用户名: 密码: 验证码:
大豆抗氧化多糖制备表征及对辐射诱导氧化应激抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着核技术的广泛应用,辐射伤害已渗透到各个领域。电离辐射产生过量的活性氧簇(ROS),攻击生命大分子,所引发的氧化应激与人类近百余种疾病密切相关。电离辐射导致的氧化损伤越来越受到人们的重视,筛选具有强抗氧化活性的天然产物成分已成为医学、生物学和食品科学研究的热点。本课题以大豆抗氧化多糖(Polysaccharides from soybean residue,SRP)为研究对象,系统性研究其制备工艺、分离纯化方法、结构表征、抗氧化、抗辐射活性和对辐射诱导氧化应激防护作用机制。
     采用纤维素酶法降解豆渣制备可溶性SRP,通过响应面法(RSM)优化得到酶法制备SRP的工艺条件:酶用量60U/g、pH值5.10、温度50℃,在此条件下,酶解1h SRP得率为45.71%。通过活性跟踪研究,确定酶解时间8h SRP具有最佳抗氧化活性。
     利用DEAE-52阴离子纤维素层析、Sephadex G-100葡聚糖凝胶层析对SRP进行纯化,制备得到中性大豆抗氧化多糖SRP-1a。采用HPGPC、GC-MS、FT-IR高碘酸氧化-Smith降解和NMR技术对SRP-1a结构进行表征,研究发现SRP-1a为均一度较高的多糖,其分子量分布宽度Mw/Mn=1.19,重均分子量为3.89×103Da。含有核糖、鼠李糖、阿拉伯糖、木糖、甘露糖、葡萄糖和半乳糖等7种单糖组分,其摩尔比为0.82:0.97:2.77:0.63:6.38:70.62:17.82。SRP-1a的糖残基构型主要为1,4-β-D-Glcp、1,3,6-α-D-Manp和1,4-α-D-Galp。主链是由Glcp和Manp组成的甘露葡聚糖,(1→)-β-D-Glcp为主链的非还原性末端残基,由1,3,6-α-D-Manp通过O-6位与1,4-α-D-Galp残基构成的侧链相连。
     通过体外抗氧化筛选模型,研究了SRP-1a清除生理自由基、非生理自由基、总还原能力、金属离子螯合能力和抑制脂质过氧化能力。结果表明,SRP-1a具有较强的传递氢原子能力,可以通过提供氢原子直接清除羟基自由基(·OH)或终止自由基的链反应,从而防止自由基诱导氧化损伤的发生。同时,SRP-1a具有较高的还原能力和金属离子螯合能力,对于脂质过氧化具有一定的抑制作用,并呈良好的剂量效应关系。
     建立X和60Coγ辐射诱导细胞损伤模型,研究SRP-1a对细胞的保护作用。结果表明,SRP-1a可以拮抗电离辐射损伤作用,提高辐射损伤小鼠脾细胞活力,降低小鼠脾细胞DNA的辐射损伤程度,增加细胞抗氧化酶活性,减少丙二醛(MDA)含量。建立60Coγ辐射诱导氧化损伤动物模型,对SRP-1a的辐射防护作用进行研究。结果表明,SRP-1a能减轻辐射造成小鼠免疫器官的损伤,显著增加小鼠各脏器中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)活性,提高还原型谷胱甘肽(GSH)含量,降低MDA含量,有效激活抗氧化酶系,减少脂质过氧化,减轻细胞膜的氧化损伤,降低小鼠外周血淋巴细胞异形和骨髓细胞微核率。
     通过免疫组化和蛋白免疫印迹技术(Western blot)对小鼠脾脏、肝脏组织线粒体介导的细胞凋亡信号途径主要相关蛋白表达进行了研究。结果表明,SRP-1a防护辐射诱导机体氧化损伤的作用机制是:SRP-1a通过提高Bcl-2表达水平,抑制Bax表达的上调,降低胞浆Cyt-c表达,继而降低凋亡酶caspase-3活化片段的表达,起到对辐射诱导细胞过度凋亡的抑制作用。
     SRP-1a能够改善由电离辐射诱导的氧化损伤,降低活性氧自由基的产生,调节细胞氧化还原和凋亡信号转导,抑制细胞线粒体凋亡信号途径,对辐射诱导氧化伤害具有显著的防护作用。本研究结果对于揭示辐射诱导氧化损伤防护机制及开发研制新型抗辐射药物具有重要的理论价值和应用意义。
With the development of nuclear technology, people may face many potentialthreat of radiation damage in many areas of life. Ionizing radiation could induce thebody to produce excessive of Reactive oxygen species (ROS), which can attack thebiological macromolecules and then result in oxidative stress. Studies have shown thatmore than one hundred kinds of human diseases are associated with oxidative stress.Hence screening and evaluation antioxidant and radiation protective activitycomponents from natural product resources have become a hot spot in the study ofbiology, medicine and food science. In this thesis, preparation, purification andidentification of polysaccharides from soybean residue (SRP) were researched;antioxidant activity and protective effect on radiation-induced oxidative stress of SRPwere also investigated.
     SRP was produced by enzymatic hydrolysis of soybean residue crude fibre. Theoptimum hydrolysis conditions for SRP were the ratio of enzyme activity unit to massof soybean crude fiber60U/g, temperature50℃and pH5.10. Under these conditions,at degradation time of1h, the experimental yield of SRP was45.71%. At degradationtime of8h SRP fraction showed the best antioxidant activities.SRP was purified byDEAE-52and Sephadex G-100, and one main homogeneous polysaccharide (SRP-1a)was obtained. The structure of SRP-1a was characterized by HPGPC, GC-MS, FT-IR,periodic acid oxidation-smith degradation and NMR spectra. The results indicated thatSRP-1a was a glucan with high branches. The molecular weight was3.89×103Da. Thepolysaccharide was composed of ribose, rhamnose, arabinose, xylose, mannose, glucoseand galactose with a ratio of0.82:0.97:2.77:0.63:6.38:70.62:17.82. The majorconfiguration of glycoside residues of SRP-1a were1,4-β-D-Glcp,1,3,6-α-D-Manpand1,4-α-D-Galp.The main chain is formed through the connection between gluco-and manno-units, the non-reducing terminal residue was (1→)-β-D-Glcp. The branchwas formed through the connection between1,3,6-α-D-Manp and1,4-α-D-Galp, atthe position of O-6.
     Antioxidant activities of SRP-1a were studied in vitro, such as removal ofphysiological and non-physiological free radicals, total reducing capacity and anti lipidperoxidation activity. The results show that SRP-1a has high scavenging activity onhydroxide radical (·OH). The main mechanism is that SRP-1a is an active hydrogenatom donor, which can break down radical chain reactions through hydrogen atomtransfer. SRP-1a also showed significant total reducing capacity and inhibition activityon lipid peroxidation with a dose-dependent manner.
     The mouse spleen cell damage model induced by X-ray and60Coγ-ray radiation was established to test and verify SRP-1a’s protective effect on radiation induceddamage. Results showed that SRP-1a can protect radiated mouse spleen cell throughenhancing cell viability and reducing DNA damage. Then, the oxidative damage animalmodel induced by60Coγ-ray radiation was established to investigate the protectiveeffect in vivo.
     The results showed that SRP-1a can significantly reduce mouse immune organsoxidative damage through enhancing antioxidant enzymes activities such as superoxidedismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). SRP-1a canameliorate glutathione (GSH) and reduce malondialdehyde (MDA) level in organs andserum of mouse to decrease lipid peroxidation and protect cell membrane. SRP-1a alsocan inhibit generation of atypical lymphocytes and bone marrow micronuclei inducedby radiation.
     Regulating effect of SRP-1a on apoptosis mitochondrial path related proteinsexpress statuses was analyzed through immunohistochemistry and western blottechnique. The protective effect mechanism of SRP-1a on oxidative damage induced byradiation was proposed. SRP-1a can improve expression level of Bcl-2, blockradiation-induced up regulated of Bax, then inhibit the release of Cyt-c and depress theactivities of caspase-3, and thus inhibit cell apoptosis.
     These results demonstrate that SRP-1a has effective antioxidant and antiradiationactivities through regulating cell oxidoreduction and apoptosis signal transduction. Thepresent study has important theoretical and practical significance to reveal themechanism of preventing radiation induced oxidative damage and developing newradioprotectors.
引文
[1]陈惠芳,刘英,秦斌,等.核与辐射突发事件医疗救援应急准备[J].中华医院管理杂志,2010,26(5):344-346.
    [2] Simone NL, Soule BP, Ly D, et al. Ionizing radiation-induced oxidative stressalters miRNA expression[J]. PloS one,2009,4(7): e6377.
    [3] Benkovi V, Kne evi AH, Djikic D, et al. Radioprotective effects of quercetinand ethanolic extract of propolis in gamma-irradiated mice[J]. Archives ofIndustrial Hygiene and Toxicology,2009,60(2):129-138.
    [4]赵斌,张军帅,刘培勋.辐射防护剂研究现状及其进展[J].核化学与放射化学,2012,34(1):8-13.
    [5] Shukla SK, Gupta ML. Approach towards development of a radioprotector usingherbal source against lethal irradiation[J]. Int Res J Plant Sci,2010,1:118-125.
    [6] Singh VK, Yadav VS. Role of cytokines and growth factors in radioprotection[J].Experimental and Molecular Pathology,2005,78(2):156-169.
    [7] Andreassen CN, Grau C, Lindegaard JC. Chemical radioprotection: a criticalreview of amifostine as a cytoprotector in radiotherapy[J]. Seminars in Radiationoncology,2003,13(1):62-72.
    [8] Maurya DK, Devasagayam TPA. Ferulic acid inhibits gamma radiation-inducedDNA strand breaks and enhances the survival of mice[J]. Cancer Biotherapy andRadiopharmaceuticals,2013,28(1):51-57.
    [9]李顶威.进口冲击背景下国内外大豆期货,现货价格互动关系研究[D]:华中科技大学,2011:3-7.
    [10] Zhong K, Wang Q, He Y, et al. Evaluation of radicals scavenging,immunity-modulatory and antitumor activities of longan polysaccharides withultrasonic extraction on in S180tumor mice models[J]. International Journal ofBiological Macromolecules,2010,47(3):356-360.
    [11] Wijesekara I, Pangestuti R, Kim SK. Biological activities and potential healthbenefits of sulfated polysaccharides derived from marine algae[J]. CarbohydratePolymers,2011,84(1):14-21.
    [12] Zhang M, Cui S, Cheung P, et al. Antitumor polysaccharides from mushrooms: areview on their isolation process, structural characteristics and antitumoractivity[J]. Trends in Food Science&Technology,2007,18(1):4-19.
    [13] Ward J. DNA damage produced by ionizing rodiotion in[D]. Prog Nucleic AcidRes&Molecular Bio,1988,35:95.
    [14] Harman D. Free radical theory of aging[J]. Mutation Research/DNAging,1992,275(3):257-266.
    [15] Valko M, Rhodes C, Moncol J, et al. Free radicals, metals and antioxidants inoxidative stress-induced cancer[J]. Chemico-biological Interactions,2006,160(1):1-40.
    [16] Lee SH, Gupta MK, Bang JB, et al. Current progress in reactive oxygen species(ROS)-responsive materials for biomedical applications[J]. Advanced HealthcareMaterials,2013,2(6):908-915.
    [17]沈剑刚.活性氮自由基:脑缺血再灌注损伤过程中引起血脑屏障破坏及调节神经修复的双刃剑[J].生物物理学报,2012,28(4):295-306.
    [18] Riley P. Free radicals in biology: oxidative stress and the effects of ionizingradiation[J]. International Journal of Radiation Biology,1994,65(1):27-33.
    [19] Nordmann R, Ribière C, Rouach H. Implication of free radical mechanisms inethanol-induced cellular injury[J]. Free Radical Biology and Medicine,1992,12(3):219-240.
    [20] Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generateoxygen free radicals in neurons and contribute to cell death during anoxia andreoxygenation[J]. The Journal of neuroscience,2007,27(5):1129-1138.
    [21] Templeton DM, George Cherian M. Toxicological significance ofmetallothionein[J]. Methods in Enzymology,1991,205:11-24.
    [22] Weiss JF, Landauer MR. Radioprotection by antioxidantsa[J]. Annals of the NewYork Academy of Sciences,2000,899(1):44-60.
    [23] Samarth RM, Panwar M, Kumar M, et al. Evaluation of antioxidant andradical-scavenging activities of certain radioprotective plant extracts[J]. FoodChemistry,2008,106(2):868-873.
    [24] Ishii J, Natsume A, Wakabayashi T, et al. The free-radical scavenger edaravonerestores the differentiation of human neural precursor cells after radiation-inducedoxidative stress[J]. Neuroscience Letters,2007,423(3):225-230.
    [25] Sandeep D, Nair CKK. Protection of DNA and membrane from γ-radiationinduced damage by the extract of Acorus calamus Linn.: An in vitro study[J].Environmental Toxicology and Pharmacology,2010,29(3):302-307.
    [26] Savoye CS, Swenberg C, Hugot S, et al. Thiol WR-1065and disulphideWR-33278, two metabolites of the drug Ethyol (WR-2721), protect DNA againstfast neutroninduced strand breakage[J]. International Journal of RadiationBiology,1997,71(2):193-202.
    [27] Sprung CN, Vasireddy RS, Karagiannis TC, et al. Methylproamine protectsagainst ionizing radiation by preventing DNA double-strand breaks[J]. MutationResearch/Fundamental and Molecular Mechanisms of Mutagenesis,2010,692(1):49-52.
    [28] Vasko MR, Guo C, Thompson EL, et al. The repair function of themultifunctional DNA repair/redox protein APE1is neuroprotective after ionizingradiation[J]. DNA Repair,2011,10(9):942-952.
    [29] Guo J, Zhang Y, Zeng L, et al. Salvianic acid A protects L-02cells againstγ-irradiation-induced apoptosis via the scavenging of reactive oxygen species[J].Environmental Toxicology and Pharmacology,2013,35(1):117-130.
    [30] Park E, Hwang I, Song JY, et al. Acidic polysaccharide of Panax ginseng as adefense against small intestinal damage by whole-body gamma irradiation ofmice[J]. Acta Histochemica,2011,113(1):19-23.
    [31] Kondo H, Park SH, Watanabe K, et al. Polyphenol ()-epigallocatechin gallateinhibits apoptosis induced by irradiation in human HaCaT keratinocytes[J].Biochemical and Biophysical Research Communications,2004,316(1):59-64.
    [32] Begum N, Prasad NR. Apigenin, a dietary antioxidant, modulates gammaradiation-induced oxidative damages in human peripheral blood lymphocytes[J].Biomedicine&Preventive Nutrition,2012,2(1):16-24.
    [33]吕秋军,温利青,张敏,等.白藜芦醇的辐射防护及其分子机理的研究[J].中华放射医学与防护杂志,2004,24(1):21-22.
    [34] Jagetia GC. Radioprotective potential of plants and herbs against the effects ofionizing radiation[J]. Journal of Clinical Biochemistry and Nutrition,2007,40(2):74-81.
    [35] Vural H, Sabuncu T, Arslan SO, et al. Melatonin inhibits lipid peroxidation andstimulates the antioxidant status of diabetic rats[J]. Journal of Pineal Research,2008,31(3):193-198.
    [36] Murley JS, Kataoka Y, Weydert CJ, et al. Delayed cytoprotection afterenhancement of Sod2(MnSOD) gene expression in SA-NH mouse sarcoma cellsexposed to WR-1065, the active metabolite of amifostine[J]. Radiation Research,2002,158(1):101-109.
    [37] Duan Y, Zhang H, Xu F, et al. Inhibition effect of procyanidins from lotusseedpod on mouse B16melanoma in vivo and in vitro[J]. Food Chemistry,2010,122(1):84-91.
    [38] Sandeep D, Nair CKK. Protection from lethal and sub-lethal whole bodyexposures of mice to γ-radiation by Acorus calamus L.: Studies on tissueantioxidant status and cellular DNA damage[J]. Experimental and ToxicologicPathology,2012,64(1):57-64.
    [39] Allalunis-Turner MJ, Walden Jr TL, Sawich C. Induction of marrow hypoxia byradioprotective agents[J]. Radiation Research,1989,118(3):581-586.
    [40] Yan H, Yan LIUJ, Hou ZY. Effect of Angelica polysaccharide on the promotionof thymocyte proliferation and RBC C3bR immune adhesion function in radiatedmice[J]. Chinese Journal of Contemporary Pediatrics,2001,3(3):250-252.
    [41] Newman DJ, Cragg GM. Natural products as sources of new drugs over the30years from1981to2010[J]. Journal of Natural Products,2012,75(3):311-335.
    [42] Li X, Wang Z, Wang L. Polysaccharide of Hohenbuehelia serotina as a defenseagainst damage by whole-body gamma irradiation of mice[J]. CarbohydratePolymers,2013,94(2):829-835.
    [43] Zhao H, Wang Z, Ma F, et al. Protective effect of anthocyanin from Loniceracaerulea var. edulis on radiation-induced damage in mice[J]. International Journalof Molecular Sciences,2012,13(9):11773-11782.
    [44]陈月,王宝贵,张桂英,等.刺五加皂苷的抗辐射损伤作用[J].吉林大学学报:医学版,2005,31(3):423-425.
    [45] Garg HG, Cowman MK, Hales CA. The development of carbohydrate chemistryand biology[D]. Carbohydrate Chemistry, Biology and Medical Applications,2011:1-28.
    [46] Teleman A, Lundqvist J, Tjerneld F, et al. Characterization of acetylated4-o-methylglucuronoxylan isolated from aspen employing1H and13C NMRspectroscopy[J]. Carbohydrate Research,2000,329(4):807-815.
    [47]王忠民.葡萄多糖的分离纯化、结构与功能特性的研究[D]:华中农业大学,2002:47-55.
    [48]万茵.车前子多糖、黄酮和苯乙醇苷类的纯化、结构解析及其活性功能研究[D]:南昌大学,2007:65-72.
    [49]黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发,1999,11(5):90-96.
    [50]来鲁华,杨昱婷.寡糖的构象分析[J].生物化学与生物物理进展,1995,22(4):290-294.
    [51]王长云,管华诗,李八方.氨基多糖研究概况与展望[J].生物工程进展,1995,15(6):2-10.
    [52] Yang C, Gou Y, Chen J, et al. Structural characterization and antitumor activityof a pectic polysaccharide from Codonopsis pilosula[J]. Carbohydrate Polymers,2013,98(1):886-895.
    [53] Knirel YA, Lan R, Sof'ya NS, et al. O-antigen structure of Shigella flexneriserotype Yv and effect of the lpt-O gene variation on phosphoethanolaminemodification of S. flexneri O-antigens[J]. Glycobiology,2013,23(4):475-485.
    [54] Wang C, Li X, Du B, et al. Associating and rheological behaviors of fluorinatedcationic guar gum in aqueous solutions[J]. Carbohydrate Polymers,2013,95(2):637-643.
    [55] Kuang H, Xia Y, Liang J, et al. Fast classification and compositional analysis ofpolysaccharides from TCMs by ultra-performance liquid chromatography coupledwith multivariate analysis[J]. Carbohydrate Polymers,2011,84(4):1258-1266.
    [56] Chen R, Liu Z, Zhao J, et al. Antioxidant and immunobiological activity ofwater-soluble polysaccharide fractions purified from Acanthopanax senticosu[J].Food Chemistry,2011,127(2):434-440.
    [57] Souza AC, Rietkerk T, Selin CG, et al. A robust and universal NMR method forthe compositional analysis of polysaccharides[J]. Carbohydrate Polymers,2013,95(2):657-663.
    [58] Petersena BO, Hindsgaul O, Paulsen BS, et al. Structural elucidation of thecapsular polysaccharide from Streptococcus pneumoniae serotype47A by NMRspectroscopy [J]. Carbohydrate Research,2014,386:62-67.
    [59] Velzen van E, Roo de N, Poort R, et al. Identification and semi-quantification ofpolysaccharides in complex food matrices by NMR[D]. Magnetic Resonance inFood Science: Food for Thought,2013:156-163.
    [60]罗祖友,严奉伟,薛照辉,等.藤茶多糖的抗氧化作用研究[J].食品科学,2004,25(11):291-295.
    [61] Zhang Q, Li N, Liu X, et al. The structure of a sulfated galactan from Porphyrahaitanensis and its in vivo antioxidant activity[J]. Carbohydrate Research,2004,339(1):105-111.
    [62]游玟娟,温拥军.北五味子多糖提取条件及其抗氧化性能[J].食品与发酵工业,2012,38(9):206-210.
    [63] Zhang Q, Li N, Liu X, et al. The structure of a sulfated galactan from Porphyrahaitanensis and its in vivo antioxidant activity[J]. Carbohydrate Research,2004,339(1):105-111.
    [64]罗琼,闫俊,崔晓燕,等.枸杞多糖对辐照大鼠生殖系统损伤拮抗作用[J].中国公共卫生,2011,27(10):1358-1359.
    [65]孙文忠.海带多糖抗大鼠颌下腺辐射损伤以及鼻咽癌裸鼠移植瘤的实验研究[D]:广西医科大学,2012:53-56.
    [66]孙元琳,马国刚,汤坚.当归多糖对亚慢性辐射损伤小鼠的防护作用研究[J].中国食品学报,2009,9(4):33-37.
    [67] Zhao L, Wang Y, Shen H, et al. Structural characterization and radioprotection ofbone marrow hematopoiesis of two novel polysaccharides from the root ofAngelica sinensis (Oliv.) Diels[J]. Fitoterapia,2012,83(8):1712-1720.
    [68] Shi J, Cheng C, Zhao H, et al. In vivo anti-radiation activities of the Ulva pertusapolysaccharides and polysaccharide-iron (III) complex[J]. International Journal ofBiological Macromolecules,2013,60:341-346.
    [69] Pillai TG, Devi PU. Mushroom beta glucan: Potential candidate for postirradiation protection[J]. Mutation Research/Genetic Toxicology andEnvironmental Mutagenesis,2013,751(2):109-115.
    [70]梁华平,耿波.黄芪多糖对烧伤小鼠细胞免疫功能的影响[J].中华整形烧伤外科杂志,1994,10(2):138-141.
    [71]刘保光,吴华,徐利纳,等.黄芪多糖的药理学功效及在兽医临床的应用[J].广东饲料,2010,19(6):30-32.
    [72]邱伟芬,杨文建,薛梅,等.条斑紫菜多糖的纯化、理化性质及其免疫活性研究[J].食品科学,2013,34(23):51-56.
    [73]雷黎明,潘清平.板蓝根化学,药理,质量及提取方法的研究进展[J].时珍国医国药,2007,18(10):2578-2580.
    [74]宋建德,袁丽萍,梁勇,等.药用植物多糖的免疫作用研究进展[J].中兽医医药杂志,2004,23(2):22-24.
    [75]刘昊,佟建明,贾洪强,等.芦荟粉对不同性别肉仔鸡免疫机能及生产性能的影响[J].福建农业学报,2007,22(3):288-292.
    [76]张媛,尚晓娅,徐春兰,等.植物多糖对淋巴细胞免疫调节功能影响的研究进展[J].化学与生物工程,2012,29(12):1-6.
    [77]王鹏云,王赛贞,林树钱,等.灵芝孢子和破壁孢子多糖对体外培养的小鼠脾淋巴细胞及腹腔巨噬细胞免疫调节活性的比较[J].北京大学学报(医学版),2005,37(6):569.
    [78] Ji H, Shao H, Zhang C, et al. Separation of the polysaccharides in Caulerparacemosa and their chemical composition and antitumor activity[J]. Journal ofApplied Polymer Science,2008,110(3):1435-1440.
    [79] Jiao L, Li X, Li T, et al. Characterization and anti-tumor activity ofalkali-extracted polysaccharide from Enteromorpha intestinalis[J]. InternationalImmunopharmacology,2009,9(3):324-329.
    [80] Kim KH, Lee YS, Jung IS, et al. Acidic polysaccharide from Panax ginseng,ginsan, induces Th1cell and macrophage cytokines and generates LAK cells insynergy with rIL-2[J]. Planta Medica,1998,64(2):110-115.
    [81] Sun Y. Structure and biological activities of the polysaccharides from the leaves,roots and fruits of Panax ginseng CA Meyer: An overview[J]. CarbohydratePolymers,2011,85(3):490-499.
    [82]黄玲,张捷平,陈华.五味子多糖对S180荷瘤小鼠抑瘤作用的研究[J].福建中医学院学报,2003,13(3):22-23.
    [83] Ming M, Guanhua L, Zhanhai Y, et al. Effect of the Lycium barbarumpolysaccharides administration on blood lipid metabolism and oxidative stress ofmice fed high-fat diet in vivo[J]. Food Chemistry,2009,113(4):872-877.
    [84] Pengzhan Y, Quanbin Z, Ning L, et al. Polysaccharides from Ulva pertusa(Chlorophyta) and preliminary studies on their antihyperlipidemia activity[J].Journal of Applied Phycology,2003,15(1):21-27.
    [85] Li H, Zhang M, Ma G. Hypolipidemic effect of the polysaccharide from Pholiotanameko[J]. Nutrition,2010,26(5):556-562.
    [86]陈霞,杨香久,徐永华,等.豆渣膳食纤维制备及其在食品中的应用[J].中国粮油学报,2002,17(2):38-40.
    [87]吴晖,侯萍,李晓凤,等.不同原料中膳食纤维的提取及其特性研究进展[J].现代食品科技,2008,24(1):91-95.
    [88] Nakamura A, Takahashi T, Yoshida R, et al. Emulsifying properties of soybeansoluble polysaccharide[J]. Food Hydrocolloids,2004,18(5):795-803.
    [89]张世仙,杨春梅,吴金鸿,等.豆渣膳食纤维提取方法及功能研究进展[J].西南师范大学学报:自然科学版,2009,34(4):93-97.
    [90] Furuta H, Takahashi T, Tobe J, et al. Extraction of water-soluble soybeanpolysaccharides under acidic conditions[J]. Bioscience, biotechnology, andbiochemistry,1998,62(12):2300-2305.
    [91] Redondo-Cuenca A, Villanueva-Suárez MJ, Mateos-Aparicio I. Soybean seedsand its by-product okara as sources of dietary fibre. Measurement by AOAC andEnglyst methods[J]. Food Chemistry,2008,108(3):1099-1105.
    [92]金茂国,孙伟.用挤压法提高豆渣可溶性膳食纤维含量的研究[J].粮食与饲料工业,1996,8:35-38.
    [93]姜竹茂,陈新美,缪静.从豆渣中制取可溶性膳食纤维的研究[J].中国粮油学报,2001,16(3):52-55.
    [94]尹艳,高文宏,于淑娟.豆渣中水溶性大豆多糖提取工艺的研究[J].食品工业科技,2006,27(8):97-98.
    [95]熊杰,杨玥熹,华欲飞.豆渣水溶性大豆多糖提取工艺研究[J].大豆科学,2009,28(6):1119-1122.
    [96]苏浩,余以刚,杨海燕,等.膜分离技术在水溶性大豆多糖提取中的应用[J].食品工业科技,2009,30(8):216-218.
    [97] Aspinall G, Begbie R, Hamilton A, et al. Polysaccharides of soy-beans. Part III.Extraction and fractionation of polysaccharides from cotyledon meal[J]. J ChemSoc C,1967:1065-1070.
    [98]范远景,张倩,朱昺.豆渣中水溶性大豆多糖提取及组分鉴定[J].食品科学,2007,28(9):295-298.
    [99]尹艳.两种水溶性大豆多糖的红外光谱分析[J].食品研究与开发,2013,34(8):68-69.
    [100]万真真,高文宏,曾新安.超声波协同过氧化氢氧化法制备低分子质量大豆多糖[J].食品与发酵工业,2012,38(10):81-85.
    [101] Miranda PM, Horwitz DL. High-fiber diets in the treatment of diabetesmellitus[J]. Annals of Internal Medicine,1978,88(4):483-486.
    [102]申瑞玲,陈明,董吉林.燕麦水溶性膳食纤维对高脂喂养小鼠肥胖预防研究[J].粮食与油脂,2012,2:10-12.
    [103] Anderson JW, Jones AE, Riddell-Mason S. Ten different dietary fibers havesignificantly different effects on serum and liver lipids of cholesterol-fed rats[J].The Journal of Nutrition,1994,124(1):78-83.
    [104] Madar Z. Effect of brown rice and soybean dietary fiber on the control of glucoseand lipid metabolism in diabetic rats[J]. The American Journal of ClinicalNutrition,1983,38(3):388-393.
    [105] Chen H, Liu LJ, Zhu JJ, et al. Effect of soybean oligosaccharides on blood lipid,glucose levels and antioxidant enzymes activity in high fat rats[J]. FoodChemistry,2010,119(4):1633-1636.
    [106]张秀娟,李其成,白雪莹,等.大豆多糖联合环磷酰胺对S180荷瘤小鼠抗肿瘤增效作用研究[J].中国微生态学杂志,2013,25(5):521-523.
    [107] Bingham SA, Day NE, Luben R, et al. Dietary fibre in food and protectionagainst colorectal cancer in the European prospective investigation into cancerand nutrition (EPIC): an observational study[J]. The Lancet,2003,361(9368):1496-1501.
    [108] Zhu Y, Fan J, Cheng Y, et al. Improvement of the antioxidant activity of Chinesetraditional fermented okara (Meitauza) using Bacillus subtilis B2[J]. FoodControl,2008,19(7):654-661.
    [109]宋慧,苗敬芝,董玉玮.双酶法提取大豆多糖及其抗氧化性研究[J].中国食品添加剂,2011,5:89-93.
    [110] Liao HF, Chen YJ, Yang YC. A novel polysaccharide of black soybean promotesmyelopoiesis and reconstitutes bone marrow after5-flurouracil-andirradiation-induced myelosuppression[J]. Life Sciences,2005,77(4):400-413.
    [111]易阳,张名位,魏振承,等.米糠多糖和大豆多糖的结构特征及免疫调节活性比较[J].中国粮油学报,2013,28(6):50-55.
    [112]许家喜.蛋白质的检测方法与乳制品中蛋白含量测定[J].大学化学,2009,24(1):66-69.
    [113]魏红,钟红舰,汪红.索氏抽提法测定粗脂肪含量的改进[J].中国油脂,2004,29(6):52-54.
    [114]任朝琴,刘圆,袁玮.正交实验法筛选千斤拔多糖的提取分离工艺[J].时珍国医国药,2009,20(5):1051-1053.
    [115]陈祥军,蒋彦.纤维素酶测活方法的分析——基于构建统一的工业化纤维素酶测活标准[J].四川大学学报(自然科学版),2012,3:1-7.
    [116]杨文雄,高彦祥.响应面法及其在食品工业中的应用[J].中国食品添加剂,2005,2(2):68-71.
    [117]刘洋,郭晓雨,孙殿奎,等.不同产地黑豆黄酮提取物的抗氧化能力比较研究[J].人参研究,2012,1:21-23.
    [118] Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying animproved ABTS radical cation decolorization assay[J]. Free Radical Biology andMedicine,1999,26(9):1231-1237.
    [119] Li Z, Ge Y. Antioxidant activities of lignin extracted from sugarcane bagasse viadifferent chemical procedures[J]. International Journal of BiologicalMacromolecules,2012,51(5):1116-1120.
    [120]陈浩.菜籽多糖的提取、分离、结构及生物活性的研究[D]:华中农业大学,2007:87-92.
    [121]李妍,魏建和,许旭东,等.苯酚-硫酸法定量测定桔梗多糖的研究[J].时珍国医国药,2009,20(1):5-7.
    [122] Luo D. Identification of structure and antioxidant activity of a fraction ofpolysaccharide purified from Dioscorea nipponica Makino[J]. CarbohydratePolymers,2008,71(4):544-549.
    [123] Harazono A, Kobayashi T, Kawasaki N, et al. A comparative study ofmonosaccharide composition analysis as a carbohydrate test forbiopharmaceuticals[J]. Biologicals,2011,39(3):171-180.
    [124] Li N, Yan C, Hua D, et al. Isolation, purification, and structural characterizationof a novel polysaccharide from Ganoderma capense[J]. Int J Biol Macromol,2013,57:285-290.
    [125] Ke C, Qiao D, Luo J, et al. Immunostimulatory activity and structure ofpolysaccharide from Streptococcus equi subsp. zooepidemicus[J]. Int J BiolMacromol,2013,57:218-225.
    [126]郭雪峰,岳永德,汤峰,等.用清除羟自由基法评价竹叶提取物抗氧化能力[J].光谱学与光谱分析,2008,28(8):1823-1826.
    [127] Gutteridge J, Halliwell B. The measurement and mechanism of lipid peroxidationin biological systems[J]. Trends in Biochemical Sciences,1990,15(4):129-135.
    [128] Marks DC, Belov L, Davey MW, et al. The MTT cell viability assay forcytotoxicity testing in multidrug-resistant human leukemic cells[J]. LeukemiaResearch,1992,16(12):1165-1173.
    [129] Manosroi A, Jantrawut P, Akihisa T, et al. In vitro and in vivo skin anti-agingevaluation of gel containing niosomes loaded with a semi-purified fractioncontaining gallic acid from Terminalia chebula galls[J]. Pharmaceutical Biology,2011,49(11):1190-1203.
    [130] Bock C, Dittmar H, Gemeinhardt H, et al. Comet assay detects cold repair ofUV-A damages in a human[J]. Mutation Research,1998,408(2):111-120.
    [131]王庭欣,秦淑贞,赵文,等.海带多糖对环磷酰胺诱发小鼠骨髓细胞微核率的抑制作用[J].癌变畸变突变,1999,11(2):106-107.
    [132]何华.如何正确地对免疫组化结果进行半定量评分[J].中外健康文摘:临床医师,2008,5(7)162-163.
    [133]杨文鸽,谢果凰,徐大伦,等.龙须菜多糖的降解及其降解产物的抗氧化活性[J].水产学报,2009,33(2):342-347.
    [134] Nardella A, Chaubet F, Boisson-Vidal C, et al. Anticoagulant low molecularweight fucans produced by radical process and ion exchange chromatography ofhigh molecular weight fucans extracted from the brown seaweed Ascophyllumnodosum[J]. Carbohydrate Research,1996,289:201-208.
    [135]吴婷,闫茂华,张娅,等.葫芦巴多糖酸解和酶解产物抗氧化及抗菌活性的比较研究[J].食品科学,2007,28(11):509-512.
    [136]陈蕾,吴皓.多糖降解方法的研究进展[J].中华中医药学刊,2008(1):133-135.
    [137]周海斌,赵虎,高向东.多糖酶法修饰研究的新进展[J].药学进展,2007,31(8):349-352.
    [138]王强,刘红芝,钟葵.多糖分子链构象变化与生物活性关系研究进展[J].生物技术进展,2011,1(5):318-326.
    [139]聂少平,黄丹菲,殷军艺,等.食物中多糖组分的结构表征与活性功能研究进展[J].中国食品学报,2012,11(9):46-57.
    [140]伍乐芹,张静,孙润广,等.白术多糖的分离纯化与结构表征[J].高等学校化学学报,2012,32(12):2812-2816.
    [141]杨柳,江连洲,李杨,等.水酶法提取的大豆蛋白功能特性研究[J].食品与发酵工业,2010,(6):80-84.
    [142]宋永康,黄薇,林虬,等.不同酶解法水解豆粕蛋白的比较研究[J].农学学报,2012,2(9):51-55.
    [143]陈敏,蔡会武,邵纪生,等.双酶解法提取大豆蛋白的工艺研究[J].大豆科学,2010,29(3):537-539.
    [144]任海伟,张国华,宋育璇,等.豆渣中可溶性大豆蛋白肽的提取及结构表征[J].食品工业科技,2009,30(5):275-277.
    [145] Cho EJ, Jung S, Kim HJ, et al. Co-immobilization of three cellulases onAu-doped magnetic silica nanoparticles for the degradation of cellulose[J].Chemical Communications,2012,48(6):886-888.
    [146]李志平,杨盛,侯红萍.高活性纤维素酶的分离纯化[J].中国农学通报,2012,28(18):205-208.
    [147]庞浩,陈燕,吴倩倩,等.地衣芽孢杆菌(Bacillus licheniformis)外切葡聚糖酶CelB基因的发掘及功能鉴定[J].生物技术通报,2013,(9):151-157.
    [148]詹小明,夏黎明.纤维素酶在玉米芯上的吸附及其水解作用[J].林产化学与工业,2005,25(3):76-80.
    [149]郑晓燕,章程辉,李积华,等.香蕉皮不溶性纤维酶法水解特性研究[J].食品科技,2010,35(6):107-111.
    [150]鲍素华,查学强,郝杰,等.不同分子量铁皮石斛多糖体外抗氧化活性研究[J].食品科学,2009,30(21):123-127.
    [151] Qiao D, Liu J, Ke C, et al. Structural characterization of polysaccharides fromHyriopsis cumingii[J]. Carbohydrate Polymers,2010,82(4):1184-1190.
    [152]赵力超,杜征,刘欣,等.慈姑抗性淀粉的理化特性研究[J].食品科学,2010,31(17):55-59.
    [153]伍秀英,罗发兴,黄强,等.辛烯基琥珀酸糊精酯的制备及其乳化性的研究[J].现代食品科技,2012,28(9):1157-1160.
    [154]孙培龙.姬松茸多糖的分离纯化,结构鉴定及抗肿瘤活性研究[D]:浙江大学,2007:60-66.
    [155] Zou S, Zhang X, Yao W, et al. Structure characterization and hypoglycemicactivity of a polysaccharide isolated from the fruit of Lycium barbarum L[J].Carbohydrate Polymers,2010,80(4):1161-1167.
    [156] Gutiérrez de G O, Mart n ez M, Sanabria L, et al.1D-and2D-NMR spectroscopystudies of the polysaccharide gum from Spondias purpurea var. lutea[J]. FoodHydrocolloids,2005,19(1):37-43.
    [157]张继.沙蒿多糖结构及降血糖作用研究[D]:西北师范大学,2005:56-62.
    [158] Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health anddisease[J]. Journal of the American Oil Chemists' Society,1998,75(2):199-212.
    [159]郭金颖,牟德华.五种甘薯多糖体外抗氧化活性比较[J].粮食与饲料工业,2012,12:29-31.
    [160]吕明生,王淑军,房耀维,等.超声波提取雪莲薯多糖工艺优化及其对羟自由基的清除[J].食品科学,2011,32(2):24-27.
    [161]潘利华,徐学玲,罗建平.水溶性大豆多糖的超声辅助酶法提取条件及抗氧化活性[J].食品科学,2012,33(4):77-81.
    [162] Di Giulio RT, Washburn PC, Wenning RJ, et al. Biochemical responses inaquatic animals: a review of determinants of oxidative stress[J]. EnvironmentalToxicology and Chemistry,2009,8(12):1103-1123.
    [163]李进,李淑珍,冯文娟,等.黑果枸杞叶总黄酮的体外抗氧化活性研究[J].食品科学,2010,31(13):259-262.
    [164] Marklund S. A simple specific method for the determination of the hemoglobincontent of tissue homogenates[J]. Clinica Chimica Acta,1979,92(2):229-234.
    [165] Miller NJ, Rice-Evans CA. Factors influencing the antioxidant activitydetermined by the ABTS+radical cation assay[J]. Free Radical Research,1997,26(3):195-199.
    [166]韩榕,李忌.脂质过氧化机理及测定方法[J].山西师大学报:自然科学版,1997,11(4):53-57.
    [167] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abioticstress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930.
    [168]郭红辉,王庆.花色苷抗动脉粥样硬化研究进展[J].中国食物与营养,2008,1(1):49-51.
    [169]张镜,廖富林,陈梓云,等.阴香果实花色苷的体外抗氧化活性[J].食品科学,2011,32(17):128-132.
    [170]单俊杰,王易,王顺春,等.当归多糖对小鼠脾淋巴细胞增殖及诱生IFN-γ的影响[J].药学学报,2002,37(7):497-500.
    [171]刘蓓,刘玉红.金银花多糖对脾淋巴细胞的增殖作用[J].中国实用医药,2013,8(11):244-245.
    [172]李敬双,刘英姿,唐雨顺,等.苜蓿多糖对小鼠淋巴细胞增殖和NK细胞活性影响的研究[J].中国农学通报,2012,28(32):89-93.
    [173] Han S, Yoon Y, Ahn H, et al. Toll-like receptor-mediated activation of B cellsand macrophages by polysaccharide isolated from cell culture of Acanthopanaxsenticosus[J]. International Immunopharmacology,2003,3(9):1301-1312.
    [174] Malhomme RH, Roche H, Seagrove S, et al. Using natural dietary sources ofantioxidants to protect against ultraviolet and visible radiation-induced DNAdamage: An investigation of human green tea ingestion[J]. Journal ofPhotochemistry and Photobiology B: Biology,2010,101(2):169-173.
    [175] Zda ilová A, Svobodová AR, Chytilová K, et al. Polyphenolic fraction ofLonicera caerulea L. fruits reduces oxidative stress and inflammatory markersinduced by lipopolysaccharide in gingival fibroblasts[J]. Regulation,2010,48(6):1555-1561.
    [176] Krishnan C, Nair K. Radiation protection by6-Palmitoyl ascorbicacid-2-glucoside: studies on DNA damage in vitro, ex vivo, in vivo and oxidativestress in vivo[J]. Cancer Research,2009,50(3):203-212.
    [177]刘玉凤,蒋云升.植物多糖对辐射危害辅助保护作用研究进展[J].科技信息,2012(36):65-66.
    [178]韩春山,梁军,姚如永.电离辐射效应与细胞凋亡的调控研究进展[J].齐鲁医学杂志,2004,19(6):556-557.
    [179] Budihardjo I, Oliver H, Lutter M, et al. Biochemical pathways of caspaseactivation during apoptosis[J]. Annual Review of Cell and DevelopmentalBiology,1999,15(1):269-290.
    [180]李清芹,刘永兰,游江成,等.电离辐射对放射工作人员外周血淋巴细胞染色体畸变率的影响[J].福建医药杂志,2013,35(4):60-62.
    [181] Castillo J, Benavente-García O, Lorente J, et al. Antioxidant activity andradioprotective effects against chromosomal damage induced in vivo by X-rays offlavan-3-ols (procyanidins) from grape seeds (vitis vinifera): comparative studyversus other phenolic and organic compounds[J]. Journal of Agricultural andFood Chemistry,2000,48(5):1738-1745.
    [182] Anderson RM, Marsden SJ, Wrigh EG, et al. Complex chromosome aberrationsin peripheral blood lymphocytes as a potential biomarker of exposure tohigh-LET alpha-particles[J]. International Journal of Radiation Biology,2000,76(1):31-42.
    [183] Devi TS, Hosoya KI, Terasaki T, et al. Critical role of TXNIP in oxidative stress,DNA damage and retinal pericyte apoptosis under high glucose: implications fordiabetic retinopathy[J]. Experimental Cell Research,2013,319(7):1001-1012.
    [184] Wang DM, Li SQ, Zhu XY, et al. Protective effects of hesperidin againstamyloid-β (Aβ) induced neurotoxicity through the voltage dependent anionchannel1(VDAC1)-mediated mitochondrial apoptotic pathway in PC12cells[J].Neurochemical Research,2013,38(5):1034-1044.
    [185] Adams JM, Cory S. Life-or-death decisions by the Bcl-2protein family[J].Trends in Biochemical Sciences,2001,26(1):61-66.
    [186] Narita M, Shimizu S, Ito T, et al. Bax interacts with the permeability transitionpore to induce permeability transition and cytochrome c release in isolatedmitochondria[J]. Proceedings of the National Academy of Sciences,1998,95(25):14681-14686.
    [187] Green DR, Kroemer G. The pathophysiology of mitochondrial cell death[J].Science Signalling,2004,305(5684):626-629.
    [188] Wang ZW, Zhou JM, Huang ZS, et al. Aloe polysaccharides mediatedradioprotective effect through the inhibition of apoptosis[J]. Journal of RadiationResearch,2004,45(3):447-454.
    [189] Jeong JJ, Ha YM, Jin YC, et al. Rutin from Lonicera japonica inhibits myocardialischemia/reperfusion-induced apoptosis in vivo and protects H9c2cells againsthydrogen peroxide-mediated injury via ERK1/2and PI3K/Akt signals in vitro[J].Food and Chemical Toxicology,2009,47(7):1569-1576.
    [190] Hochman A, Sternin H, Gorodin S, et al. Enhanced oxidative stress and alteredantioxidants in brains of Bcl-2-deficient mice[J]. Journal of Neurochemistry,2002,71(2):741-748.
    [191]王艳杰,邓雯,张鹏飞.细胞色素C与细胞凋亡研究进展[J].动物医学进展,2012,33(7):89-92.
    [192] Cain K, Bratton SB, Cohen GM. The Apaf-1apoptosome: a largecaspase-activating complex[J]. Biochimie,2002,84(2):203-214.
    [193] Kuida K, Haydar TF, Kuan CY, et al. Reduced apoptosis and cytochrome cmediated caspase activation in mice lacking caspase9[J]. Cell,1998,94(3):325-337.
    [194] Singh VK, Singh PK, Wise SY, et al. Radioprotective properties of tocopherolsuccinate against ionizing radiation in mice[J]. Journal of Radiation Research,2013,54(2):210-220.
    [195] Imesch P, Fink D, Fedier A. Romidepsin reduces histone deacetylase activity,induces acetylation of histones, inhibits proliferation, and activates apoptosis inimmortalized epithelial endometriotic cells[J]. Fertility and Sterility,2010,94(7):2838-2842.
    [196] Keyster M, Klein A, Du Plessis M, et al. Capacity to control oxidativestress-induced caspase-like activity determines the level of tolerance to salt stressin two contrasting maize genotypes[J]. Acta Physiologiae Plantarum,2013,35(1):31-40.
    [197] Simon DJ, Weimer RM, McLaughlin T, et al. A caspase cascade regulatingdevelopmental axon degeneration[J]. The Journal of Neuroscience,2012,32(49):17540-17553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700