用户名: 密码: 验证码:
枝状低聚咪唑表面活性剂的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低聚表面活性剂是表面活性剂领域的最新研究热点之一。本研究以咪唑、长链溴代烷烃等为主要原料,季戊四醇衍生物为连接基,合成了两个系列六种结构的枝状二聚、四聚咪唑表面活性剂,对合成条件进行优化,得到适宜的合成条件。采用核磁共振氢谱、碳谱、红外光谱、元素分析、热重等手段对中间体和产物的结构进行了表征,证明所合成物质确为目标产物。
     采用表面张力法、电导率法测定两个系列六种结构的低聚咪唑表面活性剂水溶液的表面性质、反离子结合度和胶束化热力学性质。实验结果显示:随着表面活性剂疏水链长的增加,枝状二聚咪唑表面活性剂([Cn-P-Cnim]Br2)和四聚咪唑表面活性剂([P-(Cnim)4]Br4)临界胶束浓度(cmc)和气液界面最大吸附量(Γcmc)值均逐渐减小,表面活性剂分子在空气/水界面的最小横截面积(Amin)和效率因子(pC20)值均逐渐增大,表现出较高的表面活性。通过比较[Cn-P-Cnim]Br2与连接基为四亚甲基的线状二聚表面活性剂([Cn-4-Cnim]Br2)的表面性能参数,结果表明:疏水链长相同时[Cn-P-Cnim]Br2的Γcmc更小, Amin值更大,降低表面张力的效率更高。比较[P-(Cnim)4]Br4与[Cn-P-Cnim]Br2的表面性能参数可以看出:[P-(Cnim)4]Br4的cmc值更低,在气-液界面所占的单分子面积Amin更大,饱和吸附量Γcmc更小, pC20值更高,表面性能更优。采用相分离模型,结合实验测得的cmc等实验数据,得到了两个系列六种结构的低聚咪唑表面活性剂水溶液的胶束形成过程的热力学参数(G m, H m, S m),实验数据表明:不同链长的[Cn-P-Cnim]Br2与[P-(Cnim)4]Br4表面活性剂的G m均为负值,说明枝状低聚咪唑表面活性剂在水溶液中胶束化过程是自发进行的。胶束形成的标准焓变H m均为负值,表明胶束化过程是放热过程。 G m是由较大的T S m引起的, H m要远小于T S m,胶束形成过程是熵驱动的。对于同系列低聚咪唑表面活性剂,随疏水链长的增加, G m下降, H m增大,胶束更容易形成,胶束化过程放出的热量更多。对于疏水链长相同的低聚咪唑表面活性剂,聚合度增加,胶束化吉布斯自由能G m增加,胶束形成更困难。
     设计了分子动力学系统,在微观水平上对枝状二聚咪唑表面活性剂性质进行研究。并通过自由能微扰、压力张量等方法研究了系列不同疏水烷基链碳原子数及不同连接基团羟基数的二聚咪唑表面活性剂(BGIS)在水溶液中的热力学性质及表面活性。结果表明:所设计的分子动力学体系和模型可以预测二聚咪唑表面活性剂的热力学性质及表面活性。BGIS分子在水溶液中溶剂化自由能均为负值,溶剂化自由能与分子结构中疏水烷基链碳数及连接基中羟基数目有关,二者增加,溶剂化自由能减小,胶束化能力和胶束体系热力学稳定性均提高;胶束形熵变Sm为胶束化过程的主要驱动力,但随着温度的增加焓驱动的作用在逐渐增强。胶束化过程中存在“焓熵补偿”现象;无羟基结构BGIS分子的补偿温度为307±3/K,连接基团含有羟基的BGIS分子补偿温度为297±3/K。压力张量法对BGIS溶液cmc的模拟表明:温度升高,cmc值增加;BGIS分子疏水烷基链长度碳数及连接基团羟基数目增加,cmc值下降,系列BGIS分子在溶液中胶束热力学稳定性和表面活性均逐渐提高。
     研究了两亲丙烯酰胺类聚合物的——丙烯酰胺/2-丙烯酰胺基-2-甲基-丙磺酸/4-乙烯苄基壬烷基酚聚氧乙烯醚(PAAV)和枝状二聚咪唑表面活性剂[C14-P-C14im]Br2之间的相互作用,分别从溶液表面张力、溶液流变特性和溶液微观结构等方面初步揭示PAAV/[C14-P-C14im]Br2二元体系的相互作用关系,研究发现:PAAV/[C14-P-C14im]Br2二元体系在气液界面的表面张力受表面活性剂浓度的影响,有明显的表面张力最低值,但二元体系降低表面张力的能力低于纯[C14-P-C14im]Br2;浓度较低时,PAAV和PAAV/[C14-P-C14im]Br2两种溶液黏度增加都较缓慢,而且黏度相差不大,聚合物的浓度达到600ppm后二元体系黏度明显大于PAAV水溶液黏度;PAAV浓度为600ppm时,二元体系即具有弹性存在,PAAV浓度较高时,低频率的时候,聚表二元体系主要以粘性模式占优势,随着频率的增加,逐渐转变为弹性模式占优势;对比PAAV和二元体系的扫描和透射电镜照片,二者均能形成网状结构,前者网孔较大,较为稀疏,后者聚合物和表面活性剂相互缠绕,能形成立体的网状结构。
Oligomeric surfactants are one of the hotspots of the surfactants field. In this thesis, two series with six chemical structures of branched dimeric and oligomeric imidazolium surfactants with pentaerythritol derivatives as spacer are synthesized by the reaction between imidazolium, long chained bromoalkane and so on. Suitable synthesis conditions are obtained through optimizing experimental conditions. Molecular structures of intermediates and objective products are characterized by1HNMR,13CNMR, IR and element alanalyses.
     The surface activities, degree of counterion binding to micelles and thermodynamic properties of micellization of branched dimeric and oligomeric imidazolium surfactants are investigated using surface tension and electrical conductivity measurements. The results show that the critical micelle concentration(cmc) and the saturation adsorbed amount at air/water interface(Γcmc) decreases with the increasing carbon atoms of hydrophobic groups, however the area per molecule at the interface(Amin) and the efficiency of adsorption of surfactant at air/water interface(pC20) increase. Branched oligomeric imidazolium surfactants own high surface activities. Comparing the surface properties of branched dimeric imidazolium surfactants ([Cn-P-Cnim]Br2) with the [Cn-4-Cnim]Br2, we find that Γcmc is smaller, Amin and pC20are larger for [Cn-P-Cnim]Br2with the same long hydrophobic chains. The high effciency is obtained for reducing the surface tension. Comparing the surface properties of branched tetrameric imidazolium surfactants ([P-(Cnim)4]Br4) with the [Cn-P-Cnim]Br2, we find that cmc and Γcmc of [P-(Cnim)4]Br4are smaller, Amin and pC20are larger. According to the phase separation model, the thermodynamic parameters of micellization (G m, H m,
     S m) of all branched oligomeric imidazolium surfactants are determined using thermodynamic eqations. It is found that the standard Gibbs free energy change of micellization with different hydrophobic chain lengths are all negative, indicating that the formation of micelles is spontaneous for [Cn-P-Cnim]Br2and [P-(Cnim)4]Br4. The values of standard enthalpy change H mfor micellization are negative as well, implying that the micelle formation process is exothermic. The negative values of
     G m are mainly due to the large positive S m。 H m is much smaller than the value of T S m. Therefore, the micellization process is entropy-driven. For the same series of branched oligomeric imidazolium surfactants, higher H m and lower
     Gm with increasing hydrophobic chain length suggests that the micelle formation is more feasible. For the same hydrophobic chains for oligomeric imidazolium surfactants, the increase of G m with the polymerization degree indicates that the micelle formation is more difficult.
     A molecular dynamics system is constructed in order to study the properties of branched demeric imidazolium surfactants at micro-level. It is found that the thermodynamic behavior and surface activity of branched demeric imidazolium surfactants vary with different hydrophobic chain and spacer’s hydroxyl number (BGIS) in spacer in solution by means of the MD-based free energy perturbation(FEP) and pressurer tensor. It is found that the system this construction can be used to discriminate and predict the surface properties, thermodynamic properties of demeric imidazolium surfactants. The solvation free energy changes of BGIS solution, which are related to hydrophobic chain carbon number and spacer’s hydroxyl number, are negative. The tendency and stability of micellization are both positive. It is found that the micellization of BGIS is entropy-driven and enthalpy-entropy compensated with the increasing contribution of enthalpy. The enthalpy-entropy compensation plots exhibit the excellent linearity and the compensation temperature of BGIS are found to be (297±3) K and (307±3) K separately. In the pressurer tensor model, the cmc value increases with temperature and the cmc value decreases with the hydrophobic chain carbon number and spacer’s hydroxyl number. The surface activity and stability of micelle thermodynamics both increase.
     The interaction between branched dimeric imidazolium surfactants [C14-P-C14im]Br2and amphiphilic acrylamide polymers—acrylamide/2-acrylamido-2-methyl-propyl sulfonic acid-4-vinyl benzyl nonyl alkylphenol polyoxyethylene ether(PAAV) is studied for surface tension, the rheological properties and the microstructure of the solution. Preliminary results reveals the interaction for the PAAV/[C14-P-C14im]Br2binary systems. It is found that the surface tension of the gas-liquid interface in polymer-surfactant binary system is affected by the surfactant concentration and shows a clear minimum value. But the binary system has lower ability to decrease the interfacial tension than [C14-P-C14im]Br2. At low concentration, the apparent viscosity of PAAV and PAAV/[C14-P-C14im]Br2binary system solution increase slowly. When the concentration of PAAV is600ppm, the apparent viscosity of binary system is higher than PAAV solution. When PAAV’s concentration is high and low frequency, the viscous mode dominates the polymer-surfactant binary systems mainly. With increase frequency, polymer-surfactant binary systems gradually transform into the dominant elastic mode. Comparing SEM and TEM images of PAAV and binary systems, it si found that both can form a mesh structure. The meshs formed by the former is larger, more sparse, coarser, while in the latter polymer and surfactant intertwine, forming a three-dimensional network structure.
引文
[1] Bunton C A, Robinson L, Schaak J, et al. Catalysis of nucleophilicsubstitutions by micelles of dicationic detergents[J]. J. Org. Chem.,1971,36(16):2346-2350.
    [2] Devinsky F, Lacko I, Bittererova F, et al. Relationship between structure,surface activity, and micelle formation of some new bisquaternary isosteres of1,5-pentanediammonium dibromides[J]. J. Colloid Interface Sci.1986,114(2):314-322.
    [3] Zhu Y P, Masuyama A, Okahara M, et al. Preparation and surface activeproperties of amphipathic compounds with two sulfate groups and twolipophilic alkyl chains[J]. Oil Chem. Soc.1988,37:459-463.
    [4] Acharya D, Kunie H, Shiba Y, Aratani K. Phase and rheological behavior ofnovel Gemini-type surfactant systems[J]. J. Phys. Chem. B.,2004,108(5):1790-1797.
    [5] Zhu S, Cheng F, Wang J, et al. Anionic Gemini surfactants: synthesis andaggregation properties in aqueous solution[J]. Colloids Surf. A.,2006,281(1):35-39.
    [6] Wang Y X, Han Y C, Huang X, et al. Aggregation behaviors of aseries ofanionic sulfonate gemini surfactants and their corresponding monomericsurfactant[J]. Colloid Interface Sci.,2008,319(2):34-41.
    [7] Song B L, Hu Y F, Song Y M, et al. Alkyl chain length-dependent viscoelasticproperties in aqueous wormlike micellar solutions of anionic Gemini withanazobenzene spacer[J]. Colloid Interface Sci.,2010,341(1):94-100.
    [8] Zana R. Dimeric and oligomeric surfactants.Behavior at interfaces and inaqueous solution: a review [J]. Advances in Colloid and Interface Science,2002,97:205-253.
    [9] Tan H, Xiao H N. Synthesis and antimicrobial characterization of novel1-lysine Gemini surfactants pended with reactive groups[J]. Tetrahedron Lett.,2008,49(11):1759-1761.
    [10] Abe M, Kazuyuki T, Takaaki K, et al. Polymerizable cationic Geminisurfactant[J]. Langmuir,2006,22(20):8293-8297.
    [11] Wu D, Feng Y J, Xu G Y, et al. Dilational rheological properties of geminisurfactant1,2-ethane bis(dimethyl dodecyl ammonium bromide) at air/waterinterface[J]. Colloids Surface A.,2007,299(1-3):117-123.
    [12] Khurana K, Nielsen S O, Klein M L, et al. Gemini surfactants at the air/waterinterface: A fully atomistic molecular dynamics study[J]. J. Phys. Chem. B.,2006,110(44):22136-22142.
    [13] Chen Q B, Liang X D, Wang S L, et al. Cationic Gemini surfactant at theair/water interface[J]. J. Colloid Interface Sci,2007,314(2):651-658.
    [14] Pisárcik M, Milton J. Rosen, Mária Polakovicová, et al.Area per surfactantmolecule values of gemini surfactants at the liquid–hydrophobic solidinterface[J]. Journal of Colloid and Interface Science.2005,289:560–565.
    [15] Zhou T T, Yang H, Xu X H, et al. Synthesis, surface and aggregationproperties of nonionic polyethyleneoxide gemini surfactants[J]. Colloids Surf.A.,2008,317(1):339-343.
    [16] Fitzgerald P A, Davey T W, Warrr G G, et al. Micellar structure in Gemininonionic surfactants from small-angle neutron scattering[J]. Langmuir,2005,21(16):7121-7128.
    [17]杨青,曹丹红,方波,等.一种新型双联两性表面活性剂的合成与性能[J].高校化学工程学报,2009,23(1):110-115.
    [18]吴江勇,于芳,吴巍,等.氨基磺酸两性Gemini的制备及驱油性能[J].研发前沿,2009,17(21):25-27.
    [19] Ohno A, Kushiyama A, Kondo Y, et al. Synthesis and properties ofgemini-type hydrocarbon-fluorocarbon hybrid surfactants[J]. J. Fluorine.Chem.,2008,129(7):577-582.
    [20] Fan H M, Han F, Liu Z, et al. Active control of surface properties andaggregation behavior in amino acid-based Gemini surfactant systems[J].Colloid Interface Sci.,2008,321(1):227-234.
    [21] Castro M L, Kovensk Y J, Fernandez C A, et al. Gemini surfactantsfrom alkylglucoside[J]. Tetrahedron Lett.,1997,38(23):3995-3998.
    [22] Castro M L, Kovenskyj, Fernandez C A, et al. New dimeric surfactants fromalkylglucosides[J]. Tetrahedron,1999,55:12711-12722.
    [23] Takamatsu Y, Lwata N, Tsubone K, et al. Synthesis and aqueous solutionproperties of novel anionic heterogemini surfactants containing a phosphateheadgroup[J]. Colloid Interface Sci.,2009,338(1):229-235.
    [24] Wang X Y, Wang J B, Wang Y L, et al. Micellization of a series ofdissymmetric Gemini surfactants in aqueous solution[J]. J. Phys. Chem. B,2003,107:11428-11432.
    [25] Bai G Y, Wang J B, Wang Y J, et al. Thermodynamics of HydrophobicInteraction of Dissymmetric Gemini Surfactants in Aqueous Solutions[J]. J.Phys. Chem. B,2002,106(26):6614–6616.
    [26] Sikiric M, mit I, Tu ek-Bozic L, et al. Effect of the Spacer Length on theSolid Phase Transitions of Dissymmetric Gemini Surfactants[J]. Langmuir,2003,19(24):10044–10053.
    [27] Menger F M, Littau C A. Gemini surfact ant s: synthesis and properties [J]. J.Am. Chem. Soc.,1991,113:1451-1452.
    [28] Hirata H, Hattori N, Ishida M, et al. Small-angle neutron-scattering study ofbis(quaternary ammonium bromide) surfactant micelles in water: effete of thespacer chain length on micellar structure[J]. The Journal of PhysicalChemistry,1995,99(50):17778-17784.
    [29] Devinsky F, Ivan L, Fabiola B, et al. Relationship between strueture, surfaceactivity And micelle formation of some new bisquaternary isosteres ofl,5-Pentanediammonium Dibromides[J]. Journal of Colloid and InterfaceScienee,1979,114(2):314-322.
    [30] Pinazo A, Diz M, Solans C, et al. Synthesis and Properties of cationicsurfactants containing a disulfide bond[J]. Journal of the Ameriean OilChemists’Society,1993,70(l):37-42.
    [31]池田功,崔正刚.新型Gemini阳离子表面活性剂的合成和性能(2):从十二胺和环氧氯丙烷合成多烷基多季按盐阳离子[J].日用化学工业,2001,31(4):36-38.
    [32] Oda R, Candau S J, Huel, et al. Gemini surfactants, the effect of hydrophobicchain Length and dissyrnmetry[J]. Chem. Communications,1997,21:2105-2106.
    [33]孙玉海,董宏伟,冯玉军.系列阳离子双子表面活性剂的合成及其表面活性的研究[J],2006,64(18):1925-1928.
    [34]贾卫红.松香基双子表面活性剂的合成及性能研究[D].中国林业科学研究院,2009.
    [35] Perez L, Torres J L, Manresa A, et al. Synthesis, aggegation, and biologicalproperties of a new class of Gemini cationic amphiphilic compounds fromarginine, bis(Args)[J]. Langmuir,1996,12(22):5296-5301.
    [36] Perez L, Pinazo A, Rosen M J, et al. Surface Activity properties atEquilibrium of Novel Gemini Cationic Amphiphilic Compounds fromArginine, Bis(Args)[J]. Langmuir,1998,14(9):2307-2315.
    [37]郭祥峰,陈华群,贾丽华.甘氨酸醋衍生物双子季钱盐表面活性剂[J],应用化学,19(7):713-714.
    [38] Oda R, Hucl H, Dganit D, et al. Aggregation properties and mixing behaviorof hydrocarbon, fluorocarbon, and hybrid hydrocarbon-fluoroCarbon cationicdimeric surfactants[J]. Langmuir,2000,16(25):9759-9769.
    [39] Massi L, Guirtard F, Levy R, et al. Enhanced activity of fluorinatedquaternary ammonium surfactants against pseudomonas aeruginosa[J].European Journal of Medicinal Chemistry,2009,44(4):1615-1622.
    [40] Sumida Y, Oki T, Masuyama A, et al. Π-A Isotherms for Triple-ChainAmphiphiles Bearing Two or Three Hydroxyl Groups. Effect of theBackboneStructure on the Adsorption Behavior of the Molecules on theSurface[J]. Langmuir.1998,14:7450-7455.
    [41] Masuyama A., Yokota M, Zhu Y P, et al. Unique interfacial properties of ahomologous series of novel triple-chain amphiphiles bearing three anionichead groups derived from1,1,1-tris (hydroxymethyl) ethane[J]. J. Chem.Soc.Chem. Commurr,1994,12:1435-1436.
    [42]李进升,方波,姜舟,等.新型三联阳离子表面活性剂的合成[J].华东理工大学学报(自然科学版),2005,3(4):425-429.
    [43] Menger F M, Migulin V. Synthesis and properties of multiarmed geminis[J].Org. Chem,1999,64(24):8916-8921.
    [44] Hou Y B, Han Y C, Deng M L, et al. Aggregation Behavior of a TetramericCationic Surfactant in Aqueous Solution[J]. Langmuir,2010,26(1):28–33.
    [45] Fan Y X, Hou Y B, Xiang J F, et al. Synthesis and Aggregation Behavior of aHexameric Quaternary Ammonium Surfactant[J]. Langmuir,2011,27:10570-10579.
    [46] Rosen M J, Zhu Z H, Hua X Y, et al. Relationship of structure to properties ofsurfaetants.16. Linear decyldiphenylether sulfonates[J]. Journal of theAmerican Oil Chemists Society,1992,69(1):30-33.
    [47] Zhu Y P, Masuyama A, Okahara M, et al. PreParation and surface activeproperties of amphipatic compounds with two sulfate groups and twolipophilic alkylehains[J]. Journal of the American Oil Chemists Society,1990,67(7):459-463.
    [48] Renouf P, Hebrault D, Desmurs J R, et al. Synthesis and surface-activeproperties of a series of new anionic Gemini compounds[J].Chemistry andPhysics of Lipids,1999,99(l):21-32.
    [49]李小芳,陈爱明,姚志钢,等. Gemini表面活性剂乙二醇双琥珀酸正辛醇双酯磺酸钠的合成与性能研究[J].化学世界,2007,30(7):421-424.
    [50]高进锋,刘世恩. Gemini稠油乳化降黏剂GMS-1的合成及应用性能[J].油田化学,2008,25(1)):13-16.
    [51]袁淑军,方海林,蔡春,等.一种含席夫碱结构的表面活性剂与Cu2+配合的稳定性及抗菌性[J].南京理工大学学报(自然科学版),2005,29(5),598-600.
    [52]袁淑军,吕春绪,蔡春,等.一种新席夫碱型表面活性剂的合成及其表面活性[J].精细化工,2002,19(11):626-627.
    [53] Li P F, Chen Q H, Zhao J L, et a1. Synthesis and properties of x-type alkylsulfonate gemini surfactants derived from cyanuric chloride[J]. Journal ofColloid and Interface Science,2012,15(4):449-456.
    [54]李鹏飞,胡志勇,曹端林,等.带支链疏水基的阴离子双子表面活性剂的合成及其胶束化热力学研究[J].日用化学工业,2012,42(1):10-14.
    [55]李晨,胡志勇,朱海林,等.磺酸盐型三聚表面活性剂的合成及其表面活性[J].化工中间体,2011,8(12):38-43.
    [56] Masuyama A, Yokota M, Zhu Y P, et al. Unique interfacial properties of ahomologous series of novel triple-chain amphiphiles bearing three anionichead groups derived from1,1,1-tris (hydroxymethyl)ethane[J]. J. Chem.Soc.Chem. Commum.,1994,12:1435-1436.
    [57]周明,莫衍志,赵焰峰,等.一种磺酸盐型三聚表面活性剂及其制备方法:中国,102389746A[P].2012-03-28.
    [58] Marcelo C. Murguía, María I. et al. New oligomeric surfactants withmultiple-ring spacers: Synthesis and tension active properties[J].Colloids andSurfaces A: Physicschem. Eng. Aspects,2005,262:1-7.
    [59] Frederiek C B, Verona N J. Washing Composition[p]. US252418,1950.
    [60] Hironobu K, Nagahiro M, Kazuyuki T, et al. Comparison between phasebehavior of anionic dimeric(gemini-type) and monomeric surfactants in waterand water-oil [J]. Langmuir,2000,16(16):6438-6444.
    [61] Zhu Y P, Masuyama A, Kobata Y, et al. Double-Chain surfactants with twoCarboxylate groups and their relation to similar double-chain compounds[J].Journal of Colloid and Interface Science,1993,158(l):40-45.
    [62]张潇玲,罗根祥,刘春生,等.阴离子Gemini表面活性剂的合成进展[J].化工科技,2012,20(2):68-71.
    [63] Zhu Y P, Masuyama A, Okahara M, et al. Prenaration and surfaee-activeProperties of new amphipathic compounds with two phosphate groups and twoLong-chain alkyl groups[J]. Joumal of the American Oil Chemists, Societ1991,68(4):268-271.
    [64] Menger F M, Littau C A. Gemini surfactants: a new class of self-assemblingmolecules[J]. J. Am. Chem. Soc.,1993,115(22):10083-10090.
    [65] Araki M, Chikara E, Shinya T, et al. Ozone-cleavable Gemini surfaetants, anew Candidate for an environmentally friendly surfactant[J]. ChemicalCommunications,1998,18:2023-2024.
    [66] Duivenvoorde F L, Feiters M C, Gaast S J, et al. Synthesis and Properties ofdi-N-dodecyl, α, ω-alkyl bisphosphate surfactants[J]. Langmuir,1997,13(14):3737-3743.
    [67] Soma D, Aswal V K, Goyal P S, et al. Characterization of new Geminisurfactant micelles with phosphate head groups by SANS and fluorescencespectroscopy [J]. Chemicalphysics Letters,1999,303(3-4):295-303.
    [68] Jaeger D A, Wng Y, Pennington R L. Pyrophosphate-based Geminisurfactant[J]. Langmuir,2002,18(24):9259-9266.
    [69]姚志钢,李干佐,董凤兰,等. Gemini表面活性剂合成进展[J].化学进展,2004,16(3),349-364.
    [70] Devinsky F, Masárová, Lacko I, et al. Surface activity and micelleformation of some new bisquaternary ammonium salts[J]. J. Colloid InterfaceSci.1985,105(1):235-239.
    [71] Pinazo A, Infante M R, Chang C H, et al. Surface tension properties ofaqueous solutions of disulfur betaine derivatives[J]. Colloids Surf. A,1994,87(2):117-123.
    [72] Esumi K, Taguma K, Koide Y, et al. Aqueous Properties of MultichainQuaternary Cationic Surfactants[J]. Langmuir,1996,12(16):4039-4041.
    [73] Li Z X, Dong C C, Thomas R K, et al. Neutron Reflectivity Studies of theSurface Excess of Gemini Surfactants at the Air Water Interface[J]. Langmuir,1999,15(13):4392–4396.
    [74] Devinsky F. Effects of non-ionic surfactants N-alkyl-N, N-dimethylamine-N-oxides on the structure of a phospholipid bilayer: small-angle X-raydiffraction study[J]. Chemistry and Physics of Lipids,2004,129(1):31-41.
    [75] Rozycka-Roszak B, Fisicaro E. Effect of the carboxylicgroup on thermodyn-amic properties of aqueous micellar solutions of amphiphilic betaine esterderivatives[J]. J. Colloid Interface Sci.,1993,159:335-342.
    [76] Zana R. Critical Micellization Concentration Of Surfactants in AqueousSolution and Free Energy of Micellization[J]. Langmuir,1996,12(5):1208-1211.
    [77] Zana R. Dimeric (Gemini) Surfactants: Effect of the Spacer Group on theAssociation Behavior in Aqueous Solution[J].J. Colloid Interface Sci.,2002,248(2):203-220.
    [78] Zhao J, Christian S D, Fung B M, et al. Mixtures of Monomeric and DimericCationic Surfactants[J]. J. Phys. Chem. B,1998,102(39):7613-7618.
    [79] Pérez L, Torres J L, Manresa A, et al. Synthesis, Aggregation, and BiologicalProperties of a New Class of Gemini Cationic Amphiphilic Compounds fromArginine, bis(Args)[J]. Langmuir,1996,12(22):5296-5301.
    [80] Zana R, Benrraou M, Rueff R, et al. Alkanediyl-.alpha.,omega.-bis(dimethylalkyl ammonium bromide) surfactants.1. Effect of the spacer chain lengthon the critical micelle concentration and micelle ionization degree[J].Langmuir,1991,7(6):1072-1075.
    [81] Kim T S, Kida T, Nakatsuji Y, et al. Surface-active properties of novel cationicsurfactants with two alkyl chains and two ammonio groups[J]. Journal of theAmerican Oil Chemists’ Society,1996,73(7):907-911.
    [82] Paddon-Jones G, Regismond S, Kwetkat K, et al. Micellization of NonionicSurfactant Dimers and of the Corresponding Surfactant Monomers in AqueousSolution[J]. Journal of Colloid and Interface Science2001,243(2):496-502.
    [83] Eastoe J, Rogueda P, Harrison B J, et al. Properties of a Dichained SugarSurfactant[J]. Langmuir,1994,10(12):4429-4433.
    [84] Camesano T A, Nagarajan R. Camesano T A, et al. Micelle formation andCMC of gemini surfactants: a thermodynamic model[J]. Colloids and SurfacesA,2000,167(1-2):165-177.
    [85] Zhu Y P, Masuyama A, Nagata T, et al. Preparation and properties ofglycerol-based double-or triple-chain surfactants with two hydrophilic ionicgroups[J].Journal of the American Oil Chemists Society,1992,69(7):626-632
    [86] Okano T, Egawa N, Fujiwara M, et al. α-sulfonated fatty acid esters: II.Solution behavior of α-sulfonated fatty acid polyethylene glycol esters[J]. J.Am. Oil Chem. Soc.,1996,73(1):31-37.
    [87] Maiti P K, D. Chowdhury D. Micellar aggregates of gemini surfactants: MonteCarlo simulation of a microscopic model[J]. Europhys. Lett,1998,41:183-187.
    [88] Rosen M J, Mathias J H, Davenport L, et al. Aberrant Aggregation Behavior inCationic Gemini Surfactants Investigated by Surface Tension, InterfacialTension, and Fluorescence Methods[J]. Langmuir,1999,15(21):7340-7346.
    [89] Menger F M, Keiper J S, Azov V, et al. Gemini Surfactants with AcetylenicSpacers[J]. Langmuir,2000,16(5):2062-2067.
    [90] Song L, Rosen M J. Surface Properties, Micellization, and PremicellarAggregation of Gemini Surfactants with Rigid and Flexible Spacers[J].Langmuir,1996,12(5):1149-1153.
    [91] Masuyama A, Yokota M, Zhu Y P, et al. Unique interfacial properties of ahomologous series of novel triple-chain amphiphiles bearing three anionichead groups derived from1,1,1-tris(hydroxymethyl)ethane [J]. J. Chem. Soc.,Chem. Commun.,1994,12:1435-1436.
    [92] De S, Aswal V K, Goyal P S, et al. Role of Spacer Chain Length in DimericMicellar Organization. Small Angle Neutron Scattering and FluorescenceStudies[J]. J. Phys. Chem.,1996,100(28):11664-11671.
    [93] In M, Bec V, Aguerre-Chariol O, Zana R, et al. Quaternary ammoniumbromide surfactant oligomers in aqueous solution: self-association andmicrostructure[J]. Langmuir,2000,16(1):141-148
    [94] Oda R, Huc I, Homo J C, et al. Elongated aggregates formed by cationicGemini Surfactants[J]. Langmuir,1999,15(7):2384-2390.
    [95] Frindi M, Michels B, Levy H, et al. Alkanediyl-alpha., omega.-bis (dimethyl-alkylammonium bromide) surfactants.4. ultrasonic absorption studies ofamphiphile exchange between micelles and bulk phase in aqueous micellarsolution[J]. Langmuir,1994,10(4):1140-1145.
    [96] Grosmaire L, Chorro M, Chorro C, et al. Thermodynamics of micellization ofcationic dimeric (gemini) surfactants[J]. Colloid Polym. Sci.,2000,115:31-35.
    [97] Ró ycka-Roszak B, Witek S, Przestalski S, et al. A comparison of themicellization of selected amphiphilic N,N′-bisdimethyl-1,2-ethanediaminederivatives with some amphiphilic betaine ester derivatives[J]. J. ColloidInterface Sci.,1989,131(1):181-185.
    [98] Hattori N, Hirata H, Okabayashi H, et al. Small-angle neutron-scattering studyand micellar model of the gemini (phenylenedimethylene)bis(n-octylammonium)dibromide surfactant micelles in water[J]. Colloid andPolymer Science,1999,277(4):361-371.
    [99] Aswal V K, De S, Goyal P S, et al. Small-angle neutron scattering study ofmicellar structures of dimeric surfactantsPhys [J]. Rev. E,1998,57:776–783.
    [100] Haldar J, Aswal V K, Prem S, et al. Role of Incorporation of multipleheadgroups in cationic surfactants in determining micellar properties.small-angle-neutron-scattering and fluorescence studies[J].The Journal ofPhysical Chemistry B,2001,105(51):12803-12808.
    [101] Hirata H, Hattori N, Ishida M, et al. Small-angle neutron-scattering study ofbis(quaternaryammonium bromide) surfactant micelles in water. Effect of thelong spacer chain on micellar structure[J]. J. Phys. Chem.,1999,277(1):95-100.
    [102] Haldar J, Aswal V K, Prem S, et al. Role of Incorporation of multipleheadgroups in cationic surfactants in determining micellar properties.small-angle-neutron-scattering and fluorescence studies[J]. The Journal ofPhysical Chemistry B,2001,105(51):12803-12808.
    [103] Menger F M, Keiper J S, Mbadugha B N A, et al. Gemini Surfactants with adisaccharide spacer[J]. J. Am. Chem. Soc.,2001,123(5):875-885.
    [104] Regev O, Zana R. Aggregation Behavior of Tyloxapol, a Nonionic SurfactantOligomer, in Aqueous Solution[J]. J. Colloid Interface Sci.,1999,210(1):8-17.
    [105] Danino D, Talmon Y, Zana R, et al. Alkanediyl-.alpha.,.omega.-bis (dimethyl-alkyl ammonium bromide) surfactants (dimeric surfactants).5. aggregationand microstructure in aqueous solutions[J]. Langmuir,1995,11(5):1448-1456.
    [106] Menger F M, Keiper J S. Gemini Surfactants[J]. Angew. Chem. Int. Ed.2000,39(11):1906-1920.
    [107] Alargova R G, Kochijashky I I, Sierra M L, et al. Micelle aggregation numbersof surfactants in aqueous solutions: a comparison between the results fromsteady-state and time-resolved fluorescence quenching[J]. Langmuir1998,14(19):5412-5418.
    [108] Dong B, Li N, Zheng L, et al. Surface adsorption and micelle formation ofsurface active ionic liquids in aqueous solution[J]. Langmuir,2007,23(8):4178-4128.
    [109] Law G, Watson P R. Surface tension measurements of N-alkylimidazoliumionic liquids[J]. Langmuir,2001,(17):6138-6141.
    [110] Bradley A E, Hardacre C, Holbrey J D, et al. Small-angle X-ray scatteringstudies of liquid crystalline1-alkyl-3-methylimidazolium salts[J].Chemistryof Materials,2002,(14):629-635.
    [111] Bowers J, Butts C P, Martin P J, et al. Aggregation behavior of aqueoussolutions of ionic liquids[J]. Langmuir,2004,20:2191-2198.
    [112] Miskolczy Z, Sebok-Nagy K, Bic ok L, et al. Aggregation and micelleformation of ionic liquids inaqueous solution[J]. Chemical Physics Letters,2004,(400):296-300.
    [113] Baker G A, Pandey S, Pandey S, et al. A new class of cationic surfactantsinspired by N-alkyl-N-methyl pyrrolidinium ionic liquids[J]. The Analyst,2004,129:890-892.
    [114] Singh T, Kumar A. Aggregation behavior of ionic liquids in aqueous solutions:effect of alkyl chain length, cations, and anions[J]. Journal of PhysicalChemistry B,2007,111:7843-7851.
    [115]张海波,周小海,董金凤,等.具有表面活性的新型绿色离子液体[J].中国科学B辑化学,2006,36(5):367-371.
    [116] Dong B, Zhao X Y, Zheng L Q, et al. Aggregation behavior of long-chainimidazolium ionic liquids in aqueous solution: Micellization andcharacterization of micelle microenvironment [J]. Colloids and Surfaces A,2008,(317):666-672.
    [117] Inoue T, Ebina H, Dong B, et al. Electrical conductivity study on micelleformation of long-chain imidazolium ionic liquids in aqueous solution[J].Journal of Colloid and Interface Science,2007,314,236-241.
    [118] Van ur R. Micelle formation of1-alkyl-3-methylimidazolium bromide ionicliquids in aqueous solution[J]. Colloids and Surfaces A,2007,299:256-261.
    [119] Qiu Z M, Texter J. Ionic liquids in microemulsions[J]. Current Opinion inColloid&Interface Science,2008,13:252-262.
    [120] uczak J. Thermodynamics of micellization of imidazolium ionic liquids inaqueous solutions [J]. Journal of Colloid and Interface Science,2009,1-6.
    [121] Baltazar Q Q, Chandawalla J, Sawyer K, et al. Anderson. Interfacial andmicellar properties of imidazolium-basedmonocationic and dicationic ionicliquids[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2007,302:150-156.
    [122] Ding Y S, Zha M, Zhang J, et al. Synthesis, characterization andp roperties ofgeminal imidazolium ionic liquids [J]. Colloids and SurfacesA: PhysicochemEng Aspects,2007,298:201-205.
    [123] Ao M, Xu G Y, Zhu Y Y, et al. Synthesis and properties of ionic liquid-typeGemini imidazolium surfactants[J]. Journal of Colloid and Interface Science.2008,326:490-495.
    [124] Ao M Q, Xu G Y, PangJ Y, et al. Comparison of aggregation behaviorsbetween ionic liquid-type imidazolium Gemini surfactant [C12-4-C12im]Br2and its monomer [C12mim]Br on silicon wafer[J]. Langnmuir,2009,25:9721-9727.
    [125] Antonietti M, Kuang D B, Smarsly B, et al. Ionic liquid for the convenientsynthesis of functional nanoparticles and other inorganic nanostructures[J].Ahgew. Chem. Int. Ed.,2004,43(38):4988-4992.
    [126] Kuang D, Brezesinki T, Smarsly B, et al. Hierarchical porous silica materialswith a trimodal pore system using surfactant templates[J].J. Arn. Chem. Soc.,2004,126(34):10534-10535.
    [127] Bunton C A, Robinson L, Schaak J, et al. Catalysis of nucleophilicsubstitutions by micelles of dicationic detergents[J]. J. Org. Chem,1971,36(16):2346-2350
    [128] Cerichelli G, Luchetti L, Mancini G, et al. Cyclizations of2-(ω-bromo-alkyloay) phenoxide ions in dicationic surfactants[J]. Langrnuir,1999,15(8):2631-2634.
    [129] Luk Y Y, Abbott N L. Applications of functional surfactants[J]. Curr. Opin.Colloid Interface Sci,2002,7(5-6):267-275.
    [130] Berti D. Self assembly of biologically inspired amphiphiles[J]. Curr. Opin.Colloid Interface Sci.,2006,11(1):74-78.
    [131] Shimizu T, Masuda M, Minamikawa H, et al. Supramolecular nanotubearchitectures based on amphiphilic molecules[J]. Chem. Rev.,2005,105(4):1401-1444.
    [132] Caillier L, Givenchy E T, Levy R, et al. Polymerizable semi-fluorinatedGemini surfactants designed for antimicrobial materials[J]. J.Colloid InterfaceSci.,2009,332(1):201-207
    [133] Viscardi G., Quagliotto P, Barolo C, et al. Synthesis and surface andantimicrobial properties of novel cationic surfactant[J]. J. Org. Chem.,2000,65(24):8197-8203.
    [134] Karaborni S, Esselink K, Hilbers P A J, et al. Simulating the self-assembly ofgemini (dimeric) surfactants[J]. Science,1994,266:245-258.
    [135]刘国宇,顾大明,丁伟,等.自由能微扰法研究系列烷基芳基磺酸盐的焓熵补偿现象[J].物理化学学报,2011,27:001-009.
    [136]丁伟,刘国宇,于涛,等.烷基芳基磺酸盐的分子动力学模拟与自由能微扰计算[J].物理化学学报,2010,26:727-734.
    [137]于涛,李钟,丁伟,等.十四烷基芳基磺酸盐形成的分子有序组合体[J].物理化学学报,2010,26:317-323.
    [138]于涛,李钟,丁伟,等.系列烷基芳基磺酸盐在水溶液中的焓熵补偿现象[J].物理化学学报,2010,26:638-642.
    [139] Bruce C D, Berkowitz M L, Petera L, et al. Molecular dynamics simulation ofsodium dodecyl sulfate micelle in water: Micellar structural characteristicsand counterion distribution[J]. J. Chem. Phys. B,2002,106:3788-3793.
    [140] Debye P, Anacker E W. Micelle shape from dissymmetry measurements[J]. J.Chem. Phys.,1951,55:644-655.
    [141] Smit B. Effects of chain length of surfactants on the interfacial tension:molecular dynamics simulations and experiments[J]. J. Phys. Chem.1990,94:6933-6935.
    [142] Urbina G, Reif I. Simple theoretical framework for a systematic moleculardynamics study of the interfacial properties of oil/water systems in thepresenceof surfactant molecules[J]. Colloids. Surf. A.1996,106:175-190.
    [143] Kyoko W, Ferrario M. Molecular Dynamics Study of a Sodium OctanoateMicelle in Aqueous Solution[J]. J. Chem. Phys.,1988,92:819-821.
    [144] Maiti P K, Kremer K. Cross-linked of micelles by Gemini surfactants[J].Langmuir,2000,16:3784-3790.
    [145] Xu Y, Feng J, Shang Y Z, et al. Molecular Dynamics Simulation for the Effectof Chain Length of Spacer and Tail of Cationic Gemini Surfactant on theComplex with Anionic Polyelectrolyte[J]. Chin. J.Chem. Eng.,2007,15:560-565.
    [146]刘梅塘,浦敏锋,马鸿文,等.阴离子Gemini表面活性剂在油/水界面行为的分子动力学模拟[J].高等学校化学学报,2012,6:1319-1325.
    [147] Merrigan T L, Bates E D, Dormana S C, et al. New fluorous ionic liquidsfunction as surfactants in conventional room-temperature ionic liquids[J].Chem. Commun.,2000,20:2051-2052.
    [148] Chen W X, Fan X D, Huang Y, et al. Synthesis and characterization of apentaerythritol-based amphiphilic star block copolymer and its application incontrolled drug release[J]. Reactive&Functional Polymers,2009,69:97-104.
    [149]赵德明,竺三奇,李敏,等.2-氯-4-硝基咪唑的合成[J].浙江工业大学学报,2011,39(05):479-483.
    [150] Banerjee R, Phan A. High-Throughput Synthesis of Zeolitic ImidazolateFrameworks and Application to CO2Capture[J]. Science,2008,319:939-943.
    [151]曹洁明,房宝青,王军,等.离子液体在无机纳米材料合成上的应用[J].化学进展,2005,17(6):1028-1033.
    [152]周建良,刘建超,陈启元,等.咪唑并吡啶类化合物的合成研究进展[J].有机化学,2009,29(11):1708-1718.
    [153] Bruno P K. Molecular recognition and catalysis in translation terminationcomplexes[J]. Trends in Biochemical Sciences,2011,32,282-292.
    [154]敖明奇.咪唑Gemini表面活性剂的合成及其聚集行为的研究[D].山东大学,2010.
    [155] Asadov Z G, Akhmedova G A, Aga-Zadeh A D, et al. Ionic LiquidSurfactants[J]. Russian Journal of General Chemistry,2012,12(82):1916-1927.
    [156] Menger F M, Migulin V A. Synthesis and properties of multiarmed geminis[J].Org. Chem,1999,64:8916-8921.
    [157] Nusselder J J H, Engberts J B F N. Toward a better understanding of thedriving force for micelle formation and micellar growth [J]. Journal of Colloidand Interface Science,1992,148(2):353-361.
    [158] Daninod D, Talmon Y, Levy H, et al. Branched Threadlike Micelles in anAqueous Solution of a Trimeric Surfactant[J]. Science,1995,269:1420-1421.
    [159] Wattebled L, Laschewsky A. Effects of Organic Salt Additives on theBehavior of Dimeric (―Gemini‖) Surfactants in Aqueous Solution[J].Langmuir,2007,23(20):10044-10052.
    [160] Wattebled L, Laschewsky A, Moussa A, et al. Aggregation Numbers ofCationic Oligomeric Surfactants: A Time-Resolved Fluorescence QuenchingStudy[J]. Langmuir,2006,22(6),2551-2557.
    [161] In M, Aguerre C O, Zana R, et al. Synthesized two linear oligomericsurfactants, trimeric and tetrameric, and branched thread-like andclosed-looped micelles were observed [J]. J. Phys. Chem. B1999,103:7747-7750.
    [162] Wu C, Hou Y, Deng M, et al. Molecular Conformation-ControlledVesicle/Micelle Transition of Cationic Trimeric Surfactants in AqueousSolution[J]. Langmuir,2010,26(11):7922-7927.
    [163] Hershel L H. Pentaerythrityl tetrabromide[J].Organic Syntheses,1963,4:753-755.
    [164]魏运洋,邵云.季戊四胺的改良合成[J].含能材料,2002,10(2),49-52.
    [165]段文生.新型N-咪唑咔唑类化合物的合成及抗菌活性研究[D].中北大学,2010.
    [166]刘国宇,顾大明,程杰成,等.自由能微扰法研究系列烷基芳基磺酸盐的胶束化焓-熵补偿现象[J].物理化学学报,2011,27,11-16.
    [167] Liu G Y, Gu D M. Enthalpy–entropy compensation of ionic liquid-typeGemini imidazolium surfactants in aqueous solutions: A free energyperturbation study[J]. Journal of Colloid and Interface Science,2011,358:521–526.
    [168]刘国宇,顾大明,程杰成,等.系列离子液体型Gemini咪唑表面活性剂在水溶液中的分子动力学模拟[J].化学学报,2012,70:6~14.
    [169] Lopes J N C. Nonpolar polar and associating solutes in ionic liquids [J]. JPhys Chem B,2006,110:16816-16818.
    [170] Essman U, Perera L, Berkowitz M L. A Smooth Particle Mesh EwaldMethod[J]. J. Chem. Phys.1995,103:8577-8593.
    [171]吕勇军,魏炳波.过冷态水表面性质的分子动力学研究[J].中国科学G辑,2006,36:606-615.
    [172] Xiao H Y, Zhen Z, Sun H Q, et al. Molecular dynamics simulation of anionicsurfactant at the water/n-alkane interface[J]. Acta Phys-Chim Sin,2010,26:422-428
    [173] Wei Z B, Wei X L. Onic liquid crystals of quaternary ammonium salts withα-hydroxypropoxy insertion group[J]. Colloid Interface Sci.2011,21:6875-6882.
    [174] Pei X M, You Y, Zhao J X, et al. Wormlike micelles and gels reinforcedby hydrogen bonding in aqueous cationic gemini surfactant systems [J]. J.Colloid Interface Sci.2011,7:2953-2960.
    [175] Camesano T A, Nagarajan R. Micelle Fomration and CMC of GeminiSurfactants: A Thermodynamic Mode[J]. Colloids and Surfaces A:Physicochem and Engineering Aspects,2000,167:165-177.
    [176] Amit K T, Sonu M S, Subit K S, et al. Micellization behavior of geminisurfactants with hydroxyl substituted spacers in water and water-organicsolvent mixed media: The spacer effect[J]. J. Molecular Liquids,2012,167:18-27.
    [177]郭颖.表面活性剂/聚合物超分子体系微观结构和相互作用研究[D].山东大学硕士论文,2006.
    [178]彭秀花.接枝缔合丙烯酰胺共聚物与表面活性剂的相互作用研究[D].成都理工大学硕士论文,2011.
    [179]钟传蓉,罗亚平,胡晓斌,等.丁基苯乙烯疏水改性阳离子型丙烯酰胺共聚物的合成[J].石油学报(石油加工),2007,23(5):49-54.
    [180]张健,张黎明,李卓美,等.疏水化水溶性聚电解质的增粘作用[J].功能高分子学报,1999,12(l),88-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700