用户名: 密码: 验证码:
油页岩半焦流化床燃烧特性及其氮氧化物转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油页岩是一种富含油母质的沉积物,是非常重要的替代能源之一。随着当今世界能源需求的不断增长,寻找有效和经济的利用油页岩的方法具有十分重要的意义。遗憾的是,油页岩工业中仍然存在着一些严重的问题,其中之一便是油页岩半焦的处理。
     为了有效利用油页岩半焦并且解决油页岩工业中存在的一些其他问题,一些学者提出了“油页岩综合利用技术”,其中的关键技术就是将油页岩半焦作为燃料投入循环流化床焚烧来发电和供热,这样既最大程度地利用了半焦中残余的化学能又避免了对环境造成严重的污染。
     但是,油页岩半焦流化床燃烧的工业应用中依然存在着一些技术难题需要去克服,比较突出的是由于油页岩半焦高灰分、低热值的特点使其在流化床中着火和燃烧性能较低,燃尽很困难。而另外一个问题则是由于流化床技术低温燃烧特性及油页岩半焦本身燃料特性两方面原因造成燃烧过程中排放的温室气体氧化亚氮(N2O)的浓度较高。
     本文研究的就是这两个技术难题,尝试着反映其实质,寻找提高油页岩半焦燃烧效率和降低其N2O排放的方法。首先研究了油页岩半焦的一些基础燃料特性,然后在热态流化床实验台上对半焦进行燃烧实验掌握了不同工况下的燃烧特性和炉膛中氮氧化物的生成、转化和排放特性,随后根据实验结果建立半焦流化床燃烧的数学模型并对燃烧过程及氮氧化物的转化过程进行数值模拟,通过实验和模拟结果的分析对比提出若干降低半焦流化床燃烧过程中氮氧化物特别是N2O排放的技术措施,最后在实际生产的循环流化床锅炉上进行油页岩半焦的工业实验来验证通过流化床技术处理油页岩半焦的可行性。
     对于油页岩半焦基础特性的研究中,主要针对的是半焦热化学转化过程中矿物质对有机物燃烧的催化作用和燃烧过程中由矿物质生成的灰分对于氧气的传质阻力特性。研究结果表明半焦中无机矿物质能够催化有机物的氧化反应,从而加快有机物的燃烧速率;氧气沿着平行于灰分层层理面的传质能力比垂直于层理面时强一个数量级,因此在研究油页岩半焦流化床燃烧时完全可以忽略后者而认为氧气在灰层中的传质完全是通过平行于层理面的方向进行的。而研究过程中计算得到的半焦燃烧动力学参数和灰分层有效扩散系数则可以用于后文的数值模拟工作。
     油页岩半焦流化床燃烧特性研究中,通过小型、大型热态流化床实验台考察了颗粒粒径、钙硫比、循环倍率和矿物质等四个燃料因素和床温、过量空气系数和二次风工况这三个运行参数对于半焦燃烧特性和污染物排放的影响,分析了两个实验台上燃烧的异同点,初步了解了燃烧过程中氮氧化物的生成和转化规律。
     油页岩半焦流化床燃烧数值模拟部分,首先进行了半焦热解实验,通过对热解残渣、冷凝的液相和不凝的气相进行分析测试,建立了半焦热解产物模型。然后,根据小型、大型流化床的实验结果建立了油页岩半焦流化床燃烧的反应器模型、多相流模型、动力学模型、破碎模型等并结合热解产物模型对半焦流化床燃烧进行了数值模拟,通过与实验结果进行对比分析总结出了对氮氧化物转化起重要作用的反应,掌握其基本转化机理,并提出了一些可行的减排措施。
     油页岩半焦流化床燃烧工业示范实验部分,在实际运行的工业循环流化床锅炉上进行了两个工况下的工业示范实验,实验结果证明了以油页岩半焦为燃料的循环流化床锅炉可以稳定运行,各基本参数保持稳定,燃烧效率能达到95%以上,污染物排放达到国标要求。
Oil shales, which are kerogen-rich sediments, are one of the most important energy alternatives.1With the growing of the energy demand in today’s society, it has important significance to seek theeffective and economical ways to utilize oil shale. Unfortunately, there are still some vital problems inthe oil shale industry and one of them is the disposal of shale char.
     In order to utilize shale char effectively and solve some other problems in oil shale industry, someresearcher put forward the “New technology for the comprehensive utilization of Chinese oil shaleresources”. The key section of this system is the burning of shale char in circulating fluidized bedfurnaces to supply heat and generate electricity, which achieves high utilization-factors for both oilshale’s chemical and energy potentials, and avoiding serious environmental impacts.
     However, there are still some technical problems need to be overcome during the practicalindustrial application of burning shale char in circulating fluidized bed furnace. One of them is thelower ignition and combustion property of shale char due to its high ash content and low calorific value,which makes it difficult to be burned out in fluidized bed combustor. Another problem is the relativelyhigh N2O emission during the combustion due to the low-temperature combustion characteristics offluidized bed technical and the fuel characteristics of shale char.
     The research objects of this paper are just these two problems, it tries to reflect their essences andfind solutions to improve the combustion efficiency of shale char and reduce N2O emission. In thispaper, some basic properties of shale char were studied firstly. And then the combustion experiments ofshale char in fluidized bed apparatuses was carried out and the transformation of nitrogen oxide andfinal emission characteristics were obtained. After that the mathematical model of shale char burning influidized bed furnace was established and the numeraical simulation of combustion process andtransformation of nitrogen oxide were carried out. By comparing the experimental and simulationresults, the transformation discipline of nitrogen oxide in fluidized bed furnace was summarized. At last,thedemonstration experiment of shale char burning in industrial CFB boiler was carried out to verify thefeasibility of disposing shale char through fluidized bed technology.
     During the research of shale char basic properties, two main study aspects were the the catalysis effect of mineral matrix in shale char during its thermochemical conversion and the mass transfercharacteristics for oxygen in the ash layer of shale char. The research results indicate that minerals inshale char can accelerate the combustion rate of organic matter and the ash layer effective diffusivityalong the direction parallel to the bedding planes is almost an order of magnitude greater than that alongthe direction perpendicular to the bedding planes. And the calculated kinetic parameters of shale charcombustion and ash layer effective diffusivity can be used in the later numerical simulation work.
     During the research of combustion properties of shale char in fluidized bed furnace, firstly, theinfluences of particle size, Ca/S, circulation ratio and minerals on the pollutant emissions during thecombustion of shale char were investigated in a small-scale fluidized bed furnace, and theconcentrations of some gases at different height above distributor at standard condition were measured,thus the formation and abatement disciplines of nitrogen oxide during the FB combustion wereunderstood preliminarily. And then systematic experimental research of burning shale char in alarge-scale semi-industrial fluidized bed furnace was carried out, thus the formation and transformationproperties of nitrogen oxide at dfferent bed temperatures, secondary ratios and Ca/S conditions wereobtained preliminarily.
     During the research of numerical simulation of burning shale char in fluidized bed furnace, thepyrolysis experiment of shale char was carried out by using the small-scale fluidized bed furnace firstly,and the pyrolysis products model was established through the analysis and test to the pyrolysis residual,condensed liquid phase and non-condensable gas phase. Then the reactor model, multiphase flow model,kinetic model, crushing model etc were established according to the experimental results of burningshale char in small and large scale fluidized bed furnace. The numerical simulation of burning shalechar in fluidized bed furnace was carried out by integrating the above models. By comparing andanalyzing the simulation and experiment results, the key reactions for the conversion of nitrogen oxidewere summarized and the basic transformation mechanism of them was obtained, some effectiveemission reduction measures have been proposed.
     During the research of industrial demonstration experiment of burning shale char in CFB boiler,the industrial demonstration experiments at two conditions selected according to the preliminaryresearch results were carried out in an industrial CFB boiler. The experimental results certified that theCFB boiler burning shale char could operate stably, the basic parameters remained stable, thecombustion efficiency could reach more than95%, and the pollutan emissions meet the national standard.
引文
1刘招君,柳蓉.中国油页岩特征及开发利用前景分析.地学前缘.2005,12(3):315-323.
    2Hou X. L. Prospect of oil shale and shale oil industry. Proceedings International Conference on OilShale and Shale Oil. Beijing, Chemical Industry Press,1988,7-15.
    3王庆一.中国能源.北京:冶金工业出版社,1988,171-172.
    4刘招君,董清水,叶松青,等.中国油页岩资源现状.吉林大学学报(地球科学版).2006,36(6):869-876.
    5上海市能源研究会主编.能源技术手册.上海:科学技术出版社,1989.
    6Loosaar J., Arro H., Parve T., Pihu T., Prikk A., Tiikma T., et al. New215MWEL CFB powerunits for Estonian oil shale. Proceedings of the18th international conference on fluidized bedcombustion, Toronto, Canada. New York, American Society of Mechanical Engineers,2005,153-160.
    7Jiang X. M., Liu D. C., Chen H. P., Zheng C. G., Qin Y. K. Experimental investigation on oil shalecirculating fluidized bed boiler. Oil Shale.2001,18(1):73-83.
    8Silva J. C., Gaiao U., Casavechia L. G., Cunha N. M. C., Saddy M. Oil shale total energyrecovery—Petrosix and fluidized-bed combustion. Proceedings of the international conference onfluidized bed combustion, Houston, USA, vol.2. Washington, US DOE, Office of Scientific&Technical Information,1985,1050-1057.
    9Rubens Eduardo M. N. Petrosix process reaches commercial stage. Proceedings—AmericanPetroleum Institute, Refining Department, Kansas City, USA, vol.64. Washington, API,1985,223-229.
    10Jaber J. O., Probert S. D. Exploitation of Jordanian oil-shales. Appl Energy.1997,58(2-3):161-175.
    11李术元,钱家麟.煤和油页岩燃烧过程的对比.燃料化学学报.1992,20(4):400-403.
    12Trikkel A., Kuusik R., Maljukova N. Distribution of organic and inorganic ingredients in Estonianoil shale semicoke. Oil Shale.2004,21(3):227-236.
    13Paist A. New epoch in Estonian oil shale combustion technology. Oil Shale.2004,21(3):181-182.
    14Trikkel A., Kuusik R., Martins A., Pihu T., Stencel J. M. Utilization of Estonian oil shale semicoke.Fuel Processing Technology.2008,89(8):756-763.
    15Rubel A. M., Robl T. L., Carter S. D. Fluidized bed gasification characteristics of Devonian oilshale char. Fuel.1990,69(8):992-998.
    16Arro H., Prikk A., Pihu T. Utilization of semi-coke of Estonian shale oil industry. Oil shale.2002,19(2):117-125.
    17Kaljuvee T., Kuusik R., Trikkel A. Behavior of sulphur compounds at combustion of oil shalesemicoke. Oil shale.2003,20(2):113-125.
    18Jiang X. M., Han X. X., Cui Z. G. New technology for the comprehensive utilization of Chinese oilshale resources. Energy.2007,32(5):772-777.
    19岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行.北京:中国电力出版社,1998,10-12.
    20冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉.中国电力出版社,2003.
    21Kuusik R., Martins A., Pihu T., Pesur A., Kaljuvee T., Prikk A., Trikkel A., Arro H. Fluidized-bedcombustion of oil shale retorting solid waste. Oil shale.2004,21(3):237-248.
    22Kaljuvee T., Kuusik R., Trikkel A. SO2binding into the solid phase at thermooxidation of blendsbased on Estonian oil shale semi-coke. Journal of Thermal Analysis and Calorimetry.2003,72(1):393-404.
    23Martins A., Pesur A., Kallaste E., Siirde S. Co-combustion of oil shale semi-coke and oil shalemixtures in fluidized bed. ESF Grant No.2210Report, Tallinn.1997,4.
    24Arro H., Prikk A., Pihu T. Combustion of Estonian oil shale in fluidized bed boilers, heating valueof fuel, boiler efficiency and CO2emissions. Oil Shale.2005,22(4):399-405.
    25Liu H., Gibbs B. M. Reduction of N2O Emissions from a Coal-fired Circulating Fluidised BedCombustor by Afterburning. Fuel.1998,77(14):1579-1587.
    26Armesto L., Boerrigter H., Bahillo A., et al. N2O emissions from fluidised bed combustion: theeffect of fuel characteristics and operating conditions. Fuel.2003,82(15-17):1845-1850.
    27张秀君.温室气体氧化亚氮排放源的研究.沈阳教育学院学报.2003,5(1):108-111.
    28沈宏,曹志洪.温室气体及其排放的研究.生态农业研究.1998,6(3):21-24.
    29Aho M. J., Rantanen J. T., Linna V. L. Formation and destruction of N2O in pulverized fuelcombustion environ-ments between750and970℃. Fuel.1990,69(8):957-961.
    30柏静儒,王擎,孙伯仲,刘洪鹏.桦甸油页岩半焦基础理化特性.吉林大学学报.2010,40(4):905-911.
    31孙佰仲,王擎,李少华,王海刚,孙保民.桦甸油页岩及半焦孔结构的特性分析.动力工程.2008,28(1):163-167.
    32Han X. X., Jiang X. M., Yan J. W., Liu J. G. Effects of Retorting Factors on CombustionProperties of Shale Char.2. Pore Structure. Energy&Fuels.2010,25(1):97-102.
    33Annamalai K., Durbetaki. A theory on transition of ignition phase of coal particles. Combustionand Flame.1977,29(0):193-208.
    34Thomas G. R., Harris L. J., Evans D. G. The ignition of pulverized brown coal. Combustion andFlame.1968,12(4):391-393.
    35Han X. X., Jiang X. M., Cui Z. G., Yan J. W., Liu J. G. Effects of Retorting Factors onCombustion Properties of Shale Char.4. Combustion characteristics. Journal of Thermal Analysisand Calorimetry.2011,104(2):771-779.
    36Wang Q., Sun B. Z., Wu X. H., Bai J. R., Sun J. Influence of retorting temperature on combustioncharacteristics and kinetic parameters of oil shale semicoke. Oil shale.2006,23(4):328-339.
    37韩向新,姜秀民,崔志刚,张超群.油页岩半焦热解特性.化工学报.2006,57(1):126-130.
    38Soni Y., Thomson W. J. Oxidation kinetics of oil shale char. Industrial&Engineering Chemistry,Process Design and Development.1979,18(4):661-667.
    39Rostam-Abadi M., Mickelson R. W. Reaction rate kinetics for in situ combustion retorting ofMichigan Antrim oil shale, Preprints.1984,29(1):126.
    40McCarthy D. J. Oxy-reactivity of carbon in spent oil shales: comparative study using three shales.Fuel.1983,62(11):1283-1288.
    41Charlton B. G. Fluidized bed combustion kinetics of spent Nagoorin carbonaceous oil shale. Fuel.1987,66(3):388-391.
    42Han X. X., Jiang X. M., Cui Z. G. Study of the combustion mechanism of oil shale semicoke in athermogravimetric analyzer. Journal of Thermal Analysis and Calorimetry.2008,92(2):595-600.
    43Branch M. C. In-situ combustion retorting of oil shale. Progress in Energy and CombustionScience.1979,5(3):193-206.
    44Thomson W. J., Soni, Y. Oxidation of oil shale char. In Situ.1980,4(1):61-77.
    45王贤清,王剑秋,钱家麟,朱亚杰.油页岩半焦燃烧中灰分层的扩散动力学研究.石油学报(石油加工).1987,3(4):32-36.
    46Charlton B. G. Comparative fluidized bed combustion kinetics of some Australian spent oil shales.Fuel.1987,66(3):384-387.
    47刘伯谦,李岩峰,李勇,富震宇.中国油页岩及其流化床燃烧.中国能源.1995,6:6-8.
    48Park K. Y., Edgar T. F. Modeling of early cavity growth for underground coal gasification.Industrial and Engineering Chemistry Research.1987,26(2):237-246.
    49Atimtay A. T. Fluidization Ⅳ: International Conference on Fluidization. New York, Plenum Press,1984.
    50Levenspiel O. Chemical Reaction Engineering. New York, Wiley,1972.
    51Szekely J., Evans J. W., Sohn M. Y. Gas-Solid Reactions. New York, Academic Press,1976.
    52Sadhukhan A. K., Gupta P., Saha R. K. Modelling of combustion characteristics of high ash coalchar particles at high pressure: Shrinking reactive core model. Fuel.2010,89(1):162-169.
    53Kyotani T., Kubota K., Cao J. Q., Yamashita H., Tomita A. Combustion and CO2gasification ofcoals in a wide temperature range. Fuel Processing Technology.1993,36(1-3):209-217.
    54Tomita A. Catalysis of carbon-gas reaction. Catalysis surveys from Japan.2001,5(1):17-24.
    55Walker P. L., Gardner N. C., Given P. H., Gluskoter H. J., Johnson J. L. Catalysis of coalconversion processes and characterization of mineral matter and trace elements in coal. AmericanSociety of Civil Engineers, Engineering Issues, Journal of Professional Activities.1974(May).
    56Pohl J. H. Influence of mineral matter on the rate of coal char combustion. ACS Division of FuelChemistry, Preprints.1984,29(4):295-300.
    57Cavalieri R. P., Thomson W. J. Effects of oil shale mineral composition on char combustionreactions. Fuel.1990,69(3):334-339.
    58Mendez L. B., Borrego A. G., Martinez-Tarazona M. R., Menendez R. Influence of petrographicand mineral matter composition of coal particles on their combustion reactivity. Fuel.2003,82(15-17):1875-1882.
    59Walker Jr P. L. The scientific base of coal gasification. Industrial Heating.1977, Nov:15-20.
    60Hippo E. J., Walker Jr P. L. Reactivity of heat-treated coals in carbon dioxide at900℃. Fuel.1975,54(4):245-248.
    61Hippo E. J. Jenkins R. G., Walker Jr P. L. Enhancement of lignite char reactivity to steam bycation addition. Fuel.1979,58(5):338-344.
    62Yurum Y., Kramer R., Levy M. Interaction of kerogen and mineral matrix of an oil shale in anoxidative atmosphere. Thermochimica Acta.1985,94(2):285-293.
    63Uuesoo R. Combustion of oil shale residue, Proceedings of the Academy of Sciences Estonian SSR.Series of Technical and Physical-Mathematical Sciences.1956,1:69-81.(in Russian)
    64Arro H., Prikk A., Pihu T., Opik T. Utilization of semi-coke from Estonian oil industry. Oil Shale.2002,19(2):117-125.
    65王贤清,张庆轩,钱家麟,朱亚杰.颗粒油页岩燃烧及含硫杂志的转化.燃料化学学报.1992,20(2):60-67.
    66王国金,王剑秋,李术元,钱家麟,朱亚杰.茂名油页岩燃烧析硫的本征动力学和机理.石油大学学报.1995,15(2):33-39.
    67于海龙,姜秀民,赵翔,周俊虎,岑可法.油页岩与煤的混烧特性研究.2004,32(3):274-277.
    68Fuchs L. H., Nielsen E. L., Hubble B. R. Use of oil shale for control of sulfur dioxide emissionsfrom combustion of coal. Thermochimica Acta.1978,26(1-3):229-239.
    69Li S. Y., Wang G. J., Wang J. Q., Qian J. L. Characteristics of NOxemission in fluidized bedcombustion of oil shale. Oil Shale.1999,16(2):125-132.
    70Kaljuvee T., Trikkel A., Kuusik R. Reactivity of oil shale ashes towards sulphur dioxide.1.Activation of high-temperature ashes. Oil Shale.1997,14(3):393-407.
    71Winter F. Single fuel particle and NOx/N2O-emission characteristics under circulating fluidizedbed combustor conditions. Ph. D. Thesis. Vienna, Austria, University of Technology.1995.
    72Johnsson J. E. Modeling of NOxformation in a CFBC. Basu P., Horio M., Hasatani M.(Eds.),Circulating Fluidized Bed Technology Ⅲ. Oxford, Pergamon Press,1990,405-410.
    73Kilpinen P., Glarborg P., Hupa M. Reburning Chemistry at fluidized bed combustion conditions: akinetic modeling study. Industrial Engineering&Chemistry Research.1992,31(6):1477-1490.
    74Talukdar J., Basu P. A simplified model of nitric oxide emission from a circulating fluidized bedcombustor. Canadian Journal of Chemical Engineering.1995,73(5):635-643.
    75Zhao J. S., Brereton C., Grace J. R., Lim C. J., Legros R. Gas concentration profiles and NOxformation in circulating fluidized bed combustion. Fuel.1997,76(9):853-860.
    76Jiang X. M., Yu L. J., Yan C., Han X. X., Yu H. L. Experimental investigation of SO2and NOxemissions from Huadian oil shale during circulating fluidized-bed combustion. Oil shale.2004,21(3):249-257.
    77Kilpinen P., Hupa M. Homogeneous N2O chemistry at fluidized bed combustion conditions: akinetic modeling study. Combustion and Flame.1991,85(1-2):94-104.
    78Brereton C. Combustion performance. Avidan A. A., Grace J. R., Knowlton T. M.(Eds.),Circulating Fluidized beds. London, Blackie Academic&Professional,1997,369-416.
    79De Soete G. G. Heterogeneous N2O and NO formation from bound nitrogen atoms during coal charcombustion. The Combustion Institute,23rd (International) Symposium on Combustion, Orleans,1990,1253-1257.
    80Soete G. G. Heterogeneous N2O and NO formation from bound nitrogen atoms during coal charcombustion. The Combustion Institute,23th Symposium Combustion, France,1991,22.
    81Tourunen A., Saastamoinen J., Nevalainen H. Experimental trends of NO in circulating fluidizedbed combustion. Fuel.2009,88(7):1333-1341.
    82冯波,袁建伟,林志杰等.流化床燃烧工况下N2O多相分解的机理研究.工程热物理学报.1995,16(l):111-114.
    83袁建伟,冯波.燃煤过程中N2O生成与分解的化学动力学模拟.华中理工大学学报.1995,23(4):114-119.
    84Hiltunen M., Kilpinen P., Hupa M., Lee Y. Y. N2O emissions from CFB boilers. Experimentalresults and chemical interpretation. Proceedings of the International Conference on Fluidized Bed Combustion.1991,2:687-694.
    85Han X. X., Jiang X. M., Liu J. G., Wang H. Grey relational analysis of N2O emission from oilshale-fired circulating fluidized bed. Oil Shale.2006,23(2):99-109.
    86韩建伟,油页岩循环流化床燃烧N2O生成特性及控制技术.节能技术.2004,22(1):27-29.
    87丁乃今,姜秀民,吴少华.油页岩流化床燃烧N2O生成特性.热能动力工程.2003,18(6):589-591.
    88刘彦. O2/CO2煤粉燃烧脱硫及NO生成特性实验和理论研究.杭州:浙江大学博士学位论文,2004.
    89查旭东.流化床内高浓度气固多相流动和燃烧的数值试验研究.杭州:浙江大学博士学位论文,2002.
    90周昊.大型电站锅炉氮氧化物控制和燃烧优化中若干关键性问题的研究.杭州:浙江大学博士学位论文,2004.
    91郭菁.电站锅炉煤粉燃烧过程及其NOx生成的数值模拟.北京:华北电力大学硕士学位论文,2003.
    92程易.气固两相流动数值模拟及其非线性动力学分析.北京:清华大学士学位论文,2000.
    93毛玉如.循环流化床富氧燃烧技术的试验和理论研究.杭州:浙江大学博士学位论文,2003.
    94雍玉梅.循环流化床锅炉大型化的数值模拟.北京:中国科学院研究生院博士学位论文,2004.
    95刘安源.流化床内流动、传热及燃烧特性的离散颗粒模拟.北京:中国科学院研究生院博士学位论文,2002.
    96王丽.循环流化床外置换热器实验研究及循环流化床垃圾焚烧炉设计和数值模拟.北京:中国科学院研究生院硕士学位论文,2001.
    97徐祥.循环流化床流动特性的数值模拟.南京:东南大学硕士学位论文,2004.
    98倪建民.75t/h电站循环流化床锅炉的数值模拟研究.杭州:浙江大学硕士学位论文,2003.
    99Sofiane B. Analysis of solid flow patterns and mixing in gas/solid flow systems. Dissertation,Chicago, Illinois Institute of Technology,1999.
    100Murat K. Gas mixing and flow dynamics in circulating fluidized beds with secondary air injection.Dissertation, Canada, Dalhousie University,2001.
    101Cruz T., Elizabet A. Experimental and numerical modelling of high density circulating fluidizedbeds. Dissertation, Canada, The University of New Brunswick,2003.
    102Mohammad-Reza M. CFD simulations of particulate two-phase and three-phase flows.Dissertation, Chicago, Illinois Institute of Technology,2002.
    1柏静儒,王擎,孙伯仲,刘洪鹏.桦甸油页岩半焦基础理化特性.吉林大学学报.2010,40(4):905-911.
    2孙佰仲,王擎,李少华,王海刚,孙保民.桦甸油页岩及半焦孔结构的特性分析.动力工程.2008,28(1):163-167.
    3Annamalai K., Durbetaki. A theory on transition of ignition phase of coal particles. Combustionand Flame.1977,29(0):193-208.
    4Thomas G. R., Harris L. J., Evans D. G. The ignition of pulverized brown coal. Combustion andFlame.1968,12(4):391-393.
    5Soni Y., Thomson W. J. Oxidation kinetics of oil shale char. Industrial&Engineering Chemistry,Process Design and Development.1979,18(4):661-667.
    6McCarthy D. J. Oxy-reactivity of carbon in spent oil shales: comparative study using three shales.Fuel.1983,62(11):1283-1288.
    7Yan J. W., Jiang X. M., Han X. X. Study on the Characteristics of the Oil Shale and Shale CharMixture Pyrolysis. Energy&Fuels.2009,23(12):5792-5797.
    8Kyotani T., Kubota K., Cao J. Q., Yamashita H., Tomita A. Combustion and CO2gasification ofcoals in a wide temperature range. Fuel Processing Technology.1993,36(1-3):209-217.
    9Tomita A. Catalysis of Carbon–Gas Reactions. Catalysis surveys from Japan.2001,5(1):17-24.
    10Wang S. C., Wen C. Y. Experimental evaluation of nonisotheral solid-gas reaction model. AIChEJournal.1972,18(6):1231-1238.
    11Park K. Y., Edgar T. F. Modeling of Early Cavity Growth for Underground Coal Gasification.Industrial&Engineering Chemistry Research.1987,26(2):237-246.
    12Atimtay A. T. Fluidization Ⅳ: International Conference on Fluidization. New York, Plenum Press,1984.
    13Levenspiel O. Chemical Reaction Engineering. New York, Wiley,1972.
    14Szekely J., Evans J. W., Sohn M. Y. Gas-Solid Reactions. New York, Academic Press,1976.
    15Cai Y. W., Zygourakis K. A multiscale transient model for combustion of highly porous chars.Industrial&Engineering Chemistry Research.2003,42(12):2746-2755.
    16黄建宁,李森林.运用冶金焦化生产技术开发油页岩炼制新工艺.中国油母页岩.2009,1:9-13.
    17Siskin M., Brons G., Payack J. F. Disruption of kerogen-mineral interactions in Rundle Ramsaycrossing oil shale. Energy&Fuels.1989,3(1):108-109.
    18Yurum Y., Dror Y., Levy M. Effect of acid dissolution on the mineral matrix and organic matter ofZefa EFE oil shale. Fuel Processing Technology.1985,11(1):71-86.
    19Saxby J. D. Isolation of kerogen in sediments by chemical methods. Chemical Geology.1970,6:173-184.
    20Jemkins R., Snyder R. L. Introduction to X-ray Powder Diffractometry. New York, John Wileyand Sons,1996.
    21Al-Harahshen A., Al-Harahshen M., Al-Otoom A., Allawzi M. Effect of demineralization ofEl-lajjun Jordanian oil shale on oil yield. Fuel Processing Technology.2009,90(6):818-824.
    22Altun N. E., Hwang J. Y., Hicyilmaz C. Enhancement of flotation performance of oil shalecleaning by ultrasonic treatment. International Journal of Mineral Processing.2009,91(1-2):1-13.
    23Siddiqui M. N., Ali M.F., Shirokoff J. Use of X-ray diffraction in assessing the aging pattern ofasphalt fractions. Fuel.2002,81(1):51-58.
    24Smith A. L. Applied Infrared Spectroscopy: Fundamentals, Techniques and AnalyticalProblem-Solving, Vol.54. New York, John Wiley and Sons,1979.
    25Xu T., Huang X. M. Study on combustion mechanism of asphalt binder by using TG–FTIRtechnique. Fuel.2010,89(9):2185-2190.
    26Braun U., Schartel B., Fichera M. A., J ger C. Flame retardancy mechanisms of aluminiumphosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforcedpolyamide6,6. Polym Degrad Stabil2007,92(8):1528-1545.
    27Stuart B. Infrared Spectroscopy: Fundamentals and Applications. New York, John Wiley and Sons,2004.
    28Peralta M. A., Milt V. G., Cornaglia L. M., Querini C. A. Stability of Ba,K/CeO2catalyst duringdiesel soot combustion: Effect of temperature, water, and sulfur dioxide. Journal of Catalysis.2006,242(1):118-130.
    29Ballice L. Effect of demineralization on yield and composition of the volatile products evolvedfrom temperature-programmed pyrolysis of Beypazari (Turkey) Oil Shale. Fuel ProcessingTechnology.2005,86(6):673-690.
    30Yan J. W., Jiang X. M., Han X. X. Study on the characteristics of the oil shale and shale charmixture pyrolysis. Energy&Fuels.2009,23(12):5792-5797.
    31Yan J. W., Jiang X. M, Han X. X., Liu J. G. A TG–FTIR investigation to the catalytic effect ofmineral matrix in oil shale on the pyrolysis and combustion of kerogen. Fuel.2013,104(0):307-317.
    32Chen H. K., Li B. Q., Zhang B. J. Decomposition of pyrite and the interaction of pyrite with coalorganic matrix in pyrolysis and hydropyrolysis. Fuel.2000,79(13):1627-1631.
    33Cleyle P. J., Caley W. F., Stewart I., Whiteway S. G. Decomposition of pyrite and trapping ofsulphur in a coal matrix during pyrolysis of coal. Fuel.1984,63(11):1579-1582.
    34Joseph J. T., Forrai T. R. Effect of exchangeable cations on liquefaction of low rank coals. Fuel.1992,71(1):75-80.
    35Siskin M., Aczel T. Pyrolysis studies on the structure of ethers and phenols in coal. Fuel.1983,62(11):1321-1326.
    36Hippo E., Walker Jr P. L. Reactivity of heat-treated coals in carbon dioxide at900℃. Fuel.1975,54(4):245-248.
    37Coats A. W., Redfern J. P. Kinetic Parameters from Thermogravimetric Data. Nature.1964,68:201.
    38Atimtay A. T. Fluidization Ⅳ: International Conference on Fluidization. New York, Plenum Press,1984.
    39Agarwal P. K., La Nauze R. D. Transfer processes local to the coal particle: A review of dryingdevolatilization and mass transfer in fluidized bed combustion. Chemical Engineering Researchand Design.1989,67(5):457-480.
    40Hayhurst A. N. The mass transfer coefficient for oxygen reacting with a carbon particle in afluidized or packed bed. Combustion and Flame.2000,121(4):679-688.
    41Scala F. A new technique for the measurement of the product CO/CO2ratio at the surface of charparticles burning in a fluidized bed. Proceedings of the Combustion Institute.2009,32(Ⅱ):2021-2027.
    42Chen C., Kojima T. Single char particle combustion at moderate temperature: Effects of ash. Fuelprocessing technology.1996,47(3):215-232.
    43Wang S. Y., Yang X., Lu H. L., Yu L., Wang S., Ding Y. L. CFD studies on mass transfer ofgas-to-particle cluster in a circulating fluidized bed. Computers and Chemical Engineering,2009,33(2):393-401.
    44Coulson J. M., Richardson J. F. Coulson&Richardson’s Chemical Engineering. Vol.1, Fluid Flow,Heat Transfer and Mass Transfer. Oxford, Boston Elsevier,1999.
    45Lydersen A. L. Mass Transfer in Engineering Practice. New York, John Wiley&Sons,1983.
    46Levenspiel O. Chemical Reaction Engineering. New York, Wiley,1972.
    47Mota O. D. S., Campos J. B. L. M. Combustion of coke with high ash content in fluidised beds.Chemical Engineering Science.1995,50(3):433-439.
    48Reid R. C., Prausnitz J. M., Poling B. E. The Properties of Gases and Liquids. New York,McGraw-Hill,1987.
    49Bear J. Dynamics of Fluids in Porous Media. New York, Dover Pubns,1988.
    50Rowe P. N., Claxton K. T., Lewis J. B. Heat and mass transfer from a single sphere in an extensiveflowing fluid. Transactions of the Institution of Chemical Engineers.1965,43:14-31.
    51Coast A. W., Redfern J. F. Kinetics parameters from thermogravimetric data. Nature.1964,68:201.
    52Wang Q., Wang H. Q., Sun B. Z., Bai J. R., Guan X. H. Interactions between oil shale and itssemi-coke during co-combustion. Fuel.2009,88(8):1520-1529.
    53K k M. V., Pamir M. R. Comparative pyrolysis and combustion kinetics of oil shales. Journal ofAnalytical and Applied Pyrolysis.2000,55(2):185-194.
    54Han X. X., Jiang X. M., Cui Z. G. Change of pore structure of oil shale particles duringcombustion. Part1. Evolution mechanism. Energy and Fuels.2006,20(6):2408-2412.
    55Thomson W. J., Soni Y. OXIDATION OF OIL SHALE CHAR. In Situ.1980,4(1):61-77.
    1黄建宁,李森林.运用冶金焦化生产技术开发油页岩炼制新工艺.中国油母页岩.2009,1:9-13.
    2崔志刚.油页岩及其半焦流化床燃烧N2O生成机理研究.上海:上海交通大学博士学位论文,2010.
    3Sun B. Z., Wang, Q., Li S. H., Liu H. P. Ignition Mechanism of Oil Shale and Semi-coke inDifferent Combustion Reactors. Proceedings of the2010Asia-Pacific Power and EnergyEngineering Conference. Wu han: IEEE xplore.2010:4-8.
    4Boavida D. H., Lobo L. S., Gulyurtlu I. K. N2O formation during the first phase of coalcombustion in a fluidized bed. Proceedings of13thInternational Conference on FBC. Orlando,USA: ASME.1995,881-886.
    5Johnsson J. E., Jensen A., Vaaben J. E., Dam-Johansen K. Decomposition and reduction of N2Oover limestone under FBC conditions. In: Preto FDS, editor. Proceedings of the14th InternationalConference on Fluidized Bed Combustion, Vancover, Canada: ASME,1997:953-966.
    6Liu H., Bibbs B.M. The Influence of Calcined Limestone on NOxand N2O Emissions from CharCombustion In Fluidized Bed Combustors. Fuel.2001,80(9):1211-1215.
    7Gulyurtlu I., Esparteiro H., Da Costa M. R. The study for controlling N2O emission levels duringfluidized bed combustion of coals. Engineering Foundation Conference on Fluidized BedCombustion of Coals,1992.
    8Gavin D. G., Dorrington M. A. Factors in the conversion of fuel nitrogen to nitric and nitrousoxides during fluidized bed combustion. Fuel,1993,72(3):381-388.
    9袁建伟,冯波.喷氨同时脱除NO和N2O过程的化学动力学模拟.环境化学.1995,14(1):1-8.
    10Effect of ultrafine iron and mineral matter on conversion of nitrogen and carbon during pyrolysisand gasification of coal. Energy&Fuels.1995,9(1):141-147.
    11张春林,袁贵成,刘德昌,张世红,陈汉平.石油焦流化床燃烧过程中氮氧化物的排放研究,电站系统工程.2003,19(1):16-18.
    12Kilpinen P., Hupa M. Homogeneous N2O chemistry at fluidized bed combustion conditions: Akinetic modeling study. Combustion and Flame.1991,85(1–2):94-104.
    13Hulgaard T., Dam-Johansen K. Homogeneous nitrous oxide formation and destruction undercombustion conditions. AIChE Journal.1993,39:1342-1354.
    14冯波,袁建伟,刘皓,卢建欣,林志杰,刘德昌.循环流化床煤燃烧中氮氧化物排放的研究.工程热物理学报.1996,17(1):125-128.
    1崔志刚.油页岩及其半焦流化床燃烧N2O生成机理研究.上海:上海交通大学博士学位论文,2010.
    2金涌,祝京旭,汪展文,俞芷青.流态化工程原理.北京:清华大学出版社,2001.
    3Desroches-Ducarne E., Dolignier J. C., Marty E., Martin G., Delfose L. Modelling of gaseouspollutants emissions in circulating fluidized bed combustion of municipal refuse. Fuel.1998,77(13):1399–1410.
    4Desroches-Ducarne E., Dolignier J. C., Marty E., Martin G., Delfose L. Modelling of gaseouspollutants emissions in circulating fluidized bed combustion of municipal refuse. Fuel.1998,77(13):1399–1410.
    5Amand L. E., Leckner B. Formation of N2O in circulating fluidized bed boilers. Energy and Fuels.1991,5(6):815-823.
    6冯波,袁建伟,刘皓,卢建欣,林志杰,刘德昌.循环流化床煤燃烧中氮氧化物排放的研究.工程热物理学报.1996,17(1):125-128.
    1Han X. X., Jiang X. M. Effects of retorting factors on combustion properties of shale Char.1.Pyrolysis characteristics. Energy&Fuels.2009,89(11):2381-2385.
    2Han X. X., Jiang X. M., Yan J. W., Liu J. G. Effects of retorting factors on combustion properties ofshale Char.2. Pore structure. Energy&Fuels.2011,25(1):97-102.
    3秦匡宗.论干酪根芳碳率的石油地球化学意义.石油勘探与开发.1985,12(6):15-21.
    4Wanzl W. Chemical reactions in thermal decomposition of coal. Fuel Processing Technology.1988,20(1-3):317-336.
    5刘生玉.中国典型动力煤及含氧模型化合物热解过程的化学基础研究.太原:太原理工大学博士学位论文,2004.
    6闫金定,崔洪.热重质谱联用研究兖州煤的热解行为.中国矿业大学学报.2003,32(3):311-315.
    7降文萍.煤热解动力学及其挥发分析出规律的研究.太原:太原理工大学硕士学位论文,2004.
    8尤先锋.煤热解产物的关联性研究.太原:太原理工大学硕士学位论文,2002.
    9W jt wicz M. A., Pels J A, Moulijin J A. The fate of nitrogen functionalities in coal duringpyrolysis and combustion. Fuel.1995,74(4):507-516.
    10Li C. Z., Pang Y. Y., Li X. G. Formation of NH3during the pyrolysis of a brown coal. In:Proceeding of15th Annual Internation Pittsburth Coal Conference. Taiwan,1998.
    11赵炜,常丽萍,冯志华,等.煤热解过程中生成氮化物的研究.燃料化学学报.2002,30(5):408-412.
    12郭兴明.煤粉挥发分燃烧生成氮氧化物机理的理论与试验研究.西安:西安交通大学博士学位论文,2003.
    13Kambara S., Takarada T., Yamamota Y., et al. Relation between functional forms of coal nitrogenand formation of NOxprecursors during rapid pyrolysis. Energy&Fuels.1993,7(6):1013-1020.
    14Ledesma E. B., Li C. Z., Nlson P. F., et al. Release of HCN, NH3, and NHCO from the thermalgas-phase cracking of coal pyrolysis tars. Energy&Fuels.1998,12(3):536-541.
    15周静,何品晶,于遵宏.用热失重仪研究煤快速热解.煤炭转化.2004,27(2):30-36.
    16崔志刚.油页岩及其半焦流化床燃烧N2O生成机理研究.上海:上海交通大学博士学位论文,2010.
    17查旭东.流化床内高浓度气固多相流动和燃烧的数值试验研究.杭州:浙江大学博士学位论文,2001.
    18岑可法,樊建人.燃烧流体力学.北京:清华大学出版社,2003.
    19曹玉春.流化床垃圾焚烧炉内流动和燃烧污染物生成数值模拟研究.杭州:浙江大学博士学位论文,2005.
    20刘安源.流化床流动、传热及燃烧特性的离散颗粒模拟.北京:中科院工程热物理研究所博士学位论文,2000.
    21孙其诚.模拟气固流态化系统的拟颗粒模型.中科院工程过程研究所博士学位论文,1999.
    22Chen Z., Lin M., Ignowski J., Kelly B., Linjewile T. M., Agarwal P. K. Mathematical modeling offluidized bed combustion.4: N2O and NOxemissions from the combustion of char. Fuel,80(9):1259-1272.
    23Zimont V. L., Trushin Y. M. Total combustion kinetics of hydrocarbon fuels. Combustion,Explosion and Shock Waves.1969,5(4):567-573.
    24Jensen A., Johnsson J. E., Dam-Johansen K. Proceeding of the12th Conference on Fluidized BedCombustion. San Diego: ASME,1993:495-504.
    25Desroches-Ducarne E., Dolignier J. C., Marty E., Martin G., Delfose L. Modelling of gaseouspollutants emissions in circulating fluidized bed combustion of municipal refuse. Fuel.1998,77(13):1399–1410.
    26Zimont V. L., Trushin Y. M. Total combustion kinetics of hydrocarbon fuels. Combustion,Explosion and Shock Waves.1969,5(4):567-573.
    27Liu H., Feng B., Lu J. D. Coal property effects on N2O and NOxformation from circulatingfluidized bed combustion of coal. Chemical Engineering Communications.2005,192(11):1482-1489.
    28Amand L. E., Leckner B. Formation of N2O in circulating fluidized bed boilers. Energy&Fuels.1991,5(6):815-823.
    29刘皓,冯波,林志杰,刘德昌.循环流化床燃烧工况对生成N2O的影响.华中理工大学学报.1995,23(11):1-4.
    1刘静宇.桦甸油页岩半焦循环流化床燃烧特性研究.吉林:东北电力大学硕士学位论文,2006.
    2Jiang X. M, Han X. X, Cui Z. G. New technology for the comprehensive utilization of Chinese oilshale resources. Energy.2007,32(5):772-777.
    3Jiang X. M, Han X. X, Cui Z. G. Progress and recent utilization trends in combustion of Chineseoil shale. Progress in Energy and Combustion Science.2007,33(6):552-579.
    4Han X. X, Jiang X. M, Cui Z. G. Studies of the effect of retorting factors on the yield of shale oilfor a new comprehensive utilization technology of oil shale. Applied Energy.2009,86(11):2381-2385.
    5Paist A. New epoch in Estonian oil shale combustion technology. Oil shale.2004,21(3):181-182.
    6Arro H, Prikk A, Pihu T, Opik I, Utilization of semi-coke from Estonian oil industry. Oil shale.2002,19(2):117-125.
    7Kuusik R, Martins A, Pihu T, Pesur A, Kaljuvee T, Prikk A, Trikkel A, Arro H. Fluidized-bedcombustion of oil shale retorting solid waste. Oil shale.2004,21(3):237-248.
    8Martins A, Pesur A, Kallaste E, Siirde S. Co-combustion of oil shale semi-coke and oil shalemixtures in fluidized bed. ESF Grant No.2210Report. Tallinn:1997, p.4.
    9Arro H, Prikk A, Pihu T. Combustion of Estonian oil shale in fluidized bed boilers, heating valueof fuel, boiler efficiency and CO2emissions. Oil shale.2005,22(4S):399-405.
    10Jiang XM, Liu DC, Chen HP, Zheng CG, Qin YK. Experimental investigation on oil shalecirculating fluidized bed boiler. Oil Shale2001;18:73-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700