用户名: 密码: 验证码:
炼油碱水预处理工艺的试验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炼油碱水是石油炼制过程中油品碱洗精制时产生的一种含有大量硫化物和酚类等有毒有害污染物的碱性废液,是炼油厂主要的恶臭污染源。曝气滤池尤其是循环曝气生物滤池(Circulating BiologicalAerated Filter,简称CBAF)是对这类废水进行预处理的有效装置。基于CBAF的废水处理工艺成本较低,效率较高,是一种值得推广的生物预处理工艺。
     但是CBAF反应器的设计、选型以及工程放大,主要依赖于实验数据和个人经验,缺乏理论的指导;CBAF内部的传递(包括质量传递、动量传递)机理较复杂,难以通过普通的实验手段得出接近实际的传递机理,从而难以找到有效提高处理效率的方法;废水各项指标的检测工作量很大,通过实验研究的方法调整操作参数,改进工艺需要耗费大量的人力物力,并且不易找到改进的突破口。
     本文采用试验研究与数值模拟相结合的方法,探讨了铁/碳微电解隔离曝气滤池和系列CBAF(单曝气筒CBAF和四曝气筒CBAF)的废水处理性能,模拟了四曝气筒CBAF内部溶解氧浓度、硫化物浓度以及单质硫浓度分布,为四曝气筒CBAF装置及工艺改进提出了思路和方法。
     采用铁/碳微电解隔离曝气滤池对炼油废水进行了预处理,当废水中的化学耗氧量(chemical oxygen demand,简称COD)为700mg L-1-1100mg L-1,五日生化需氧量(5-day Biochemical Oxygen Demand,简称BOD5)在70mg L-1-100mg L-1之间,BOD5/COD在0.1左右,氨氮浓度为10mg L-1-30mg L-1,采用隔离曝气及在适宜的操作条件下,COD与氨氮的去除率可分别达到67%和58%。在系统中加入适量的H2O2,可进一步强化废水的降解与提高废水可生化性。
     采用三级单曝气筒CBAF对炼油碱水进行生物预处理,当COD、硫化物、酚类和石油类物质的浓度分别不超过1500mg L-1,800mg L-1,15mg L-1和150mg L-1时,水力停留时间(HRT)从7.95h变化到15.90h,气水比从8﹕1变化到12﹕1,上述污染物的总去除率分别达到87.8%,98.0%,96.8%和91.0%。同时,处理系统运行稳定,滤池中的生物质生长良好。生物降解、化学氧化脱硫和曝气吹脱脱硫是硫化物移除的3种主要途径,在有菌条件下,生物降解是其中最重要的一种途径,超过94.5%的硫化物通过生物降解的途径被转化。在有氧情况下,硫化物能转化为不同的形式。当利用循环曝气生物滤池进行废水处理时,在试验条件下平均约有96.5%的硫化物转化为单质硫。
     采用计算流体动力学(CFD)技术,选用湍流标准k-ε模型,多相流混合模型(Mixture模型),辅以组分输运模型和壁面函数对CBAF内部的流动进行三维的模拟。
     模拟了进水(纯水)流量固定、四种不同气水比下四曝气筒CBAF内部的溶解氧浓度分布。湍流模型选用标准k-ε模型,多相流模型选用混合模型。进水量固定为0.5m3h-1,气水比变化分别为8﹕1、16﹕1、24﹕1和32﹕1。随着气水比增加,溶解氧浓度在z方向、同一水平位置上的分布越来越均匀,气流对于溶解氧浓度分布的扰动越来越强烈,生物滤池下部的溶解氧浓度明显提高,适宜于进行生物氧化反应的区域逐渐增大,填料层溶解氧平均浓度不断上升;填料层、碎石层和曝气筒内水的流动速度不断增大,循环流量可达到进水流量的二十倍以上。通过雷诺数的计算可以知道,填料层、碎石层内的流动为层流,曝气筒内的流动为湍流。
     模拟了进水(炼油废水)流量固定,在四种不同气水比情况下四曝气筒CBAF内部的溶解氧浓度、硫化物浓度以及单质硫浓度分布。模拟结果表明,随着气水比增加,气泡对于水的扰动加大,CBAF上部的溶解氧浓度基本一致,下部溶解氧的浓度逐渐增大。硫化物浓度在进水口附近区域较高,在出水口附近区域较低,在同一水平面上的分布不均匀。单质硫主要集中在生物滤池填料层中,并且进水口附近区域浓度较高。出水口附近的填料层中虽然也存在单质硫,但是浓度较低。加大曝气量有利于提高溶解氧浓度,气水比为24﹕1有利于反应物浓度均匀分布。
     模拟了曝气量固定,HRT变化(即进水流量变化)的情况下四曝气筒CBAF内部的溶解氧浓度、硫化物浓度以及单质硫浓度分布。模拟结果表明,随着HRT下降,CBAF内溶解氧浓度不断下降,硫化物的浓度不断上升。同一水平面上,随着HRT下降,硫化物浓度梯度逐步减小,出水口处的硫化物浓度逐步增大。无论进水量如何变化,在进水口附近的填料层中,单质硫的浓度总是高于出水口附近填料层中的浓度。
     提出了一种改进装置结构的方法,把原来一个进口一个出口改进为两个进口和两个出口的形式。对改进后的CBAF,模拟了进水流量0.5m3h-1,气水比分别为8﹕1、16﹕1、24﹕1和32﹕1等4种气水比情况下的溶解氧、硫化物和单质硫的浓度分布,结果表明,结构的改变能提高硫化物分布的均匀性,从而提高装置的生产能力。
     提出了一种改进工艺的方法,通过调节曝气筒曝气量比例来改善硫化物在CBAF内的分布。模拟了进水流量0.5m3h-1,气水比为24﹕1,两组曝气筒曝气量比值分别为8﹕2、7﹕3、6﹕4、4﹕6、3﹕7和2﹕8等6种比例的情况。模拟结果表明,通过调节第一组曝气筒和第二组曝气筒的曝气量比值为2﹕8-4﹕6,均能有效改善原有装置的污染物分布情况,提高生产能力。
Alkaline waste water from oil refinery is a kind of alkaline waste liquid containing a largenumber of poisonous and harmful pollutants such as sulphides and phenols produced fromalkaline washing and refining process. It is the main source of fetor in refinery. Aerated filter,especially Circulating Biological Aerated Filter (CBAF) is an effective equipment for alkalinewaste water treatment. Waste water treatment process based on CBAF is worthy of populatingfor its lower cost and higher efficiency.
     Until now, design, model selection and engineering enlargement of CBAF reactors relymaily on experimental data and individual experience which is short of theoretical direction.The mechanism of transfer including mass transfer and momentum transfer in CBAF iscomplicated and is hard to get the similar transfer mechanism by common experimentalmeans so it is very difficult to find an effective way to improve the treating efficiency. It costsa great deal of manpower and material resources to adjust the operating parameters throughexperimental research because the detection work of the properties of waste water is veryintensive, and at the same time it is not easy to find a breakthrough for the improvement ofthe reactor and process.
     Experimental research combined with numerical simulation is used in this dissertation. Thetreating performance of Fe/C microelectrolysis aerated filter and serial CBAF includingsingle-aerated-tube CBAF and four-aerated-tubes CBAF is studied. The concentrationdistribution of dissolved oxygen, hydrogen sulfide and elemental sulfur in thefour-aerated-tubes CBAF is simulated and the way for the improvement of reactor andprocess is proposed for the four aerated tubes CBAF.
     Refinery waste water is pretreated by Fe/C microelectrolysis isolated aerated filter. Whilethe concentration of COD is between700mg L-1-1100mg L-1,which for BOD5between70mg L-1-100mg L-1, the ratio of BOD5/COD is about0.1and the concentration of ammonia-nitrogen is between10mg L-1-30mg L-1, and under suitable operation conditions, theremoval rate of COD and ammonia-nitrogen can reach67%and58%, respectively. Degradation and biodegradability of waste water can be enhanced while moderate H2O2isadded into the system.
     Alkaline waste water from oil refinery is biologically pretreated by three-stagesingle-aerated-tube Isolated Aerated Biological Filters. While COD, the concentrations ofsulphides, hydroxybenzene and oil in the waste water are no more than1500mg L-1,800mg L-1,15mg L-1and150mg L-1, respectively, the total removal of these pollutants is87.8%,98.8%,96.8%and91.0%accordingly. The system can run stably and the biomassin the filter grows well. Biodegradation, chemical oxidative desulfurization and aerationdesulfurization are three ways to remove sulphides and under bacterial condition,biodegradation is the most effective one, more than94.5%sulphides are removed bybiodegradation. Under aerobic condition, sulphides can be transformed into different forms.The average value of sulphides transformed into elemental sulfur is about96.5%when thewaste water is treated by CBAF under common operation condition.
     The flow inside the CBAF is three-dimentionally simulated based on CFD with k-εmodelfor turbulence model, Mixture model for multiphase flow model, component transport modeland wall function method.
     Concentration distribution of dissolved oxygen inside the four-aerated-tubesCBAF issimulated at four different air water volume ratios (AWVRs) and constant influent of water.The k-ε model is chosen for turbulence model and Mixture model for multiphase model. Theinfluent is constant and its value is0.5m3h-1, AWVRs are varied and their values are8﹕1,16﹕1,24﹕1and32﹕1respectively. As AWVR increases, the concentration distribution ofdissolved oxygen becomes more and more uniform in both z direction and the same location.The disturbance of airflow from aerator becomes more and more intense. The concentrationof dissolved oxygen increases obviously at the bottom of the reactor. And the mean value ofthe concentration of dissolved oxygen located in the packing layer increases step by step somore and more zones in packing layer become suitable for biodegradation. The flow velocityof water in packing layer, macadam layer and aerated tubes increases constantly and the flowrate of circular flow can be dozens of times or more than that of inflow. The flow in packing layer and macadam layer is proved to be laminar and that in aerated tubes is turbulent bycalculating Reynolds number.
     Concentration distribution of dissolved oxygen, sulphides and elemental sulphur inside thefour-aerated-tubes CBAF is simulated at four different AWVRs and with constant influent ofrefinery waste water. Results show that the disturbance of the bubbles enhance, theconcentration distribution of dissolved oxygen keeps coincident on the top of the CBAF butincreases at the bottom as AWVR increases. The concentration distribution of sulphides is nothomogeneous, and it is high in the area near the inlet and is low in the area near the outlet.The elemental sulphur concentrates upon the packing layer especially near the inlet. Thoughthe elemental sulphur appears in the packing layer near the outlet, its concentration is verylow. Increasing the aeration rate is benificial for increasing the concentration of dissolvedoxygen, and24﹕1is a suitable AWVR for the concentration distribution of reactants.
     Concentration distribution of dissolved oxygen, sulphides and elemental sulphur inside thefour-aerated-tubes CBAF is simulated at different Hydraulic Retention Time or HRT for shortand constant AWVR. Results show that the concentration of dissolved oxygen reduces andthat of sulphides increases gradually as HRT decreases. On the same horizontal plane, theconcentration gradient of sulphides reduces and the concentration of sulphides at the outletincreases gradually as HRT decreases. The concentration of sulphur in the packing layer nearthe inlet is always higher than that near the outlet no matter how the HRT varies.
     A method that changes the structure of CBAF is proposed. The one-inlet-one-outlet-CBAFis changed into two-inlets-two-outlets-CBAF. The concentration distributions of dissolvedoxygen, sulphides and elemental sulphur are simulated at four different AWVRs which are8﹕1,16﹕1,24﹕1and32﹕1, respectively, while the influent is0.5m3h-1. Results show thatthe changes of the structure of CBAF can improve the distribution of sulphides and increasethe production capacity of CBAF.
     A method that changes the technological parameters is proposed which changes theaeration ratio of two sets of aeration tubes so as to improve the concentration distribution ofsulphides inside the CBAF. When the influent is0.5m3h-1and the AWVR is24﹕1, six different aeration ratios of two sets of aeration tubes are simulated which are8﹕2,7﹕3,6﹕4,4﹕6,3﹕7and2﹕8, respectively. Results show that the distribution of pollutants is wellimproved and the production capacity of CBAF is increased by adjusting the aeration ratio ofthe1st set of aeration tubes and the2nd set of aeration tubes from2﹕8to4﹕6.
引文
[1]谢文玉.炼油碱水碱渣生物预处理工艺及机理研究[D].广州:华南理工大学,2008.
    [2]王诚信.废碱液湿式空气氧化处理的现状与进展[J].石油化工环境保护,1995,(1):29-32
    [3]赵国方,赵宏斌.有机废液湿式氧化处理的现状与进展[J].江苏化工,2000,28(5):23-25
    [4] Zimmermann F. J.. Wet air oxidation of hazardous organic in wastewater[P]. US:2665249,1954
    [5] Zimmermann F. J.. Destructive oxidation of organic matter in wastewater disposal[P]. US:2824058,1958
    [6] Zimmermann F. J.. New waste disposal process[J]. Chem Eng,1958,65(8):117-121
    [7] Delin Su, Li Cong, Jianlong Wang, etc. Treatment of oil-field produced water by combinedprocess of Anaerobic Baffled Reactor (ABR)-Biological Aerated Filter (BAF): a pilot study[J].Int. J. Environment and Pollution,2009,38:69-80
    [8] Hassimi Abu Hasan, Siti Rozaimah Sheikh Abdullah, Siti Kartom Kamarudin, etc. Responsesurface methodology for optimization of simultaneous COD, NH4+-N and Mn2+removal fromdrinking water by biological aerated filter[J]. Desalination,2011,275:50-61
    [9] Frank Buchheister, Ralf Schuch, Josef Winter. Biological Nitrogen Removal from wastewaterof the Metal-Working Industry. Chem. Eng. Technol.,2000,23:967-972
    [10]李燕飞,孙迎雪,田媛,等.曝气生物滤池处理生活污水研究[J].环境工程学报,2001,5:575-578
    [11]赵静,黄瑞敏,聂凌燕,等. Fenton氧化-曝气生物滤池处理电镀铜镍废水的研究[J].电镀与涂饰,2010,29:36-39,42
    [12]王松,于忠臣,张雪桥,等. Fe2+/UV催化臭氧-曝气生物滤池降解腈纶废水研究[J].化学通报,2014,77:568-572
    [13]任先龙,杨永哲,高小波.低温下多级组合曝气生物滤池深度处理城镇污水优化工艺条件研究[J].水处理技术,2014,40:71-75
    [14]艾合买提江﹒热依木,党亚萍,奥斯曼﹒吐尔地,等.曝气生物滤池在污水处理工业中的应用[J].广东化工,2014,41:164-165,144
    [15]张文耀.曝气生物滤池组合工艺深度处理中水回用于火电厂[J].工业水处理,2014,34:87-89
    [16]蔡言安,李冬,曾辉平,等.生物滤池净化含铁锰高氨氮地下水试验研究[J].中国环境科学,2014,34:1993-1997
    [17] Tschui M, Boiler M, Gujer W, et al.Tertiary nitrificationin aerated pilot biofilters[J].WaterScience and Technology, l994,29(10-l1):53-60
    [18] Hirai M, Kamamoto M, Yani M, et a1.Comparison of the biological NH3removalcharacteristic among four inorganic packingmaterials[J]. Journal ofBioscience andBioengineering,2001,91(4):428-430
    [19]聂军,王珊珊.第三代生物膜反应池BIOFOR[J].给水排水,1998,24(10):26-27
    [20]孙漓青,甘一萍,魏薇,等. Biostyr曝气生物滤池中试研究[J].给水排水,2005,31(8):14-19
    [21]邹伟国,孙群,王国华,等.新型BIOSMEDI滤池的开发研究[J].中国给水排水,200l,l7(1): l-4
    [22] A.A.M. Daifullah, B.S. Girgis, H.M.H Gad. Utilization of agro-residues (rice husk) in smallwaste water treatment plans[J]. Materials Letters,2003,57:1723-1731
    [23]李柏林,李晔.稻壳填料曝气生物滤池处理生活污水的实验研究[D].武汉:武汉理工大学环境工程系,2007
    [24] Takaya Sato, Tsutomu Uehara, Hiroshi Yoshida. New applicationof polyurethane as poroushydrogel carrier for microorganisms of waste water treatment[J]. Cellular Polymers,2004,23(3):145-159
    [25]黄宇,童张法,唐艳葵,等.新型曝气生物滤池填料的研制及性能分析[J].化工环保,2006,26(3):242-245
    [26]李善评,张启磊,付敬,等.高炉瓦斯灰曝气生物滤池填料的制备及其性能研究[J].山东大学学报(理学版),2007,42(11):1-5
    [27]代晋国,宋乾武,张晓丹. EPP填料曝气生物滤池处理城市污水厂二级出水的中试研究[J].安全与环境工程,2008,15(1):42-45
    [28]曾正中,王厚成,李勃,等.曝气生物滤池两种填料挂膜的对比试验[J].环境工程,2008,26(1):21-23
    [29]陈建发,陈艺敏,黄慧珍,等.新型填料曝气生物滤池处理抗生素类废水[J].环境工程学报,2014,8:3315-3323
    [30]王际英,乔洪金,李宝山,等.活化炉渣作为生物滤料在循环式海水工厂化养殖中的应用[J].渔业现代化,2014,41:1-4,10
    [31]孙婧,胡俊,周桃玉,等.用化工污泥制曝气生物滤池填料[J].化工环保,2014,34:267-271
    [32]谢文玉,陈建军,钟理,等.循环生物曝气滤池和过滤组合工艺处理炼油轻度污染废水[J].化工学报,2008,59(5):1251-1256
    [33]谢文玉,钟理,陈建军,等.用循环曝气生物滤池工艺处理炼油碱渣废水[J].化工学报,2008,59(1):214-220
    [34]朱斌. CBAF(循环曝气生物滤池)工艺对炼油厂碱渣预处理及脱臭试验应用研究[D].广州:华南理工大学化学与化工学院,2008
    [35]赵洲洋,蒋国强,丁富新.环流反应器中厌氧好氧耦合生物降解含酚废水[J].清华大学学报(自然科学版),2008,48(6):1015-1018
    [36] XING Xinhui, JUN Byonghee, YANAGIDA Mari, et al. Effect of C/N values on microbialsimultaneous removal ofcarbonaceous and nitrogenous substances in wastewater bysinglecontinuous-flow fluidized-bed bioreactor containingporous carrier particles [J].BIOCHEMICAL ENGINEERING JOURNAL,2000,5(1):29-37
    [37]陈筛林,丁富新,杨海光,等.环流反应器中对苯二甲酸废水的生物降解[J].清华大学学报(自然科学版),2003,43(6):746-749
    [38]明平剑,张文平,朱明刚.一种新的代数多重网格法及其在CFD中的应用[J].武汉理工大学学报(交通科学与工程版),2009,33(1):87-90
    [39]王飞,杨树兴.并行计算流体力学数值仿真平台设计与实现[J].中北大学学报(自然科学版),2008,29(2):142-146.
    [40]许媛媛,杨汶雨,袁景淇.环隙气升式生物反应器三维CFD建模与仿真[J].控制工程,2009,16(S1):72-73,77
    [41]李永欣,李光永,邱象玉,等.迷宫滴头水力特性的计算流体动力学模拟[J].农业工程学报,2005,21(3):12-16
    [42]许妍霞.水力旋流分离过程数值模拟与分析[D].上海:华东理工大学,2012
    [43]全荣.周进周出式二次沉淀池数值模拟[D].湘潭:湘潭大学,2011
    [44]周石庆.臭氧接触池数值模拟与优化研究[D].长沙:湖南大学,2011
    [45]任婷玉.废水生物处理中的活性污泥模型及其数值模拟[D].长春:吉林大学,2007
    [46]关卫省.石油烃处理技术及数值模拟[D].西安:西安建筑科技大学,2001
    [47]奚成刚,陈家军.水-气二相流及污染物运移数值模拟研究[J].水文地质工程地质,1999,(3):34-37,40
    [48]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报,2001,52(1):1-12
    [49]吴燕涛,赵谋明,李军.计算流体动力学(CFD)在食品工业中的应用[J].食品与发酵工业,2006,32(9):107-111
    [50]钟理,Kuo C H. O3/H2O2氧化处理废水中污染物及其动力学模型[J].华南理工大学学报(自然科学版),1999,27(1):33-37
    [51]钟理,C. H. Kuo.含氯酚废水O3/H2O2高级氧化过程及其动力学[J].中国造纸,2000,(3):35-39
    [52]钟理,詹怀宇.化学沉淀法除去废水中的氨氮及其反应的探讨[J].重庆环境科学,2000,22(6):54-56,71
    [53]钟理,谭春伟,胡孙林,等.氨氮废水降解技术进展[J].化工科技,2002,10(2):59-62
    [54]胡孙林,钟理.氨氮废水处理技术[J].现代化工,2001,21(6):47-50,52
    [55]钟理,KuoC.H.臭氧湿式氧化氨氮的降解过程研究[J].中国给水排水,2000,16(1):14-17
    [56]钟理,詹怀宇.有机废水湿式O3氧化降解过程的研究[J].环境科学与技术,2001,(1):8-11
    [57]钟理,陈建军,张浩.臭氧氧化降解苯酚的动力学研究[J].中国给水排水,2002,18(9):8-11
    [58]钟理,张浩.催化氧化法降解废水过程[J].现代化工,1999,19(5):16-19
    [59]钟理,吕扬效,李小莹.废水中有机污染物高级氧化过程的降解[J].化工进展,1998,(4):51-53,64
    [60]钟理,陈建军,郭文静,等.高级氧化-生化耦合技术处理低浓度有机污水用作回用水实验研究[J].现代化工,2005,25(1):39-42
    [61]钟理,陈建军.高级氧化处理有机污水技术进展[J].工业水处理,2002,22(1):1-5
    [62]郭文静,朱运伟,钟理.高级氧化法氧化含邻硝基甲苯废水过程的动力学[J].上海环境科学,2002,21(2):79-82
    [63]钟理,严益群,吕扬效.高级氧化过程的研究与进展[J].现代化工,1997,(12):16-19
    [64]钟理,李小莹,吕扬效.高级氧化过程降解废水及其反应机理[J].广东化工,2001,(1):24-26,29
    [65]朱斌,钟理.高级氧化技术降解水中环境激素的研究进展[J].工业水处理,2008,28(1):5-8
    [66]钟理,詹怀宇.高级氧化技术在废水处理中的应用研究进展[J].上海环境科学,2000,19(12):568-571
    [67]钟理,胡孙林,詹怀宇.氯乙烯废水AOPs过程及其反应动力学[J].化工科技,2000,8(5):1-4
    [68] Huang Jian’guang, Zhong Li, Xie Wenyu. Treatment of Refinery Wastewater with IsolatedBiological Aerated Filters: A pilot-scale study[J]. Advanced Materials Research,2012,610-613:2332-2341
    [69]黄健光,钟理.废Fe屑/活性炭微电解法预处理炼油废水实验研究[J].化工科技,2010,18(5):10-14
    [70]谢文玉,钟理,陈建军,等.隔离曝气生物滤池预处理炼油废碱水[J].高校化学工程学报,2008,22(3):484-490
    [71]陈建军,钟理.炼油碱渣生物氧化预处理工业化试验研究[J].现代化工,2006,26(4):49-52,54
    [72]陈建军,钟理.炼油厂碱水生化预处理研究[J].化工科技,2006,14(1):30-34
    [73]陈建军,钟理.隔离曝气生物反应器处理含硫含酚碱渣[J].化工环保,2006,26(5):404-408
    [74]谢文玉,钟理.生物滤池耦合臭氧处理乙烯污水的工业化试验[J].华南理工大学学报(自然科学版),2007,35(6):127-132
    [75]黄君涛,熊帆,谢伟立,等.吸附法处理重金属废水研究进展[J].水处理技术,2006,32,(2):9-12
    [76]任伟,谢文玉,钟理.炼油碱性污水生物氧化预处理影响因素研究[J].工业水处理,2009,(7):24-27
    [77]钟理,彭少洪,陈建军.曝气生物氧化法预处理炼油厂高浓度污水[J].化工进展,2005,24(9):1050-1053,1058
    [78]钟理,黄健光,Chuang Karl. YSZ传导膜H2S固体氧化物燃料电池[J].燃料化学学报,2010,38(5):610-614
    [79]钟理,黄健光. H2S/air固体氧化物燃料电池的性能研究[J].顺德职业技术学院学报,2009,7(4):19-22
    [80]钟理,Chuang Karl. H2S固体氧化物燃料电池复合质子传导膜的制备及性能[J].高校化学工程学报,2007,21(4):654-659
    [81]钟理,张腾云, WEI Guoling,等. H2S燃料电池用质子传导膜及电池性能[J].高校化学工程学报,2004,18(2):208-211
    [82]钟理,陈建军.硫化物固体氧化物燃料电池研究进展[J].现代化工,2003,23(1):9-11
    [83]钟理,陈建军.固体氧化物质子传导膜H2S燃料电池[J].化工学报.2004,54(10):1732-1735
    [84]张腾云,范洪波,钟理.单相撞击流强化水处理传质过程的数值模拟[J].广东化工,2008,35(10):39-41,45
    [85]黄健光,钟理.高级氧化耦合撞击流技术强化废水降解过程的数值模拟.化工科技,2011,19(1):5-9
    [86]陈建军,钟理.炼油碱渣生物氧化预处理工业化实验研究[J].现代化工,2006,26(4):49-52
    [87] HJ/T60-2000,水质硫化物的测定碘量法[S].北京:国家环境保护总局,2001
    [88] HJ502-2009,水质挥发酚的测定溴化容量法[S].北京:国家环境保护部,2009
    [89] HJ502-2009,水质挥发酚的测定4-氨基安替比林分光光度法[S].北京:国家环境保护部,2009
    [90]展惠英.紫外分光光度法测定废水中油的含量[J].甘肃联合大学学报,2007,21(1):65-69
    [91]朱丹,孙世艳,廖绍华,田春梅.紫外分光光度法快速测定废水中油含量的研究[J].大理学院学报,2012,11(10):28-30
    [92]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [93]王爱民,曲久辉,葛建团.电化学法去除有机污染物机理研究进展[J].环境污染治理技术与设备,2002,3(10):10-13
    [94]王永广,杨剑峰.微电解技术在工业废水中的研究与运用[J].环境污染治理技术与设备,2001,2(4):18-24
    [95]张子间.微电解法在废水处理中的研究及应用[J].工业安全与环保,2004,4(30):8-10
    [96]赵德明,史惠祥等. Fe-C微电解法+H2O2组合工艺处理对氯硝基苯废水[J].城市环境与城市生态,2002,1(15):32-34
    [97] Yu H, Zeng G M, Huang H L, et al. Microbial community succession and lignocellulosedegradation during agricultural waste composting[J]. Biodegradation,2007,18(2):112-120
    [98] Makoto K, Susumu A, Comparison of community structures of microbiota at main habitats inrice field ecosystems based on phospholipids fatty acid analysis [J]. Biol. Fertil. Soils,2006,43(3):20-29
    [99]谢伟立.化学氧化法耦合生物氧化法处理炼油废水的应用研究[D].广州:华南理工大学,2007
    [100]任伟. CBAF工艺预处理高浓度炼油碱性污水实验研究[D].广州:华南理工大学,2009
    [101]王建芳,赵庆良,林佶侃,等.生物强化技术及其在废水生化处理中的应用[J].环境工程学报,2007,1(9):40-45
    [102] Buisman C. J. N., Geraats B. G., Ijspeert P., et al. Optimization of sulphur production in abiotechnological sulphide-removing reactor[J]. Biotech Bioeng,1990,35:50-56
    [103]左剑恶,顾夏声,袁琳,等.利用无色硫细菌氧化废水中硫化物的研究[J].环境科学,1995,16(6):7-10
    [104] Kuenen J. G.. Colourless sulphur bacteria and their role in the sulphur cycle[J]. Plant Soil,1975,43:49-76
    [105]陈雪宇.建筑排水系统CFD模拟研究[D].衡阳:南华大学,2010
    [106]王宏涛.曝气生物滤池多尺度分析与CFD模拟研究[D].长沙:湖南大学,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700