用户名: 密码: 验证码:
烧蚀型载体烟气脱硝催化剂的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文制备并研究了NH3-SCR脱硝粉体催化剂蜂窝体催化剂,分别考察了原位溶胶-凝胶法制备的V2O5/TiO2催化剂和分步浸渍法制备V2O5-WO3/TiO2催化剂的催化性能。针对分步浸渍催化剂制备过程,采用不同载体、不同活性组分前驱体及烧蚀型载体负载方式制备了相应的V2O5-WO3/TiO2催化剂,通过N2吸附、XRD、NH3-TPD、H2-TPR、紫外-可见光分析、SEM、In-situ FTIR等表征手段对以上粉体催化剂进行评价。结果显示:原位溶胶-凝胶制备的催化剂具有介孔结构、脱硝活性温度窗口宽,但原料成本高且WO3难以原位负载;不同载体分步浸渍法制备的催化剂中介孔TiO2制备的催化剂具有较宽的活性温度窗口与抗硫抗水中毒稳定性;烧蚀型载体负载制备的催化剂兼具原位溶胶-凝胶法与浸渍法制备催化剂的优点,且抗硫抗水性能稳定。对烧蚀型载体负载制备的粉末催化剂与廉价黏土通过掺混制备蜂窝体催化剂并进行考察,得出掺混70wt.%黏土A制得的蜂窝体催化剂性能较好,具有稳定的抗硫抗水中毒性能,建立了低成本高性能蜂窝体脱硝催化剂的制备工艺。同时,用烧蚀型载体负载制备的粉末催化剂涂覆在黏土蜂窝体表面制得了涂覆蜂窝催化剂,通过评价发现涂层厚度增加到110μm时涂覆催化剂与100%挤出成型蜂窝催化剂的活性相当。
Powder and honeycomb NH3-SCR catalysts were prepared in this paper, and both in-situsol-gel method and two-step impregnation method were adopted in the preparation of the powdercatalyst. The two-step impregnation method was optimized by varying the supports and theirstructures, the precursors of active component and the method utilizing combustible carrier. Allcatalysts were characterized with XRD, UV-Vis, in-situ FTIR, SEM, NH3-TPD and H2-TPR todeeply understand the structure, acidity, redox property and reaction mechanism involving inNH3-SCR of NO. The results show that the catalysts made by the in-situ sol-gel method hadmesoporous structure, high dispersion of V2O5on the surface of TiO2and wide window ofworking temperatures, but the method itself is expensive. The two-step impregnation method hasthe feature of low cost, and the prepared V2O5-WO3/TiO2catalyst on mesoporous TiO2allowedalso a wide working-temperature window. Using combustible carrier to facilitate the dispersion ofTiO2support further made the resulting catalyst have activity and performances of denitrationsimilar to that of the catalysts made by the sol-gel method. Then, honeycomb catalyst wasprepared by the extrusion method based on blending clay and the powder catalyst facilitated usinga combustible carrier. Testing the effect of different clays on the preparation process and thehoneycomb catalyst itself found that the catalyst blending70wt.%clay well met the requirementof industrial application for de-NOx of flue gas. A coating honeycomb catalyst was also tested,demonstrating that its activity increased with increasing the coating thickness and the catalyst witha thickness of110μm enabled the comparably good activity as the extruded honeycomb of100%powder catalyst. This indicates thus a possible low-cost technology for making honeycomb.
引文
[1].周昊,邱坤赞,王智化,等.煤种及煤粉细度对炉内再燃过程脱硝和燃尽特性的影响[J].燃料化学学报,2004,32(2):146-150.
    [2].周良峰,田建,尹华强,等.氨法SCR烟气脱硝技术研究进展.四川化工,2007,10(3):38-42.
    [3].杨冬,徐鸿. SCR烟气脱硝技术及其在燃煤电厂的应用.电力环境保护,2007,23(1):49-51.
    [4]. Gao Yan, Luan Tao, Peng Jiwei, et al. DeNOx Performance of SCR Catalyst for Exhaust Gasfrom Coal-fired Power Plant[J]. Journal of Chemical Industry and Engineering,2013,64(7):2611-2618.
    [5]. Sun keqin, Zhong qin. Flue Gas Denitration Ttechnology and Application in Thermal PowerPlant [M]. Beijing: Chemical Industry Press,2006:2-4.
    [6].任剑峰,王增长,牛志卿.大气中氮氧化物的污染与防治[J].科技情报开发与经济,2003,13(5):92-93.
    [7].国家环境保护总局.火电厂大气污染物排放标准(GB13223-2011)[S].2011.
    [8]. GB13223-2011,火电厂大气污染物排放标准[s].
    [9].张建,李金科,徐红兵,等.低NOx燃烧器研究开发[J].乙烯工业,2006,18(1):22-25.
    [10].吴碧君.燃烧过程NO的生成机理[J].电力环境保护,2003.19(4):9-12.
    [11].曾汉才.燃烧与污染[M].武汉:华中理工大学出版社,1992:2-11.
    [12]. Radojevic M. Reduction of Nitrogen Oxides in Flue Gases[J]. Environmental Pollution,1998,102(81):685-689.
    [13].王振宇.燃煤电厂的除尘、脱硫、脱硝技术[J].环境保护科学,2005,31(127):4-6.
    [14].马双忱,赵毅,郑福玲,等.液相催化氧化脱除烟道气中SO2和NOx的研究[J].中国环境科学.2001,21(01):33-37.
    [15].马乐凡,童志权,尹奇德,等.液相络合-铁屑还原-酸吸收回收法脱除烟气中的NOx[J].环境化学.2006,25(06):761-764.
    [16].吕洪坤.选择性非催化还原与先进再燃技术的实验及机理研究[D].浙江大学,2009.
    [17].戚栋,李春荣,阎颖,等.用高压脉冲电晕技术脱硫脱硝的研究进展[J].高电压技术,2003,29(12):32-34.
    [18]. Liu Qingya, Liu Zhenyu. Review of V2O5-supported Carbon Based Catalyst for SO2and NORemoval from Flue Gas[J]. Journal of Chemical Industry and Engineering,2008,59(8):1894-1906.
    [19]. Huang Haifeng, Zhang Feng, Lu Hanfeng, et al. Effect of Preparation Methods on Structuresand Performance of MnOx/TiO2Catalyst for Low-temperature NH3-SCR[J]. Journal ofChemical Industry and Engineering,2010,61(1):80-85.
    [20]. Li Junjie, Mu Yang, Yang Juan, et al. Properties of sulfation supported V/Ti denitrationCatalyst[J]. Journal of Chemical Industry and Engineering,2013,64(4):1249-1255.
    [21].杨飏.氮氧化物减排技术与烟气脱硝工程[M].北京:冶金工业出版社,2007.
    [22].周涛,刘少光,唐名早等.选择性催化还原脱硝催化剂研究进展[J].硅酸盐学报,2009,37(2):317-324.
    [23]. Zhang Peng, Yao Qiang. Catalyst for Selective Catalytic Reduction De-NOx Reaction in FlueGas[J]. Coal Conversion,2005,28(2):18-24.
    [24]. A. A. Nikolopoulos, E. S. Stergioula, E. A. Efthimiadis, et al. Selective Catalytic Reductionof NO by Propane Excess Oxygen on Pt-and Rh-supported Alumina Catalysts[J]. CatalsisToday,1999,54(4):439-450.
    [25]. Li Junhua, Hao Jiming, Fu Lixin, etal. Selective Catalytic Reduction of Nitrogen Oxide byPropene over Noble Catalysts in the Pressence of Exess Oxygen[J]. Chemical Research inChinese Universities,2003,24(11):2060-2064.
    [26]. LiJuan Chen, Jie Bao, FuMing Mei, et al. NO Conversion in Presence of O2, H2O and SO2:Improvement of a Pt/Al2O3Catalyst by Zr and Sn, and Influence of the Reducer C3H6orC3H8[J]. Catalysis Communications,2008,9(5):664-669.
    [27]. Zhou Liangfeng, Tian Jian, Yin Huaqiang, etal. Advancement in Study of Flue Gas DeNOxTechnology with SCR-NH3[J]. Sichuan Chemical Industry,2007,10(3):38-42.
    [28]. Donovan A. Pe a, Balu S. Uphade, Panagiotis G. Smirniotis. TiO2-supported Metal OxideCatalysts for Low-temperature Selective Catalytic Reduction of NO with NH3I. Evaluationand Characterization of First Row Transition Metals[J]. Journal of Catalysis2004,221(2):421-431.
    [29]. Wenqing Xu, Yunbo Yu, Changbin Zhang, et al. Selective Catalytic Reduction of NO byNH3over a Ce/TiO2Catalyst[J]. Catalysis Communications,2008,9(6):1453-1457.
    [30]. Min Kang, Eun Duck Park, Ji Man Kim, et al. Manganese Oxide Catalysts for NOxReduction with NH3at Low Temperatures[J]. Applied Catalysis A: General,2007,327(2):261-269.
    [31]. Jian Yu, Feng Guo, Yingli Wang, Jianhong Zhu, Yunyi Liu, Shiqiu Gao, Guangwen Xu.Sulfur Poisoning Resistant Mesoporous Mn-base Catalyst for Low-temperature SCR of NOwith NH3. Applied Catalysis B: Environmental.2010,95:160-168
    [32].郭凤,余剑,许光文等. Mn-Fe-Ce/TiO2低温NH3选择性催化还原NO[J].过程工程学报,2009,9(6):1192-1197.
    [33].范红梅,仲兆平,金保升,等.金属氧化物MoO3(WO3)和V2O5对烟气脱硝催化性能试验[J].环境化学,2007,26(4):439-443.
    [34].孙克勤,钟秦,李明波,等. V2O5-WO3/TiO2脱硝催化剂的制备及其性能研究[J].环境科学研究,2007,20(3):124-127.
    [35].张琳,张绣玲,代斌,等.催化脱除大气污染物NOx研究进展[J].低温与特气,2000,18(4):7-10.
    [36]. Salker A. V., Weisweiler W. Catalytic Behaviour of Metal Based ZSM-5Catalysts for NOxReduction with NH3in Dry andhumid Conditions[J]. Applied Catalysis A: General,2000,203(2):221-229.
    [37].张秋林,邱春天,徐海迪等.整体式Cu-ZSM-5催化剂上NH3选择性催化还原NO活性[J].催化学报,2010,31(11):1411-1416.
    [38].石晓燕,刘福东,单文坡等.水热老化对不同方法制备的Fe-ZSM-5用于NH3选择性催化还原NOx的影响[J].催化学报,2012,33(3):454-464.
    [39].贺丽芳,刘建东,黄伟等.制备方法对Mn-Ce/ZSM-5催化剂低温选择性催化还原NO性能的影响[J].高等学校化学学报,2012,33(11):2532-2536.
    [40].立本英机,安部郁夫,高尚愚(译).活性炭的应用技术:其维持管理及存在问题[M],东南大学出版社,2002,150-162.
    [41]. Z. Huang, Z. Zhu and Z. Liu. Combined effect of H2O and SO2on V2O5/AC catalysts for NOreduction with ammonia at lower temperatures [J]. Applied Catalysis B: Environmental.2002,39:361-368.
    [42]. T. Valdés-Sol′s, G. Marbán, A. B. Fuertes. Low-temperature SCR of NOx with NH3overCarbon-ceramic cellular monolith-supported manganese Oxides [J]. Catalysis Today.2001,69:259-264.
    [43].黄张根,朱珍平,刘振宇,等. V2O5/AC催化剂对氨还原NO的研究[J].环境化学,2002,21(5):448-453.
    [44]. Z. Zhu, Z. Liu, S. Liu, H. Niu. A Novel carbon-supported vanadium oxide catalyst for NOreduction with NH3at low temperatures [J]. Applied Catalysis B: Environment.1999,23(4):229-233.
    [45]. Gregorio Marbán, Raquel Antu a, Antonio B. Fuertes. Low-temperature SCR of NOx withNH3over Activated Carbon Fiber Composite-supported Metal Oxides[J]. Applied CatalysisB: Environmental,2003,41(3):323-338.
    [46].沈伯雄,郭宾彬,史展亮,等. CeO2/ACF的低温SCR烟气脱硝性能研究[J].燃料化学学报,2007,35(1):125-128.
    [47].沈伯雄,马宏卿,杨晓燕等.钛基柱撑黏土负载锰铈催化剂低温选择性催化还原脱除NOx研究[J].中国电机工程学报,2011,31(26):53-58.
    [48]. Gongshin Qi, Ralph T. Yang, Levi T. Thompson. Catalytic Reduction of Nitric Oxidewithhydrogen and Carbon Monoxide in the Presence of Excess Oxygen by Pd Supported onPillared Clays[J]. Applied Catalysis A: General,2004,259(2):261-267.
    [49]. L. Khalfallah Boudali, A. Ghorbel, P. Grange. SCR of NO by NH3over V2O5SupportedSulfated Ti-pillared Clay: Reactivity and Reducibility of Catalysts[J]. Applied Catalysis A:General,2006,305(1):7-14.
    [50]. R. Q. Long, R. T. Yang. Selective Catalytic Reduction of NO with Ammonia over V2O5Doped TiO2Pillared Clay Catalysts[J]. Applied Catalysis B: Environmental,2000,24(1):13-21.
    [51]. Guido Busca, Luca Lietti, Gianguido Ramis, Francesco Berti. Chemical and mechanisticaspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: Areview [J].Applied Catalysis B: Environmental,1998,18(1-2):1-36
    [52]. Haifeng Huang, Lili Jin, HanFeng Lu, He Yu, Yijie Chen. Monolithic Cr-V/TiO2/cordieriteCatalysts Prepared by In-situ Precipitation and Impregnation for Low-temperature NH3-SCRReactions[J]. Catalysis Communications,2013,34(5):1-4
    [53]. Isabella Nova, Cristian Ciardelli, Enrico Tronconi, Daniel Chatterjee, Michel Weibel.Unifying Redox Kinetics for Standard and Fast NH3-SCR over a V2O5-WO3/TiO2Catalyst[J].AIChE Journal,2009,55(6):1514-1529
    [54]. Qian Li, Hangsheng Yang, Famin Qiu, Xiaobin Zhang. Promotional Effects of CarbonNanotubes on V2O5/TiO2for NOx removal[J]. Journal of Hazardous Materials,2011,192(2):915-921
    [55]. Fudong Liu, Hong He. Structure-activity Relationship of Iron Titanate Catalysts in theSelective Catalytic Reduction of NOx with NH3[J]. The journal of Physical Chemistry C,2010,114(40):16929-16936
    [56]. Sun Keqin, Zhong Qin, Li Mingbo, Li Yuntao, Huang Lina. Study on the pPreparation andProperty of SCR Catalyst V2O5-WO3/TiO2[J]. Research of Environmental Sciences,2007,20(3):124-127
    [57]. C.J.G. Grift, A.F. Wolduis, O.L. Maaskant. The Shell De-NOx System for Low TemperatureNOx Removal[J]. Catalysis Today,1996,27(1-2):23-27.
    [58]. US patent4929586. Catalysts for Selective Catalytic Reduction DeNOx Technology[p].
    [59]. Kiran B. Deshpande, William B. Zimmerman. Selective Reduction of NO by NH3overVanadium-based Commercial Catalyst: Parametric Sensitivity and Kinetic Modeling[J].Chemical Engineering Science,1996,60(11):2897-2902
    [60]. Lin Xiping, Wu Guoying, Wei Kenian, Zhou Yongsheng. Investigation of Hydrodearomaticsof Jet Fuel over NiO-TiO2/ZSM-5Catalyst Prepared by In-situ Ssol-gel Method[J].Petroleum Processing and Petrochemicals2006,36(11):5-10
    [61].于国峰. Mn-Ce/TiO2系低温SCR催化剂脱硝性能及蜂窝状成型制备研究[D].硕士学位论文,浙江:浙江工业大学,2012.
    [62].孙克勤,钟秦.火电厂烟气脱硝技术及工程应用[M].化学工业出版社,2007.
    [63]. S. Nojima, K Lida, N. Kobayashi, et al. Development of NOx Removal SCR Catalyst forLow SO2Oxidation[J]. Technical Review,2001,38(2):87-91.
    [64]. K. N.hiromi, T. O. Toshiyuki, D. Chris, et al. Latest SCR Technologies and Experience onCoal Fired Boilers[A]. ICAC forum’98“Cutting NOx Emissions” Durham[C]. NorthCarolina:1998.
    [65]. http://www.topsoe.com/products/CatalystPortfolio.aspx.
    [66]. http://www.shokubai.co.jp/eng/products/de_nox.html.
    [67]. http://www.bhk.co.jp/english/2energy/03exhaust/eh1.html.
    [68].王琦,王树荣,闫志等.燃煤电厂SCR脱硝技术催化剂的特性及进展[J].电站系统工程,2005,21(3):4-6.
    [69]. http://www.cddkc.com/Job.asp?menuTitle
    [70]. http://www.yuandacm.com.cn/js-pic.asp?lm2=80
    [71].张子良.平板式脱硝催化剂对引进技术的消化吸收与国产化探索[J].科技资讯,2013,34:107-109.
    [72]. http://www.goootech.com/topics/72010289/detail-10155542.html.
    [73].刘希尧.工业催化剂分析与测试表征[M].北京:烃加工工业出版社,1990:21.
    [74].李树棠.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990:34.
    [75]. Lutz W, R€uscher Ch, Heidemann D. Determination of the Framework andNon-framework[J]. Microporous and Mesoporous Materials,2002,55(2):193-202.
    [76].廖乾初.扫描电镜原理及应用技术[M].北京:冶金工业出版社,1990:65.
    [77].印万忠,孙传尧.硅酸盐矿物表面特性的X射线光电子能谱分析[J].东北大学学报(自然科学版),2002,23(2):156-159.
    [78].刘世宏,王当憨,潘承璜. X射线光电子能谱分析[M].北京:科学出版社,1988.203-220.
    [79].李余增.热分析[M].北京:清华大学出版社,1987:12.
    [80].陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985:14.
    [81]. Djerad S, Tifouti L, Crocoll M, et al. Effect of Vanadia and Tungsten Loadings on thePhysical and Chemical Characteristics of V2O5-WO3/TiO2Catalysts[J]. Journal of MolecularCatalysis A: Chemical,2004,208(1-2):257-265.
    [82]. Moonhyeon Kim, Taehoo An. A Commercial V2O5-WO3/TiO2Catalyst Used at an NH3-SCRdeNOx Process in an oil-fired Power Plant: Cause of an Increase in DeNOxing and NH3Oxidation Performances at Low Temperatures[J]. Research on Chemical Intermediates,2011,37(6):1333-1344.
    [83]. Xu Hong, Yan Zhiyong, Xu Xu, et al. Experiment Study of the Pilot Ammonia SCR Systemin a Coal-fired Power Plant[C].2011Asia-Pacific Power and Energy EngineeringConference. IEEE,2011:1-4.
    [84]. Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and Physic Chemical Characterization ofV2O5-WO3/TiO2De-NOx Catalysts[J]. Journal of catalysis,1995,155(1):117-130.
    [85]. Deo G, Wachs I E. Reactivity of Supported Vanadium Oxide Catalysts: The Partial Oxidationof Methanol[J]. Journal of catalysis,1994,146(2):323-334.
    [86]. Deo G, Wachs I E. Effect of Additives on the Structure and Reactivity of the SurfaceVanadium Oxide Phase in V2O5/TiO2Catalysts[J]. Journal of catalysis,1994,146(2):335-345.
    [87]. Li Junhua, Chen Jianjun, Ke Rui, et al. Effects of Precursors on the Surface Mn Species andthe Activities for NO Reduction over MnOx/TiO2Catalysts[J]. Catalysis Communications,2007,8(12):1896-1900.
    [88]. Singoredjo L, Korver R, Kapteijin F. Alumina Supported Manganese Oxides for theLow-temperature Selective Catalytic Reduction of Nitric Oxide with Ammonia[J]. AppliedCatalysis B: Environmental,1992,1(4):297-316.
    [89]. Donovan A. Pe a, Balu S. Uphade, Panagiotis G. Smirniotis. TiO2-supported Metal OxideCatalysts for Low-temperature Sselective Catalytic Reduction of NO with NH3(Ⅰ):Evaluation and Characterization of First Row Transition metals[J]. Journal of Catalysis,2004,221(2):421-431.
    [90]. Deng Shanshan, Yang Yonghong, A Rongtana, et al. Low-temperature Selective CatalyticReduction of NO with NH3over Manganese and Tin Oxides Supported on Titania[J].Chemical Industry and Engineering Progress,2013,32(10):2403-2408.
    [91]. Zhang Xiaopeng, Shen Boxiong. Selective Catalytic Reduction of NO with NH3overMn-based Catalysts at Low Temperature[J]. Journal of Fuel Chemistry and Technology,2013,41(1):123-128.
    [92]. Chen Liang, Li Junhua, Ge Maofa. Promotional Effect of Ce-doped V2O5-WO3/TiO2withLow Vanadium Loadings for Selective Catalytic Reduction of NOx by NH3[J]. The Journalof Physical Chemistry C.2009,113(50):21177-21184.
    [93]. Steffen B. Kristensen, Andreas J. Kunov-Kruse, Anders Riisager, et al. High PerformanceVanadia-anatase Nanoparticle Catalysts for the Selective Catalytic Reduction of NO byAmmonia[J]. Journal of Catalysis,2011,284(1):60-67.
    [94]. Huang Zhanggen, Zhu Zhenping, Liu Zhenyu, et al. Formation and Reaction of AmmoniumSulfate Salts on V2O5/AC Catalyst during Selective Catalytic Reduction of Nitric oxide byAmmonia at Low Temperatures[J]. Journal of Catalysis,2003,214(2):213-219.
    [95]. Motonobu Kobayashi, Ryoji Kuma, Atushi Morita. Low Temperature Selective CatalyticReduction of NO by NH3over V2O5Supported on TiO2-SiO2-MoO3[J]. Catalysis Letters,2006,112(1-2):37-44.
    [96]. Zhu Zhenping, Liu Zhenyu, Niu Hongxian, et al. Promoting Effect of SO2on ActivatedCarbon-supported Vanadia Catalyst for NO Reduction by NH3at Low Temperatures[J].Journal of Catalysis,1999,187(1):245-248.
    [97]. Arfaoui J, Khalfallah Boudali L, Ghorbel A, et al. Effect of Vanadium on the Behaviour ofUnsulfated and Sulfated Ti-pillared Clay Catalysts in the SCR of NO by NH3[J]. CatalystToday,2009,142(3-4):234-238.
    [98]. Gao Xingtao, Wachs Israel E. Investigation of Surface Structures of Supported VanadiumOxide Catalysts by UVvis-NIR Diffuse Reflectance Spectroscopy[J]. Journal of PhysicalChemistry B,2000,104(6):1261-1268.
    [99]. Srinivas D, holderich W F, Kujath S. Active Sites in Vanadia/titania Catalysts for SelectiveAerial Oxidation of β-picoline to Nicotinic Acid[J]. Journal of Catalysis,2008,256(2):165-173.
    [100]. Yang Zhenni, Liu Qiang, Zhu Zhongqi, et al. Preparation and Properties of V-doped TiO2Powders[J]. Materials Science and Engineering of Powder Metallurgy,2009,14(1):63-66.
    [101]. Zhao Zongyan, Liu Qingju, Zhang Jin, et al. First-principles Study of3d Transition MetalDoped Anatase TiO2[J]. Acta Physica Sinica,2007,56(11):6593-6599.
    [102]. Sheng Zhongyi. Mechanism on the Photocatalytic Oxidation of NO in Gas over Pt or PdMmodified TiO2Catalysts[D]. Zhejiang: Zhejiang University,2010.
    [103]. Guoyong Xie, Zhenyu Liu, Zhenping Zhu, et al. Simultaneous Removal of SO2and NOxfrom Flue Gas using a CuO/Al2O3Catalyst Sorbent II. Promotion of SCR Activity by SO2atHigh Temperatures[J]. Journal of Catalysis,2004,224(1):42-49.
    [104]. G. Ramis,L. Yi,G. Busca, et al. Adsorption, Activation, and Oxidation of Ammonia over SCRCatalysts[J]. Journal of Catalysis,1995,157(2):523-535.
    [105]. J Arfaoui, LK Boudali, A Ghorbel, et al. Effect of Vanadium on the Behaviour of Unsulfatedand Sulfated Ti-pillared Clay Catalysts in the SCR of NO by NH3[J]. Catalyst Today,2009,142(3-4):234-238.
    [106]. L Chmielarz, P Ku trowski, M Zbroja, et al. Selective Reduction of NO with NH3overPillared Clays Modified with Transition Metals[J]. Catalyst Today,2004,90(1-2),43-49.
    [107].辛勤,罗孟飞.现代催化研究方法[M]. P215
    [108].寻洲. Mn-Ce-Fe/TiO2低温催化还原NO的性能[J].环境科学学报,2008,28(9):1733-1738。
    [109]. Ioanna Giakoumelou, Christina Fountzoula, Christos Kordulis, et al. Molecular Structure andCatalytic Activity of V2O5/TiO2Catalysts for the SCR of NO by NH3in Situ Raman Spectrain the Presence of O2, NH3, NO, H2, H2O, and SO2[J]. Journal of Catalysis,2006,239(1):1-12.
    [110]. KN Rao, BM Reddy, B Abhishek, et al. Effect of Ceria on the Structure and CatalyticActivity of V2O5/TiO2-ZrO2for Oxide Hydrogenation of Ethylbenzene to Styrene UtilizingCO2as Soft Oxidant[J]. Applied catalyst: B, Environmental,2009,91(3-4):649-656.
    [111].孙闻东,赵振波,楚文玲,等. WO3/ZrO2固体强酸催化剂上异丁烷-丁烯烷基化反应研究(Ⅰ)-钨负载量和焙烧温度的影响[J].高等学校化学学报,2000,21(3):448-452.
    [112]. Dirk C. Vermaire, Pieter C. van Berge. The Preparation of WO3/TiO2and WO3/Al2O3andCharacterization by Temperature-programmed Reduction[J]. Journal of Catalysis,1989,116(2):309-317.
    [113]. Xingfu Tang,Junhua Li, Liang Sun, et al. Origination of N2O from NO Reduction by NH3over β-MnO2and α-Mn2O3[J]. Applied Catalysis B: Environmental.2010,99(1-2):156-162.
    [114]. Shijian Yang,Yuwu Fu, Yong Liao, et al. Competition of Selective Catalytic Reduction andnon Selective Catalytic Reduction over MnOx/TiO2for NO Removal: the Relationshipbetween Gaseous NO Concentration and N2O Selectivity[J].Catalysis Science andTechnology,2014,4:224-232.
    [115].李晶,李忠,奚红霞,夏启斌.苯在改性活性炭上的脱附活化能[J].过程工程学报,2006,6(5):734-737.
    [116]. L.J. Alemany, L. Lietti, N. Ferlazzo, et al. Reactivity and Physicochemical Characterizationof V2O5-WO3/TiO2De-NOx Catalysts[J]. Journal of Catalysis,1995,155(1):117-130.
    [117]. G. Ramis, G. Busca, C. Cristiani, et al. Characterization of Tungsta-titania Catalysts[J].Langmuir,1992,8(7):1744-1749.
    [118]. Addax Gutiérrez-Alejandre,Jorge Ramírez,Guido Busca. The Electronic Sstructure ofOxide-supported Tungsten Oxide Catalysts as Studied by UV Spectroscopy[J].CatalysisLetters.,1998,56(1):29-33.
    [119].陈其凤.溶胶-凝胶-水热法制备Ce-Si/TiO2及其可见光催化性能[J].物理化学学报,2009,25(4):617-623.
    [120].张玲,蔡涛,姚英等. SiO2-TiO2二元材料及其杂化材料的制备和表征[J].应用化学,2005,22(9):984-988.
    [121]. Joseph P. Dunn, Prashanth R. Koppula, Harvey G. Stenger. Oxidation of Sulfur Dioxide toSulfur Trioxide over Supported Vanadia Catalysts[J]. Applied Catalysis B: Environmental.1998,19(2):103-117.
    [122]. Shinji Hara, Masaru Miyayama. Proton Conductivity of Superacidic Sulfated Zirconia[J].Solid State Ionics,2004,168(1-2):111-120.
    [123]. Yunfeng Zhai, Huamin Zhang, Jingwei Hu, et al. Preparation and Characterization ofSulfated Zirconia(SO42/ZrO2)/Nafoncomposite Membranes for PEMFC Operation at HighTemperature/Low Humidity[J]. Journal of Membrane Science.2006,280(1-2):148-155.
    [124]. Zhanggen Huang, Zhenping Zhu, Zhenyu Liu, et al. Formation and Reaction of AmmoniumSulfate Salts on V2O5/AC Catalyst during Selective Catalytic Reduction of Nitric Oxide byAmmonia at Low Temperatures[J]. Journal of Catalysis,2003,214(2):213-219.
    [125].孙路石,赵清森,向军,石金明,等,原位漫反射红外光谱研究NO和NH3在CuO/C-Al2O3催化剂上的吸附行为[J].化工学报,2009,60(2):444-449.
    [126].刘坚,赵震,徐春明,等. Al2O3或SiO2负载钒氧化物催化剂的紫外-拉曼光谱比较研究[J].工业催化,2008,16(10):35-37.
    [127].余剑,郭凤,李强,等.一种脱硝催化剂的制备方法.专利号:201010537130.
    [128].原晨光.还原五氧化二钒制备钒的低价氧化物[D].浙江:浙江大学,2005.
    [129].余剑,郭凤,杨娟,等.一种表面沉积型蜂窝状烟气脱硝催化剂及其制备方法.专利号:WO2012162864A1.
    [130].李凯,林陵,王继元,等.压缩成型法制备TiO2成型载体[J].南京工业大学学报(自然科学版),2010,5(3):49-55.
    [131].池跃章,余爱民,沈光银,等.成型压力和烧成温度对利用废渣和尾矿制备闭孔发泡陶瓷的影响[J].中国陶瓷,2009,10(10):69-71.
    [132].朱崇兵,金保升,仲兆平,等.蜂窝状催化剂的制备及其性能评价[J].动力工程,2008,28(3):459-464.
    [133].张继光.催化剂制备过程技术[M].中国石化出版社,2004.
    [134].毛剑宏,宋浩,吴卫红.制备条件对蜂窝V2O5-WO3/TiO2催化剂孔结构及活性的影响研究[J].动力工程学报,2011,31(4):300-305.
    [135].肖琨. SCR脱硝技术用催化剂性能试验与成型研究[D].山东:山东大学,2008.
    [136]. Min J G, Baeck K L, Pullur A K, et al. Immobilization of Nano Catalysts on CordieriteHhoneycomb Monoliths for Low Temperature NOx Reduction[J]. Applied Catalysis A:General,2009,370(1-2):102-107.
    [137]. Xiaoping X, Changtao Y, Shuyuan L, et al. Selective Catalytic Reduction of NO byAmmonia with Fly Ash Catalyst[J]. Fuel,2003,82(5):575-579.
    [138].孙旭光,云端,张鹏,等.改性飞灰作为SCR催化剂载体的成型方法和脱硝活性[J].燃烧科学与技术,2010,16(2):133-136.
    [139]. Junhua Li, huazhen Chang, Lei Ma, et al. Low-temperature Selective Ccatalytic Reduction ofNOx with NH3over Metal Oxide and Zeolite Catalysts-A review[J]. Catalysis Today,2011,175(1):147-156.
    [140]. Maria Casapu, Oliver Kro cher, Martin Elsener. Screening of Doped MnOx-CeO2Catalystsfor Low-temperature NO-SCR[J]. Applied Catalysis B: Environmental,2009,88(3-4):413-419.
    [141]. M Foix, C Guyon, M Tatoulian, et al. Study of the Use of Fluidized Bed Plasma Reactors forthe Treatment of Alumina Supported Palladium Catalyst: Application for SCR NOx by CH4in Stationary Sources[J]. Catalysis Communications,2010,12:20-24.
    [142]. Qingchun Y, Shichao Z, Xindong W, et al. Sulfation Behavior of CuO/γ-Al2O3Sorbent forthe Removal of SO2from flue gas[J]. Journal of University of Science and TechnologyBeijing, Mineral, Metallurgy, Material,2008,15(4):500-504.
    [143].王艳莉,刘振宇.粘结剂对蜂窝状V2O5/ACH同时脱硫脱硝活性的影响[J].过程工程学报,2009,9(4):701-706.
    [144].许越.催化剂设计与制备工艺[M].北京:化学工业出版社,2003.
    [145].李锋.以纳米TiO2为载体的燃煤烟气脱硝SCR催化剂的研究[D].南京:东南大学,2006.
    [146].王杭州. SCR对脱硝效率及SO2转化率影响分析[J].锅炉技术,2009,40(3):71-76.
    [147]. Boschh, Janssen F. Formation and Control of Nitrogen Oxides[J]. Catalysis Today,1988,2(3):369-379.
    [148]. F. Kapteijn, L. singoredjo, A. Andreini, Activity and Seleetivity of Pure Manganese Oxides inthe Seleetive Catalytic Reduetion of Nitric Oxide with Ammonia[J]. Applied Catalysis B;Environmental,1994,3(2-3):173-189.
    [149]. Donovan A. Pe a, Balu S. Uphade, Ettireddy P. Reddy, et al. Identification of SurfaceSpecies on Titania-supported Manganese, Chromium, and Copper Oxide Low-temperatureSCR catalysts[J]. The Journal of Physical Chemistry B,2004,108(28):9927-9936.
    [150]. L Chen, JH Li, MF Ge. DRIFT Study on Cerium-tungsten/titania Catalyst for SelectiveCatalytic Reduction of NOx with NH3[J]. Environment Science and Technology,2010,44(24),9590-9596.
    [151]. WS Kijlstra, DS Brands, EK Poels, et al. Mechanism of the Selective Catalytic Reduction ofNO by NH3over MnOx/Al2O3[J]. Journal of Catalysis,1997,171(1),208-218.
    [152]. SM Jung, P Grange. Investigation of the Promotional Effect of V2O5on the SCR Reactionand its Mechanism on Hybrid Catalyst with V2O5and TiO2-SO42-Catalysts[J]. AppliedCatalysis B: Environmental,2002,36(3):207-215.
    [153]. MA Centeno, I Carrizosa, JA Odriozola. In Situ DRIFTS Study of the SCR Reaction of NOwith NH3in the Presence of O2over Lanthanide Doped V2O5/Al2O3Catalysts[J]. AppliedCatalysis B: Environmental,1998,19(1):67-73.
    [154]. G Ramis, L Yi, G Busca, M Turco, et al. Adsorption, Activation and Oxidation of Ammoniaover SCR Catalysts[J]. Journal of Catalysis,1995,157(2):523-535.
    [155]. Y Chi, SSC Chuang. Infrared Study of NO Adsorption and Reduction with C3H6in thePresence of O2over CuO/Al2O3[J]. Journal of Catalysis,2000,190(1):75-91.
    [156]. Silvia Suárez, Seong Moon Jung, Pedro Avila, et al. Influence of NH3and NO Oxidation onthe SCR Reaction Mechanism on Copper/nickel and Vanadium Oxide Catalysts Supported onAlumina and Titania[J]. Catalysis Today,2002,75(1-4):331-338.
    [157]. Landong Li, Qun shen, Jie Cheng. Catalytic oxidation of NO over TiO2supported platinumclusters. II: Mechanism study by in situ FTIR spectra[J]. Catalysis Today,2010,158(3-4):361-369.
    [158]. G Centi, S Perathoner. Nature of Active Sspecies in Copper-based Catalysts and theirChemistry of Transformation of Nitrogen Oxides[J]. Applied Catalysis A: General,1995,132(2):179-259.
    [159]. VI Parvulescu, P Grange, B Delmon. Catalytic Removal of NO[J]. Catalysis Today,1998,46(4):233-316.
    [160].范红梅,仲兆平,金保升,等. V2O5-WO3/TiO2催化剂氨法SCR脱硝反应动力学研究[J].燃料化学学报,2006,34(3):377-380.
    [161]. B. Roduit, A. Wokaun, A. Baiker. Global Kinetic Modeling of Reactions Occurring duringSelective Catalytic Reduction of NO by NH3over Vanadia/titania-based Catalysts[J],Industral and Engineering Chemistry Research,1998,37(12):4577-4590.
    [162]. T. Valdés-Solís, G. Marbán, A. B. Fuertes. Kinetics and Mechanism of Low TemperatureSCR of NOx with NH3over Vanadium Oxide Supported on Carbon-ceramic CellularMonoliths[J], Industral and Engineering Chemistry Research,2004,43(10):2349-2355.
    [163]. P. Forzatt. Present Status and Perspectives in de-NOx SCR Catalysis[J]. Applied Catalysis A:General,2001,222(1-2):221-236.
    [164]. A.M. Efstathiou, K. Fliatoura, Selective Catalytic Reduction of Nitric Oxide with Aammoniaover V2O5/TiO2Catalyst: a Steady-state and Transient Kinetic Study[J]. Applied Catalysis B:Environmental,1995,6(1):35-59.
    [165]. A. Bahamonde, A. Beretta, P. Avila, et al. An Experimental and Theoretical Investigation ofthe Behavior of a Monolithic Ti-V-W-Sepiolite Catalyst in the Reduction of NOx withNH3[J]. Industral and Engineering Chemistry Research,1996,35(8):2516-2521.
    [166]. J. Svachula, N. Ferlazzo, P. Forzatti, et al. Selective Reduction of Nitrogen Oxides (NOx) byAmmonia over Honeycomb Selective Catalytic Reduction Catalysts[J]. Industral andEngineering Chemistry Research,1993,32(6):1053-1060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700