用户名: 密码: 验证码:
页岩气藏体积压裂评价及产能模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国油气能源供应日趋紧张和国外页岩气开发取得突破的环境下,我国对页岩气藏的开发逐年重视,并视其为促进能源结构调整的重要部分。过去两年,我国的页岩气开发取得了突破性进展,以涪陵示范区为标志的川渝页岩气开发区实现了单井15×104m3/d,累产7300×104m3的成果,使我们对页岩气的开发充满了期待和希望。然而,开发页岩气藏需要具备一定的进行大规模水力压裂的条件,这就要求页岩储层具有一定密度和连通性的天然裂缝,而对于复杂天然裂缝网络的描述非常困难;另一方面,不同于常规低渗透油气藏,页岩气的渗流不仅存在达西流动,还存在气体吸附解吸过程和扩散流动,这些渗流机理的共同作用使得页岩气渗流规律非常复杂。解决以上两个问题是实现对页岩气藏进行产能预测这一目标的必要途径。
     本文首先对四川须家河组页岩露头进行了物理性质实验测试,包括矿物分析、岩石密度测试、水平地应力测试、三轴应力测试、抗张抗剪强度测试等。结果发现,以水平地应力差、杨氏模量和泊松比、岩石脆性为判别指标时,四川须家河组页岩均符合形成裂缝网络的条件;从抗张抗剪强度测试结果可知,页岩水平方向具有优先开裂的条件;以硬度测试为基础,利用无声致裂剂致裂并统计岩心压裂的裂缝条数、崩落的碎块和裂缝面密度的方法,提出了判断页岩气藏形成网状裂缝的标准。然后,以黑油模型为基础模型,以气体总量相等为原则,采用溶解气代替吸附气的方法,通过Fracman生成的离散裂缝网络模拟复杂的天然裂缝,完善了单一介质黑油模型模拟页岩气的产能预测模型,对比传统的双孔单渗模型模拟结果发现,二者均能较好地进行页岩气产能预测。第三,对影响页岩气单井产量的诸多参数进行了模拟,如基质渗透率、人工裂缝参数、天然裂缝参数、吸附气量等。结果发现,页岩气单井产量与基质渗透率、人工裂缝长度、人工裂缝条数、天然裂缝导流能力、天然裂缝连通性和吸附气量均呈正比,与天然裂缝间距成反比;通过正交试验方法对各因素进行了主次排序,对产能的影响程度从强到弱依次为基质渗透率、人工裂缝长度、天然裂缝间距和吸附气量,并通过层次分析法和BP试验法对这一排序进行了验证;通过大量的数值模拟计算进行了图版绘制,并以BP人工神经网络的方法对各因素对改造体积的影响关系进行训练,从而用以快速确定任意条件下的改造体积形状和大小。最后,对实际页岩区块A进行了模拟计算,对比了水平井和直井开发实际页岩区块的产能情况,并对采用水平井开发时的裂缝参数进行了优化,为该区块的开发提供理论指导。
The development of shale gas reservoirs in our country is paid more and more attention and seen as an important part to modify the energy structure, since the supply of energy is inadequate in our country and the development of the shale gas increases quickly in other countries. In the past two years, the development of the shale gas in our country is so fast that the daily gas production in falling representative area achieves15×104m3/d and the cumulative gas production reaches7300×104m3, this bring us expectation and hope. However, the conditions of conducting large volume hydraulic fracturing operation should be needed to develop shale gas reservoirs. One of these conditions is complex fracture network and methods to express it in computer; another is to understand thoroughly the permeate mechanism in shales. Since the permeate method not only include Darcy flow in large pores and channels but also desorption process and diffusion process in small pores and channels, all of these mechanisms make a unimaginable complex permeate condition. Therefore, how to solve the above two questions is a necessary way to achieve shale gas production prediction.
     First, this paper conducts lots of tests on outcrops in Sichuan Xujiahe shale play, including mineralogical analysis, rock density test, horizontal terrestrial stress test, triaxial stress test and tensile strength and shearing strength test, etc. The results show that the shale in Sichuan Xujiahe shale play can generate a fracture network after large volume stimulation on the basis of results of horizontal terrestrial stress, Young's modulus and Poisson ratio, rock brittleness. The shale is easily fractured in the horizontal direction on the basis of results of tensile strength and shearing strength. Through summarizing the fracture number, fragments and fracture surface density after fracturing using silent agent, a new criterion to judge the possibility to create fracture network is developed. Second, on the basis of black oil model and mass conservation law, we use the dissolved gas to replace the adsorbed gas and using Fracman to generate the discrete fracture network, so the single medium model to simulate shale gas production is modified. Compared with the double hole single permeability model, both of them yield reasonable result, which means the modified single medium model is appropriate to simulate shale gas production. Third, simulate the effect of matrix permeability, artificial fracture parameters, natural fracture parameters and adsorbed gas volume on shale gas production. The results show that the production is in proportional to matrix permeability, artificial fracture length, artificial fracture number, natural fracture conductivity, natural fracture connection and adsorbed gas volume, and is inversely proportional to natural fracture interval. The order to influence the production is obtained through orthogonal test method and proved by analytic hierarchy process and Plackett-Burman (BP) test method. With large amounts of simulations, the calculated plate for quick parameter determination is created. Through practicing the effects of different factors on the shape and size of the stimulated reservoir volume using BP artificial neutral network method, the quick parameter determination for any condition can be achieved. Finally, simulate the real shale gas reservoir A. Through comparison of horizontal well production and vertical well production, horizontal well is more appropriate to develop the shale gas reservoir. The fracture parameters are also optimized to provide theoretical guidance to the development of this reservoir.
引文
[1]江怀友,宋新民,安晓璇,等.世界页岩气资源与勘探开发技术综述[J].天然气技术,2008,2(6):26-30.
    [2]张金川,徐波,聂海宽,等.中国页岩气资源勘探潜力.天然气工业[J],2008,28(6):136-140.
    [3]蒋志文.页岩气简介.云南地质[J],2010(1):109-110.
    [4]Wang X., Wang T. The shale gas potential of China[C], SPE142304.
    [5]王红岩,李景明,赵群,等.中国新能源资源基础及发展前景展望[J].石油学报,2009,30(3):469-474.
    [6]Ronald J.H., Etuan Z., Barry J.K, et al. Modeling of gas generation from the Barnett Shale, Fort Worth Basin, Texas[J]. AAPG Bulletin,2007,91(4):501-521.
    [7]Jarvie D. Evaluation of hydrocarbon generation and storage in the Barnett shale, Fort Worth Basin, Texas[M]. Texas:Humble geochemical series division,2004
    [8]韩建斌.页岩气藏中孔裂隙特征及其作用[J].内蒙古石油化工,2011,(2):147-148
    [9]Robert G, Robert M., Stephen C. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research,2009,79:848-861.
    [10]Juergen S. Common themes in the formation and preservation of intrinsic porosity in shales and mudstones-illustrated with examples across the phanerozoic[C]. SPE132370, 2010.
    [11]Julia F., Stephen E. Natural fractures in the New Albany shale and their importance for shale gas production[J]. Coalbed & Shale gas symposium,2009.
    [12]Julia F., Robert M., Jon H. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. AAPG,2007,91(4):603-622.
    [13]赵辉,杨子荣.煤层气等温吸附曲线形态对产气量的影响[J].辽宁工程技术大学学报,2007(S2):37-39.
    [14]段永刚,魏明强,李建秋,等.页岩气藏渗流机理及压裂井产能评价[J].重庆大学学报,2011(4):62-66.
    [15]朱光亚,刘先贵,李树铁,等.低渗气藏气体渗流滑脱效应影响研究[J].天然气工业,2007(5):44-47.
    [16]李前贵,康毅力,罗平亚.煤层甲烷解吸-扩散-渗流过程的影响因素分析[J].煤田地质与勘探,2003,31(4):26-29.
    [17]张金川.深盆气成藏及分布预测[R].中国地质大学博士后研究报告,北京,2001.
    [18]张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.
    [19]聂海宽,张金川.页岩气藏分布地质规律与特征[J].中南大学学报(自然科学版),2010,41(2):700-708.
    [20]杨学文,高振中,尚建林.准噶尔盆地夏9井区成岩圈闭油藏特征[J].石油学报,2007,28(6):47-51.
    [21]张守鹏,滕建彬,王伟庆,等.胜利油区深层砂砾岩成岩差异与储层控制因素[J].油气地质与采收率,2009,16(6):12-16.
    [22]White J, Read R. The shale shaker:An investor's guide to shale gas[J]. Supplement to Oil and Gas Investor,2007, (2):2-9.
    [23]Paktinat J, Pinkhouse J A, Fontaine J. Investigation of methods to improve Utica shale hydraulic fracturing in the Appalachian[C]. SPE111063.
    [24]陈远林,郭建春,魏星,等.清水压裂技术增注机理及现场应用[J].断块油气田,2008,15(2):116-117.
    [25]Mayerhofer M.J., Richardson M.F., Walker R.N., et al. Proppants? We don't need no proppants[C]. SPE38611,1997.
    [26]Mutalik P.N., Gibson B. Case history of sequential and simultaneous fracturing of the Barnett Shale in Parker County[C]. SPE116124,2008.
    [27]John W, Roger R. The shale shaker[J]. Oil and gas investor,2007:229.
    [28]马超群,黄磊,范虎,等.页岩气压裂技术及其效果评价[J].石油化工应用,2011,30(5):1-3.
    [29]唐颖,张金川,张琴,等.页岩气井水力压裂技术及其应用分析[J].天然气工业,2010,30(10):33-38.
    [30]唐颖,唐玄,王广源,等.页岩气开发水力压裂技术综述[J].地质通报,2011,30(2-3):393-399.
    [31]刘永亮,王振铎,胥云,等.水平井储层改造新方法一水力喷射压裂技术[J].钻采工艺,2008,31(1):71-73.
    [32]张国强.盐岩地层水力裂缝扩展实验研究[J].石油天然气学报(江汉石油学院学报),2008,30(2):558-559.
    [33]陈勉,周健,金衍,等.随机裂缝性储层压裂特征实验研究[J].石油学报,2008,29(3):431-434.
    [34]陈勉,庞飞,金衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000,19(增):868-872.
    [35]周健,陈勉,金衍,等.裂缝性储层水力裂缝扩展机理试验研究[J].石油学报,2007,28(5):109-113.
    [36]周健,陈勉,金衍,等.多裂缝储层水力裂缝扩展机理试验[J].中国石油大学学报(自然科学版),2008,32(4):51-55.
    [37]史明义,金衍,陈勉,等.水平井水力裂缝延伸物理模拟试验研究[J].石油天然气学报(江汉石油学院学报),2008,30(3):130-133.
    [38]杜春志.煤层水压致裂理论及应用研究(博士学位论文)[D].北京:中国矿业大学,2008.
    [39]黄炳香.煤岩体水力致裂弱化的理论与应用研究(博士学位论文)[D].北京:中国矿业大学,2009.
    [40]杨庆生,杨卫.断裂过程的有限元模拟[J].计算力学学报,1997,14(4):407-412.
    [41]Shephard M.S., Yehlan A.B. Computational strategies for nonlinear and fracture mechanics problem[J]. Computer& Structure.1985,20:211-223.
    [42]Bittencourt T.N., Wawrzynek P.A. Quasi automatic simulation of crack propagation for 2D LEFM problem[J]. Engineering Mechanics.1996,55 (2):321-331.
    [43]Martha L.F. Topological and Geometrical Modeling Approach to Numerical Discretization and Arbitrary Fracture Simulation in Three Dimensions[M]. Cornell University, Ithaca N.Y.1989.
    [44]Carpinteri A., Aliabadi M. Computational Fracture Mechanic in Concrete Technology[C]. Boston:Computational Mechanics Publications,1999:133-162.
    [45]Klein P., Gao H. Crack nucleation and growth as strain localization in a virtual-bond continium[J]. Engineering Fracture Mechanics.1998,61(1):21-48.
    [46]Ng A., Small J. A Case Study of hydraulic fracturing using finite element methods[J]. Can.Geotech.Journal,1999,36(5):861-875.
    [47]唐春安.脆性材料破坏过程分析的数值试验方法[J].力学与实践,1999,21(2):21-24.
    [48]唐春安,徐小荷.脆性弯曲断裂试验中的稳定加载条件[J].东北工学院学报,1990,11(3):223-229.
    [49]唐春安,徐小荷.突变理论在岩石破裂过程实验研究中的应用[J].有色金属,1990,42(4):7-12.
    [50]唐春安,于久明,刘红元,等.采动岩体破裂与岩层移动[M].长春:吉林大学出版社,2002.
    [51]唐春安,赵文.岩石破裂全过程分析软件系统RFPA2d[J].岩石力学与工程学报,1997,16(5):213.
    [52]李林地,张士诚,张劲,等.缝洞型碳酸盐岩储层水力裂缝扩展机理[J].石油学报,2009,30(4):570-573.
    [53]Moes N., Dolbow J., Belytschko T. A finite element method for crack growth without emeshing[J]. International Journal for Numerical Methods in Engineering,1999,46:131-150.
    [54]Moes N., Gravouil A., Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets Part I:Mechanical model[J]. Int. J. Numer. Meth. Eng.2002,53(11): 2549-2568.
    [55]Sukumar N., Prevost J.H. Modeling quasi-static crack growth with the extended finite element method Part I:Computer implementation[J]. Int. J. Solids Struct.,2003,40(26): 7513-7537.
    [56]Chopp D.L., Sukumar N. Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method[J]. Int. J. Eng. Sci.,2003,41(8): 845-869.
    [57]Sukumar N., Huang Z.Y., Prevost J.H., et al. Partition of unity enrichment for biomaterial interface cracks[J]. Int J Numer Mech Eng 2004,59:1075-1102.
    [58]Bellec J., Dolbow J.E. A note on enrichment functions for modeling crack nucleartion[J]. Commun Numer Meth Eng,2003,19:921-932.
    [59]Iarve E.V. Mesh independent modeling of cracks by using higher order shape functions[J]. Int. J.Numer Meth Eng.2003,56:869-882.
    [60]Shamloo A., Azami A.R., Khoei A.R. Modeling of pressure-sensitive materials using a cap plasticity theory in extended finite element method[J]. J. Mater. Process. Technol.2005, 164(165):1248-1257.
    [61]Huang R., Prevost J.H., Suo Z. Channel-cracking of thin films with the extended finite element method[J]. Eng. Fract. Mech.,2003,70:2513-2526.
    [62]Areias P., Belytschko T. Non-linear analysis of shells with arbitrary evolving cracks using XFEM[J]. Int. J. Numer. Meth. Eng.,2005,62(3):384-415.
    [63]Sousa J.L. Hydraulic Three-Dimensional Simulation of Near-Wellbore Phenomena Related to Fracturing from a Perforated Wellbore[M]. Cornell University, Ithaca, N. Y.,1992.
    [64]Johnson G.R., Stryk R.A., Bessiel S.R. SPH for high velocity impact comutations[J]. Comput.Method. APPI. Mech.Eng.,1996,139(1-4):347-373.
    [65]Olson J.E. Multi-fracture propagation modeling:Applications to hydraulic fracturing in shales and tight gas sands[C]. ARMA 08-327,2008.
    [66]Olson J.E, Arash D. Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures[C]. SPE119739,2009.
    [67]Swegle J.W., Hieks D.L, Attaway S.W. Smoothed Particle hydrodynamics stability analysis[J].J Comput Phys,1995,116(1):123-134.
    [68]Lancaster P., Salkauskas K. Surfaces generated by moving least square methods[J]. Math.Comput.,1981,37(155):141-158.
    [69]Belytschko T., Lu Y.Y., Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Method in Engineering,1994,37(2):229-256.
    [70]Xu W., Thiercelin M., Walton I. Characterization of hydraulically-induced shale fracture network using an analytical/semi-analytical model[C]. SPE 124697,2009.
    [71]Xu W., Calves J., Thiercelin M. Characterization of hydraulically-induced fracture network using treatment and microseismic data in a tight-gas formation:a geomechanical approach[C]. SPE 125237,2009.
    [72]Xu W., Thiercelin M., Ganguly U., et al. Wiremesh:A Novel Shale Fracturing Simulator[C]. SPE 132218,2010.
    [73]Xu W., Thiercelin M., Calves J., et al. Fracture network development and proppant placement during slickwater fracturing treatment of barnett shale laterals[C]. SPE 135484, 2010.
    [74]Rahman M.M, Aghigi A, Sheik A.R. Numerical Modeling of Fully Coupled Hydraulic Fracture Propagation in Naturally Fractured Poro-elastic Reservoirs[C]. SPE 121903,2009.
    [75]Rahman M.M, Aghigi A, Rahman S.S. Interaction between Induced Hydraulic Fracture and Pre-Existing Natural Fracture in a Poro-elastic Environment:Effect of Pore Pressure Change and the Orientation of Natural Fracture[C]. SPE 122574,2009.
    [76]Rahman M.M, Rahman S.S. A Fully Coupled Numerical Poroelastic Model to Investigate Interaction Between Induced Hydraulic Fracutre and Pre-existing Natural Fracture in a Naturally Fractured Reservoir:Potential Application in Tight Gas and Geothermal Reservoirs[C]. SPE 124269,2009.
    [77]Meyer B.R., Lucas W.B., Jacot R.H., et al. Optimization of multiple transverse hydraulic fractures in horizontal wellbores[C]. SPE131732,2010.
    [78]Jacot R.H., Lucas W. B., Meyer B.R. Technology integration-a methodology to enhance production and maximize economics in horizontal Marcellus shale wells [C]. SPE 135262, 2010.
    [79]Lucas W.B., Larkin S.D., Lattibeaudiere M.G., et al. Improving production in the eagle ford shale with fracture modeling, increased conductivity and optimized stage and cluster spacing along the horizontal wellbore[C]. SPE 138425,2010.
    [80]Meyer B.R., Lucas W. B. A discrete fracture network model for hydraulically induced fractures:theory, parametric and case studies[C]. SPE140514,2011.
    [81]Cipolla C, Weng X., Mack M., et al. Integrating microseismic mapping and complex fracture modeling to characterize fracture complexity[C]. SPE140185,2011.
    [82]Fisher M.K., Heinze J.R., Harris C.D., et al. Optimizing horizontal completion techniques in the Barnett shale using microseismic fracture mapping[C]. SPE90051,2004.
    [83]Fisher M.K., Wright C.A., Davidson B.M., et al. Integrating fracture mapping technologies to optimize stimulations in the Barnett shale[C]. SPE 77441,2002.
    [84]杜林麟,春兰,王玉艳,等.页岩储层水力压裂优化设计[J].石油钻采工艺,2010,32(增):130-132.
    [85]刘红磊,熊炜,高应运,等.方深1井页岩气藏特大型压裂技术[J].石油钻探技术,2011,39(3):46-52.
    [86]Cipolla C.L., Lolon E.P. Reservoir modeling and production evaluation in shale-gas reservoirs[C]. IPTC13185,2009.
    [87]Cipolla C.L., Warpinski N.R., Mayerhofer M.J., et al. The relationship between fracture complexity, reservoir properties, and fracture treatment design[C]. SPE 115769,2008.
    [88]Cipolla C.L., Lolon E.P., Erdle J.C., et al. Reservoir modeling in shale-gas reservoirs[C]. SPE125530,2009.
    [89]Cipolla C.L., Lolon E.P., Erdle J.C., et al. Modeling well performance in shale-gas reservoirs[C]. SPE 125532,2009.
    [90]Maxwell S.C., Cho D., Pope T., et al. Enhanced reservoir characterization using hydraulic fracture microseismicity[C]. SPE140449,2011.
    [91]Sherilyn W. Using microseismic events to constrain fracture network models and implications for generating fracture flow properties for reservoir simulation[C]. SPE 119895, 2008.
    [92]Zhang X., Du C., Deimebacher, F., et al. Sensitivity studies of horizontal wells with hydraulic fractures in shale gas reservoirs[C]. IPTC13338,2009.
    [93]Du C., Zhang X., Melton B., et al. A workflow for integrated Barnett shale gas reservoir modeling and simulation[C]. SPE122934,2009.
    [94]Schepers K.C., Gonzalez R.J., Koperna G.J., et al. Reservoir modeling in support of shale gas exploration[C]. SPE 123057,2009.
    [95]Frantz J.H., Williamson J.R., Sawyer W.K., et al. Evaluating Barnett shale production performance using an integrated approach[C]. SPE96917,2005.
    [96]Ozkan E., Brown M., Raghavan R., et al. Comparison of fractured-horizontal well performance in tight sand and shale reservoirs[C]. SPE121290,2011.
    [97]Ozkan E., Raghavan R., Apaydin O.G. Modeling of fluid transfer from shale matrix to fracture network[C]. SPE134830,2010.
    [98]Bello R.O., Wattenbarger R.A. Modeling and analysis of shale gas production with a skin effect[C]. SPE143229,2010.
    [99]Bello R.O., Wattenbarger R.A. Rate transient analysis in naturally fractured shale gas reservoirs[C]. SPE114591,2008.
    [100]Bello R.O., Wattenbarger R.A. Multi-stage hydraulically fractured horizontal shale gas well rate transient analysis[C]. SPE126754,2010.
    [101]孙海成,汤达祯,蒋廷学,等.页岩气储层压裂改造技术[J].油气地质与采收率,2011,18(4):90-94.
    [102]张士诚,牟松茹,崔勇.页岩气压裂数值模型分析[J].开发工程,2011,31(12):81-84.
    [103]牟松茹,张士诚,张平.考虑启动压力梯度的致密气藏压裂井产能分析[J].科学技术与工程,2011,11(34):8434-8437.
    [104]Sondergeld C.H., Newsham K.E., Comisky J.T., et al. Petrophysical considerations in evaluating and producing shale gas resources[C]. SPE 131768,2010.
    [105]King G.E. Thirty years of gas shale fracturing:what have we learned? [C]. SPE 133456, 2010.
    [106]Britt L.K., Schoeffler J. The geomechanics of a shale play:what makes a shale prospective! [C]. SPE 125525,2009.
    [107]Rickman R., Mullen M., Petre E. et al. A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the barnett shale [C]. SPE 115258,2008.
    [108]Wang Y., Miskimins J.L. Experimental investigations of hydraulic fracture growth complextiy in slickwater fracturing treatments[C]. SPE 137515,2010.
    [109]Soliman M.Y., East L., Augustine J. Fracturing design aimed at enhancing fracture complexity[C]. SPE 130043,2010.
    [110]Matthews H.L., Schein G., Malone M. Stimulation of gas shales:they're all the same-right? [C]. SPE 106070,2007.
    [111]Goktan R.M., Yilmaz N.G. A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting. [J] The Journal of The South African Institute of Mining and Metallurgy,2005,105:727-733.
    [112]高峰,谢和平,赵鹏.岩石块度分布的分形性质及细观结构效应[J].岩石力学与工程学报,1994,13(3):240-246.
    [113]高峰,谢和平,巫静波.岩石损伤和破碎相关性的分形分析[J].岩石力学与工程学报,1999,18(5):497-502.
    [114]韩大匡,陈钦雷,闫存章.油藏数值模拟基础[M].北京:石油工业出版社.1993.
    [115]Seldle J.P., Arrl L. E. Use of conventional reservoir models for coalbed methane simulation[C]. SPE90-118,1990.
    [116]张烈辉,陈军,涂中,等.用常规黑油模型模拟煤层气开采过程[J].西南石油学院学报,2001,23(5):26-28.
    [117]Baecher G.B., Lanney N.A., Einstein H.H. Statistical description of rock properties and sampling[C]. Proceedings of the 18th U.S. Symposium on Rock Mechanics, American Institute of Mining Engineers,5C1-8,1977.
    [118]Dershowitz W.S. Rock joint systems[D]:Ph.D. Dissertation. Massachusetts Institute of Technology, Cambridge, MA.,1984.
    [119]Veneziano. Probabilistic Model of Joints in Fractured Rock[C]. Technical resport, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA.,1979.
    [120]Dershowitz W.S. A probabilistic model for the deformability of jointed rock masses[D]: M.S. Thesis. Massachusetts Institute of Technology, Cambridge, MA.,1979.
    [121]Mandelbrot B.B. Self-affine fractals and fractal dimension[M]. Physica scripta,1985, 32:257-260.
    [122]牟松茹.页岩气藏体积压裂产能预测研究(博士学位论文)[D].北京:中国石油大学,2013.
    [123]天津大学物理化学教研室编.物理化学[M].北京:人民教育出版社.1979.
    [124]Dullien F.A.多孔介质-流体渗流与孔隙结构[M].北京:石油工业出版社,1990.
    [125]Gas Research Institute. A guide to coalbed methane reservoir engineering[C]. GRI reference No. GRI-94/0397,1996, Chicago, Illinois.
    [126]钱凯,赵庆波,王泽成,等.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996.
    [127]Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. JCPT,2009,48(8):16-21.
    [128]Sawyer W.K., Paul G.W. Development and application of a 3D coalbed simulator[C]. CIM/SPE90-119.1990.
    [129]Durbin P.A., Iaccarino G. An approach to local refinement of structured grids[J]. Journal of computational physics.2002,181:639-653.
    [130]Mehl S., Hill M.C., Leake S.A. Comparison of local grid refinement methods for MODFLOW[J]. Ground water.2006,44(6):792-796.
    [131]Kilic A., Ertekin T. Application of a local grid refinement protocol in highly faulted reservoir architectures[J]. Journal of Canadian petroleum technology.2003,42(4):58-69.
    [132]Shaoul J.R., Behr A., Mtshedlishvili G. Developing a tool for 3D reservoir simulation of hydraulically fractured wells[C]. IPTC10182,2005.
    [133]景龙华.基于AHP的企业现金流量分析[J].现代商贸工业,2010,22(9):182-183.
    [134]郭金玉,张忠彬,孙庆云.层次分析法的研究与应用[J].中国安全科学学报,2008,18(5):148-153.
    [135]邓雪,李家铭,曾浩健,等.层次分析法权重计算方法分析及其应用研究[J].数学的实践与认识,2012,42(7):93-100.
    [136]甘云雁,张士诚,陈利,等.复杂断块油藏不规则井网整体压裂优化设计[J].石油学报2006,27(4):81-84.
    [137]王伟.数理统计与多元统计[M].成都:西南交通大学出版社,2004.
    [138]温新,周露,王丹力,等.MATLAB人工神经网络应用设计[M].北京:科学出版社,2000.
    [139]Rumelhart D E, McCelland J L. Parallel distribution processing. Vols Ⅰ and Ⅱ, Cambridge:MIT Press,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700