mechanism, and PhotocatalyticProperties[J]. Advanced Functional Materials,2007,17(1):59-64.
    [175] Demianets L. N., Kostomarov D. V., Kuz'mina I. P., et al. Mechanism of growth of ZnOsingle crystals from hydrothermal alkali solutions[J]. Crystallography Reports,2007,47(1): S86-S98.
    [176] Viswanatha R., Amenitsch H., Sharma D. D. Growth Kinetics of ZnO Nanocrystals: AFew Surprises[J]. Journal of the American Chemical Society,2007,129(14):4470-4475.
    [177] Gurav K. V., Fulari V. J., Patil U.M. et al. Room temperature soft chemical route fornanofibrous wurtzite ZnO thin film synthesis[J]. Applied Surface Science,2010,256(9):2680-2685.
    [178] Wang Y., Zhu Q., Zhang H. Fabrication and magnetic properties of hierarchical poroushollow nickel microspheres[J]. Journal of Materials Chemistry,2006,16,1212-1214.
    [179] Wang F., Liu J., Wang X., et al. Alpha-Fe2O3@ZnO heterostructured nanotubes for gassensing[J]. Materials Letters,2012,76,159-161.
    [180] Cheng K., Peng S., Xu C., et al. Porous Hollow Fe3O4Nanoparticles for TargetedDelivery and Controlled Release of Cisplatin[J]. Journal of Physical Chemistry C,2009,131(30):10637-10644.
    [181] Look D. C., Hemsky J. W., Sizelove J. R. Residual native shallow donor in ZnO[J].Physical review letters,1999,82,2552-2555.
    [182] Ramos A. V., Guittet M. J., Moussy J. B., et al. Room temperature spin filtering inepitaxial cobalt-ferrite tunnel barriers[J]. Applied Physical Letters,2007,91(12):122107.
    [183] Zhang Z., Shao C., Li X., et al. Electrospun Nanofibers of ZnO-SnO2Heterojunctionwith High Photocatalytic Activity[J]. Journal of Physical Chemistry C,2010,114(17):7920-7925.
    [184] Jing L., Wang D., Wang B., et al. Effects of noble metal modification on surface oxygencomposition, charge separation and photocatalytic activity of ZnO nanoparticles[J].Journal of Molecular Catalysis A: Chemical,2006,244(1-2):193-200.
    [185] Laudise R. A., Ballman A. A. The solubility of quartz under hydrothermal conditons[J].Journal of Physical Chemistry,1961,65(8):1396-1400.
    [186] Li W. J., Shi E. W., Zhong W. Z., et al. Growth mechanism and growth habit of oxidecrystals[J]. Journal of Crystal Growth,1999,203(1-2):186-196.
    [187] Panda S. K., Chakrabarti S., Satpati B., et al. Optical and microstructuralcharacterization of CdS–ZnO nanocomposite thin flms prepared by sol-geltechnique[J]. Journal of Physics D: Applied Physics,2004,37,628-633.
    [188] Schultz A. M., Salvador P. A., Rohrer G. S. Enhanced photochemical activity of a Fe2O3flms supported on SrTiO3substrates under visible light illumination[J]. ChemicalCommunications,2012,48(14):2012-2014.
    [189] Zhou H., Qu Y., Zeida T., et al. Towards highly effcient photocatalysts usingsemiconductor nanoarchitectures[J]. Energy Environment Science,2012,5,6732-6743.
    [190] Wu Y., Tamaki T., Volotinen T., et al. Enhanced Photoresponse of Inkjet-Printed ZnOThin Films Capped with CdS Nanoparticles[J]. Journal of Physical Chemistry Letters,2010,1(1):89-92.
    [191] Xu F., Volkov V., Zhu Y., et al. Long Electron Hole Separation of ZnO-CdS Core ShellQuantum Dots[J]. Journal of Physical Chemistry C,2009,113(45):19419-19423.
    [191] Wang X., Liu G., Chen Z. G., et al. Enhanced photocatalytic hydrogen evolution byprolonging the lifetime of carriers in ZnO/CdS heterostructures[J]. ChemicalCommunications,2009,23,3452-3454.
    [192] Zhai J. L., Wang L. L., Wang D.J., et al. Enhancement of gas sensing properties of CdSnanowire/ZnO nanosphere composite materials at room temperature by visible-lightactivation[J]. ACS Applied Materials&Interfaces,2011,3,2253-2258.
    [193] Yao C. Z., Wei B. H., Meng L. X., et al. Controllable electrochemical synthesis andphotovoltaic performance of ZnO/CdS core-shell nanorod arrays on fuorine-doped tinoxide[J]. Journal of Power Sources,2012,207,222-228.
    [194] Barpuzary D., Khan Z., Vinothkumar N., et al. Hierarchically grown urchinlikeCdS@ZnO and CdS@Al2O3heteroarrays for effcient visible-light-drivenphotocatalytic hydrogen generation[J]. Journal of Physical Chemistry C,2012,116,150-156.
    [195] Qi X., She G., Liu Y., et al. Electrochemical synthesis of CdS/ZnO nanotubearrays with excellent photoelectrochemical properties[J]. Chemical Communications,2012,48,242-244.
    [196] Kundu P., Deshpande P. A., Madras G., et al. Nanoscale ZnO/CdS heterostructures withengineered interfaces for high photocatalytic activity under solar radiation[J]. Journal ofMaterials Chemistry,2011,21,4209-4216.
    [197] Khanchandani S., Kundu S., Patra A., et al. Shell thickness dependent photocatalyticproperties of ZnO/CdS core–shell nanorods[J]. Journal of Physical Chemistry C,2012,116,23653-23662.
    [198] Tak Y., Hong S. J., Lee J. S., et al. Solution-based synthesis of a CdS nanoparticle/ZnOnanowire heterostructure array[J]. Crystal Growth and Design,2009,19,2627-2632.
    [199] Bian X., Hong K., Liu L., et al. Magnetically separable hybrid CdS-TiO2-Fe3O4nanomaterial: Enhanced photocatalystic activity under UV and visible irradiation[J].Applied Surface Science,2013,280,349-353.
    [200] Preethi V., Kanman S. Photocatalytic hydrogen production using Fe2O3-based core shellnano particles with ZnS and CdS[J]. International Journal of Hydrogen Energy,2013,39(4):1613-1622.
    [201] Wang X., Wei L., Dong S., et al. Synthesis of Fe3O4/CdSe/CdS magnetic fluorescentnanocomposites by a stepwise heterocoagulation approach[[J]. Materials Letters,2013,93,92-94.
    [202] Tak Y., Hong S. J., Lee J. S., et al. Fabrication of ZnO/CdS core/shell nanowire arraysfor efficient solar energy conversion[J]. Journal of Materials Chemistry,2009,19,5945–5951.
    [203] Anderson R. L. Experiments on Ge-GaAs heterojunctions[J]. Solid State Electronics,1962,5(5):341-351
    [204] Wilhelm P., Stephan D. Photodegradation of rhodamine B in aqueous solution viaSiO2@TiO2nano-spheres[J]. Journal of Photochemistry and Photobiology A: Chemistry,2007,185(1):19-25.
    [205] Xiao M. W., Wang L. S., Wu Y. D., et al. Preparation and characterization of CdSnanoparticles decorated into titanate nanotubes and their hotocatalytic properties[J].Nanotechnology,2008,19,015706-015713.
    [206] Wang C., B ttcher C., Bahnemann D. W., et al. A comparative study of nanometersized Fe (III)-doped TiO2photocatalysts: synthesis, characterization and activity[J].Journal of Materials Chemistry,2003,13(9):2322-2329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700