用户名: 密码: 验证码:
割理煤岩力学特性与压裂起裂机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力压裂是目前煤层气开发的主要技术手段,通过压裂能够在煤层内部形成复杂裂缝网络,并在井筒周围形成大面积的压力下降,使煤层气解吸表面积增大,保证煤层气迅速并相对持久地泄放。煤岩发育大量的割理裂隙等结构弱面,具有强度低、弹性模量低、泊松比高、易碎等性质,使煤岩与非煤岩石力学特性存在较大差别,应先对煤岩的力学特性开展研究,在掌握煤岩力学特性的基础上研究煤储层的压裂起裂力学机理。
     论文研究首先对试验区取样煤进行割理特征的宏观和细观测量,包括割理密度、长度和宽度等指标的测定,评价试验区煤岩的割理发育状况。
     其次,开展取样煤岩力学特性室内试验研究,通过试验测定不同取心方向煤样的抗拉和抗剪切强度、单轴和三轴抗压强度以及弹性模量和泊松比等重要力学参数,试验表明不同取心方向煤岩力学参数差异明显,存在明显各向异性特征。
     根据弹性力学理论,建立了煤岩等效弹性模量和泊松比计算模型,应用模型计算并讨论了煤岩等效弹性模量和泊松比与煤岩基质、面割理和端割理力学参数间的关系,当取心方向垂直面割理时,煤岩弹性模量取决于煤岩基质弹性模量和面割理法向刚度及间距的大小,而泊松比仅与煤岩基质弹性模量和泊松比、面割理法向刚度和间距有关;取心方向平行面割理时,煤岩弹性模量取决于煤岩基质弹性模量和端割理法向刚度与间距的大小,泊松比则由煤岩基质弹性模量和泊松比、端割理法向刚度和间距的大小所决定。
     考虑煤岩独特的力学特性,建立了正交各向异性煤储层井壁围岩应力分布的计算模型;基于岩石破裂的最大拉应力准则,推导了煤层裸眼完井水力压裂起裂压力计算公式;研究表明煤层裸眼完井井壁周向应力与煤岩基质和割理力学特征密切相关,煤岩基质弹性模量和泊松比、面割理与水平最大主应力方向夹角、面割理分布密度以及端割理分布密度均影响井壁应力分布状况,并且面割理与水平最大主应力方向相同时,压裂最容易起裂,面割理间距增加,裸眼井压裂所需的起裂压力增大。
     最后,应用有限元方法模拟了不同射孔参数、不同地应力状况以及煤岩不同力学特性条件下正交各向异性煤层射孔完井的水力压裂起裂压力,得出了射孔方位、射孔半径和射孔深度对起裂压力的影响;分析了不同方向地层主应力变化对射孔完井起裂压力的影响规律;分别讨论了煤岩基质弹性模量和泊松比、面割理与水平最大主应力方向夹角及面割理间距对起裂压力的影响。
     论文提出将具有割理弱面的煤岩非连续介质等效为连续介质研究,并通过理论模型计算描述了煤岩等效连续介质的力学参数变化规律,在此基础上建立了煤层水力压裂的起裂压力计算模型,论文成果为今后煤岩复杂割理裂隙系统下的水力压裂机理研究提供了新的思路和方向。
The main technical means for developing coalbed methane is hydraulic fracturing, it canform complex fracture in coalbed, make the pressure drop in a large area around the wellbore,increase the surface area for coalbed methane desorption, and guarantee coalbed methanerelease quickly and relatively permanently. There are lots of weak structure surface in coalbedsuch as cleats and cracks, which have the characters of low strength, low Young's modulus,high Poisson's ratio and frangibility, it make difference in rock mechanics properties betweencoal and rock. Studying fractures cracking mechanism must be basing on mastering coalbedmechanical characteristics.
     In this paper, firstly the macroscopic and mesoscopic measurement of the coalbed cleatscharacters were conducted, which included cleats density, length and width, and the cleatdevelopment status in the test area was evaluated.
     Secondly, the indoor experiments for measuring the coalbed mechanics characteristicswere carried out and the measured parameters included tensile and shear strength, uniaxialand triaxial compressive strength and Young's modulus, Poisson's ratio in different directionof coring. It can be concluded from the experiments that the coalbed mechanics parameterswere difference in different coring direction, existing obvious anisotropic characteristics.
     The equivalent Young's modulus, Poisson's ratio calculating model of the coalbed wasestablished by elastic mechanics theory. The relationship between equivalent Young'smodulus, Poisson's ratio and coalbed matrix, face cleats, butt cleats mechanical parameterswas calculated by using the model. When the coring direction is vertical to the face cleats, theYoung's modulus is depending on coalbed matrix Young's modulus, the normal stiffness offace cleats and the size of the spacing. And the Poisson's ratio is only related to coalbedmatrix Young's modulus, Poisson's ratio, the normal stiffness of face cleats and the size of thespacing. When the coring direction is parallel to the face cleats, the Young's modulus isdepending on coalbed matrix Young's modulus, the normal stiffness of butt cleats and the sizeof the spacing. And the Poisson's ratio is determined by coalbed matrix Young's modulus,Poisson's ratio, the normal stiffness of butt cleats and the size of the spacing.
     The borehole wall surrounding rock stress distribution calculating model for orthotropiccoalbed was established considering the unique mechanical properties of coalbed. Thefractures cracking pressure calculating formula in fracturing for coalbed open holecompletion was deduced basing on the maximum tensile stress failure criterion. By studying, open hole completion borehole wall circumferential stress was closely related to the coalbedcleats mechanics characteristics. The stress distribution status was affected by the anglebetween the face cleats and horizontal maximum principal stress, face cleats distributiondensity, butt cleats distribution density and the connected rate of butt cleats. When thedirection of face cleats was the same as maximum principal stress direction, the fractureswere easily to crack. With the increasing of face cleats spacing, the fractures crackingpressure needed for open hole completion was increasing.
     Finally, the fractures cracking pressure calculating model for perforation completion inorthotropic coalbed was simulated by finite element method with different perforationparameters, ground stress status, and coalbed mechanics parameters, and the effects ofperforation azimuth, radius and depth on cracking pressure was obtained. The effects ofprincipal stress variation in different direction on perforation completion cracking pressurewere analyzed. And the effects of coalbed matrix Young's modulus, Poisson's ratio, the anglebetween face cleats and horizontal maximum principal stress and face cleats spacing onfractures cracking pressure were discussed.
     The coalbed is discontinuous medium, which has the weak surface with cleats, and it isequivalent to continuum when studying in the paper. The mechanics parameters variationregulations of coalbed equivalent continuum were described by theoretical model, and onwhich the fractures cracking pressure calculating model in fracturing was established. Theachievements of the paper provide new thought and direction for studying hydraulicfracturing mechanism under coalbed complicated cleats system.
引文
[1] Jennifer L Miskimins. Design and life cycle considerations for unconventional reservoirwells[R]. SPE114170,2009.
    [2] Holditch Stephen A. Tight Gas Sands[R]. SPE103356,2006.
    [3] Etherington John R., McDonald lan R.. Is bitumen a petroleum reserve[R]. SPE90242,2004.
    [4]崔荣国.国内外煤层气开发利用现状[J].国土资源情报,2005,(11):22-26.
    [5]唐鹏程,郭平,杨素云,等.国内外煤层气开采利用现状浅谈[J].矿山机械,2008,36(24):8-9.
    [6] Qin Yong, Sang Shuxun, Fu Xuehai, et al. Potentials of CBM resources in key mine areasin China and some the oretical aspects for resources evaluation[C]. The6th InternationalWork shop on CBM/CMM, Beijing,2006.
    [7] Song Yan, Zhao Mengjun, Liu Shaobo, et al. The influence of tectonic evolution on theaccumulation and enrichment of coalbed methane(CBM)[J]. Chinese Science Bulletin,2005,(S1):1-6.
    [8] Xianbo Su, Xiaoying Lin, Shaobo Liu, et al. Geology of Coalbed Methane Reservoirs inthe Southeast Qinshui Basin of China[J]. International Journal of Coal Geology,2005,62(4):197-210.
    [9]李国瑞,罗新荣,郑永昆,等.煤与瓦斯突出机理研究现状及研究新思路[J].能源技术与管理,2010,(1):21-23.
    [10]高芸,谭松,谢晓光,等.关于对高瓦斯矿井瓦斯涌出量的简要分析[J].煤矿现代化,2010,98(5):44-46.
    [11]杨陆武,万斌.积极开发煤层气资源,保护人类生态环境[J].科技导报,1999,(11):61-63.
    [12] Yang Z, Wu T, Li XH. Experimental studies and estimates of the explosion limit of someenvironmentally friendly refrigerants[J]. Combustion Science and Technology,2005,35(3):613-626.
    [13] Smith D.M., Williams F.L.. Diffusional effects in the recovery of methane fromcoalbeds[J]. SPEJ,1984:529-535.
    [14] Zuber M.D.. Production characteristics and reservoir analysis of coal bed methanereservoirs[J]. Coal Geology,1998,38:27-45.
    [15]赵东,冯增朝,赵阳升.高压注水对煤体瓦斯解吸特性影响的试验研究[J].岩石力学与工程学报,2011,30(3):79-85.
    [16] Shao Longyi, Zhang Pengfei, Jason Hilton, et al. Paleoenvironments andpaleogeography of the lower and lower Middle Jurassic coal measures in theTurpan-Hami oil-prone coal basin, northwestern China[J]. AAPG BULLETIN,2003,87(2):335-355.
    [17] Su Xianbo. The Classification and Model of Coalbed Methane Reservoir[J]. ActaGeologica Sinica,2004,3(3):187-193.
    [18]郭红玉,苏现波,夏大平.煤储层渗透率与地质强度指标的关系研究及意义[J].煤炭学报,2010,35(8):45-51.
    [19]薛莉莉.煤层气储层压裂数值模拟技术研究[D].青岛:中国石油大学(华东),2009.
    [20]张聪,李梦溪,王立龙,等.沁水盆地南部樊庄区块煤层气井增产措施与实践[J].天然气工业,2011,31(11):33-37.
    [21] Gay R, Harris I. Coalbed Methane and Coal Geology[M]. The Geological Society,London,1996.
    [22] Bustin R.M., Clarkson C.R.. Free gas strorage in matrix porosity: a potentiallysignificant coalbed resource in low rank coals[J]. International Coalbed MethaneSymposium,1999:197-214.
    [23] Pratt T.J., Mavor M.J., Debruyn R.P.. Coal gas resource and production potential ofsubbituminous coal in the Powder Rirver Basin[J]. International Coalbed MethaneSymposium,1999:23-34.
    [24] Scott Stevens. CO2Injection for Enhancing Coalbed Methane Recovery: ProjectScreening and Design[C]. Proceedings of the1999international Coalbed MethaneSymposium. Tuscaloosa: University of Alabama,1999.
    [25] Palmer I.D., Spiter S.W.. Coalbed methane well completions and simulations[J]. AAPGStudies in Geology,1993,38:303-309.
    [26] Jeffery R.G., Vlahovic W, Doyle R.P., et al. Propped fracture geometry of three hydraulicfractures in Sydney Basin coal seams[C]. SPE50061,1998.
    [27] Wang P, Mao XB, Lin JB, et al. Study of the Borehole Hydraulic Fracturing and thePrinciple of Gas Seepage in the Coal Seam[J]. Procedia Earth and Planetary Science,2009,1(1):1561-1573.
    [28] Ian Palmer. Coalbed methane completions: A world view[J]. International Journal ofCoal Geology,2010,82:184-195.
    [29]秦义,李仰民,白建梅,等.沁水盆地南部高煤阶煤层气井排采工艺研究与实践[J].天然气工业,2011,31(11):79-84.
    [30]罗陶涛.沁水盆地煤岩储层特征及压裂增产措施研究[D].成都:成都理工大学,2010.
    [31]李同林.煤岩层水力压裂造缝机理分析[J].天然气工业,1997,17(4):102-108.
    [32]李志刚,付胜利,乌效鸣,等.煤岩力学特性测试与煤层气井水力压裂力学机理研究[J].石油钻探技术,2000,28(3):11-12.
    [33] Mahoney J.V., Stubbs P.B.. Effects of a noproppant foam stimulation treatment on a coalseam degasification borehole[J]. Journal of Petroleum Technology,1991,2227-2231.
    [34] Jeffrey R.G., Settari A.. An instrumented hydraulic fracture experiment in coal[R]. SPE39908,1998.
    [35]鲍莱茨基M,胡戴克M.矿山岩体力学[M].于振海,刘天泉译.北京:煤炭工业出版社,1985.
    [36] Alexeeva A D, Revvaa V N, Alyshevb N A, et al. True triaxial loading apparatus and itsapplication to coal outburst prediction[J]. International Journal of Coal Geology,2004,58:245-250.
    [37] Okubo S, Fukui K, Qingxin Qi. Uniaxial compression and tension tests of anthracite andloading rate dependence of peak strength[J]. International Journal of Coal Geology,2006,68:196-204.
    [38]闫立宏,吴基文.淮北杨庄煤矿煤的抗拉强度试验研究与分析[J].煤炭科学技术,2002,30(5):39-41.
    [39]吴基文,樊成.煤块抗拉强度的套筒致裂法实验室测定[J].煤田地质与勘探,2003,31(1):17-19.
    [40]颜志丰.山西晋城地区煤岩力学性质及煤储层压裂模拟研究[D].中国地质大学(北京),2009.
    [41] Hirt A M, Shakoor A. Determination of Unconfined Compressive Strength of Coal forpillar Design[J]. Mining Engineering,1992,(8):1037-1041.
    [42] Medhurst T P, Brown E T. A study of the Mechanical Behavior of Coal for PillarDesign[J]. Int. J. Rock. Min. Sci,1998,35(8):1087-1104.
    [43] Unrug K F, Nandy S, Thompson E. Evaluation of the Coal strength for PillarCalculation[J]. Trans, SEMAIME,1986,(280):2071-2075.
    [44] Townsend J M, Jenning W C. A Relationship Between the Ultimate CompressiveStrength of Cubes an cylinders for Coal specimens[A]. Proc.18th Sym. For Rock Mech.Keystone, CO.1977:(4A6_1~4A6_6).
    [45] Khair A W. The Effect of Coefficient of Friction on Strength of Model coal Pillar[D].Master Thesis. Pept. Of Mining Eng., West Virginia Univ,1968.
    [46]刘宝琛,张家生,杜奇中,等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998,17(6):611-614.
    [47]颜志丰,据宜文,后泉林,等.基于煤层压裂模拟的水饱和煤样单轴力学试验研究[A].中国煤层气技术进展,2011,4(5):74-81.
    [48]刘京红,姜耀东,赵毅鑫,等.煤岩破裂过程CT图像的分形描述[J].北京理工大学学报,2012,32(12):1219-1222.
    [49] Evans I, Pomeroy C D. The compressive strength of coal[J]. Colliery Eng,1961,38:75-75.
    [50] Hobbs D W. The strength and stress-strain characteristics of coal in triaxialcompression[J]. The Journal of Geology,1964,72(2):214-231.
    [51] Bieniawaski Z T. The effect of specimen size on compression strength in coal[J]. Int. J.Rock Mech. Min.Sci.,1968,5:325-333.
    [52] Atkinson R H, Ko HonYim. Strength characteristics of US coal[A]. In: Proc.18th. Symp.RockMech., Colorado School of Mines Press Golden,1977,2B:3-1.
    [53] Ettinger I L, Lamba E G. Gas medium in coal breaking process[J]. Fuel,1957,36:298-302.
    [54] Tankard H G. The effect of sorbed carbon dioxide upon the strength of coals[A]. M. Sci.Thesis, The University of Sydney, Australia,1957.
    [55] White J M. Mode of deformation of Rosebud coal, Colstrip, Montana: room temperature,102.0MPa[J]. Int.J. RockMech. Min. Sci.&Geomech. Abstr.,1980,17:129-130.
    [56] Nathan Deisman, Thomas Gentzis, Richard J. Unconventional geomechanical testing oncoal for coalbed reservoir well design: The Alberta Foothills and Plains[J]. InternationalJournal of Coal Geology,2008,75(1):15-26.
    [57]靳钟铭,宋选民,薛亚东,等.顶煤压裂的实验研究[J].煤炭学报,1999,24(1):29-33.
    [58]杨永杰,宋扬,陈绍杰,等.煤岩强度离散性及三轴压缩试验研究[J].岩土力学,2006,27(10):1763-1766.
    [59]王宏图,鲜学福,贺建民,等.层状复合煤岩的三轴力学特性研究[J].矿山压力与顶板管理,1999,(1):81-83.
    [60]孔海陵,王路珍,佘斌,等.含瓦斯煤体破裂过程围压效应研究[J].煤矿安全,2012,12(2):9-11.
    [61]艾婷,张茹,刘建锋,等.三轴压缩煤岩破裂过程中声发射时空演化规律[J].煤炭学报,2011,36(12):2048~2056.
    [62]王德超.岩石三轴压缩破裂失稳的声发射突变特征及预测研究[D].青岛:山东科技大学,2011.
    [63]徐涛,杨天鸿,唐春安,等.孔隙压力作用下煤岩破裂及声发射特性的数值模拟[J].岩土力学,2004,25(10):1560-1574.
    [64]唐治,潘一山,李忠华,等.煤岩破裂过程中电荷感应机理分析[J].岩土工程学报,2013,35(6):1156-1160.
    [65]王鸿勋.水力压裂原理[M].北京:石油工业出版社,1987.
    [66]郭娜娜,黄进军.水平井分段压裂工艺发展现状[J].石油化工应用,2013,32(11):5-8.
    [67]李庆辉,陈勉,金衍,等.新型压裂技术在页岩气开发中的应用[J].特种油气藏,2012,19(6):2-7.
    [68] Economides M.J., Martin T.. Modern fracturing enhancing natural gas production [M].Houston, TX: Energy Tribune Publishing Inc,2007.
    [69] A.G. Olovyanny. Mathematical modeling of hydraulic fracture in coal seam[J]. Journalof Mining of Science,2005,41(5):61-67.
    [70] Lekontsev Y.M., Sazhin P.V.. Application of the directional hydraulic fracturing atBerezovskaya Mine[J]. Journal of Mining of Science,2008,44(3):253-258.
    [71]李同林.水压致裂煤层裂缝发育特点的研究[J].中国地质大学学报,1994,19(4):537-543.
    [72]申晋,赵阳升,段康廉.低渗透煤岩体水力压裂的数值模拟[J].煤炭学报,1997,22(6):580-584.
    [73]张国华,魏光平,侯凤才.穿层钻孔起裂注水压力与起裂位置理论[J].煤炭学报,2007,32(1):52-55.
    [74]张国华.本煤层水力压裂致裂机理及裂隙发展过程研究[D].阜新:辽宁工程技术大学,2003.
    [75]张国华,梁冰,孙广义,等.煤分层沿层压裂钻孔始裂位置及发展过程分析[J].煤炭学报,2005,30(S1):33-36.
    [76]张国华,葛新.水力压裂钻孔始裂特点分析[J].辽宁工程技术大学学报,2005,24(6):789-792.
    [77]黄炳香,程庆迎,刘长友.裂隙水压力对煤岩体细观结构破坏分析[J].湖南科技大学学报,2009,24(1):1-3.
    [78]吕有厂.水力压裂技术在高瓦斯低透气性矿井中的应用研究[J].重庆大学学报,2010,33(7):101-107.
    [79]王鹏,茅献彪,杜春志.煤层钻孔水压致裂的裂缝扩展规律研究[J].采矿与安全工程学报,2009,26(1):31-35.
    [80]唐书恒,朱宝存,颜志丰,等.地应力对煤层气井水力压裂裂缝发育的影响[J].煤炭学报,2011,36(3):65-69.
    [81]尹俊禄,王鹤田,赵丁楠,等.煤层气水平井煤层段井壁破裂压力预测[J].煤田地质与勘探,2012,40(3):26-28.
    [82]郭炳政.测井资料解释煤层破裂压力的方法研究[D].青岛:中国石油大学(华东),2012.
    [83]白新华,吴财芳,耿仪,等.高突低渗煤层立体网状穿层压裂防突技术试验研究[J].煤炭学报,2013,38(2):245-250.
    [84]李成成,潘一山.不同地应力作用下煤体水力压裂起裂压力与裂缝扩展数值模拟[A].煤矿冲击地压防治的创新与实践—全国防治煤矿冲击地压高端论坛,2013.
    [85]刘勇,卢义玉,魏建平.降低井下煤层压裂起裂压力方法研究[J].中国安全科学学报,2013,23(9):96-100.
    [86]陈小奎.煤层水力压裂三相棍合数值模拟研究[D].淮南:安徽理工大学,2008.
    [87]刘传义,薛晓刚,耿华.潘二矿水力压裂增透范围的数值模型研究[J].试验研究,2011,14(8):5-8.
    [88]蒋旭刚.潘二矿水力压裂增透范围研究[D].焦作:河南理工大学,2011.
    [89]刘家东,滑俊杰.水力挤出煤体破裂数值模拟试验研究[J].煤矿安全,2012,43(1):9-11.
    [90]殷文韬,段保华,王根卿,等.水力压裂技术在鹤壁八矿的应用[J].煤炭工程,2012,(5):39-41.
    [91]朱红青,申健,张民波.煤体脉动注水与恒压注水致裂特征模拟[J].科技导报,2013,31(18):57-62.
    [92]王晓锋,唐书恒,解慧,等.沁水盆地南部煤储层水力压裂裂缝发育特征的数值模拟研究[J].现代地质,2012,26(3):527-532.
    [93]王晓锋,解慧,扈金刚,等.压裂参数对煤储层水力压裂裂缝的影响[J].特种油气藏,2013,20(6):129-132.
    [94] S.E. Laubach, R.A. Marrett, J.E. Olson, et al. Characteristics and origins of coal cleat: Areview[J]. International Journal of Coal Geology,1998,35:175-207.
    [95]苏俊.煤层气勘探开发方法与技术[M].北京:石油工业出版社,2011:31-34.
    [96]张新民,庄军,张遂安.中国煤层气地质与资源评价[M].北京:科学出版社,2002.
    [97]唐鹏程,郭平,杨索云,等.煤层气成藏机理研究[J].中国矿业,2009,18(2):94-97.
    [98]苏现波.煤层气储集层的孔隙特征[J].焦作工学院学报,1998,17(1):6-10.
    [99]王晓亮.煤层瓦斯流动理论模拟研究[D].太原:太原理工大学,2003.
    [100]王祥珍,刘富俊.普通地质学[M].徐州:中国矿业大学出版社,1987.
    [101]赵国恒,陈桢,郭任德.煤矿地质[M].徐州:中国矿业大学出版社,1987.
    [102]杨永杰,宋扬,陈绍杰.三轴压缩煤岩强度及变形特征的试验研究[J].煤炭学报,2006,31(2):150-153.
    [103]杨永杰.煤岩强度、变形及微震特征的基础试验研究[D].青岛:山东科技大学,2006.
    [104]韩建新,李术才,李树忱,等.多组贯穿裂隙岩体变形特性研究[J].岩石力学与工程学报,2011,30(S1):3319-3325.
    [105] Thomas Gentzis. Stability analysis of a horizontal coalbed methane well in the RockyMountain Front Ranges of southeast British Columbia, Canada[J]. International Journalof Coal Geology,2009,77:328-337.
    [106] I. Palmer, Higgs Technologies, Z. Moschovidis, et al. Coal Failure and Consequencesfor Coalbed Methane Wells[J]. SPE96872,2005.
    [107] Len V. Baltoiu, Brent K. Warren, Thanos A. Natras. State-of-the-Art in CoalbedMethane Drilling Fluids[J]. SPE Drilling&Completion,2008,(9):250-257.
    [108] Lekhnitskii S.G. Theory of elasticity of an anisotropic elastic body[M]. Translated byFern P. San Francisco: Holden-Day Inc,1963.
    [109] Amadei B. In situ stress measurements in anisotropic rock[J]. International Journal ofRock Mechanics and Mining Science&Geomechanics Abstracts,1984,21(6):327-338.
    [110] Amadei B. Importance of anisotropy when estimating and measuring in-situ stresses inrock[J]. International Journal of Rock Mechanics and Mining Science&GeomechanicsAbstracts,1996,33(3):293-325.
    [111] Ong S.H. Borehole stability[M]. Oklahoma: University of Oklahoma,1997
    [112]黄荣樽,陈勉,邓金根,等.井壁稳定的力学问题[R].北京:中国石油大学学报,1993.
    [113]赵斌,王芝银,温声明,等.正交各向异性储层煤层气井合理井底压力研究[J].煤炭学报,2013,38(S2):353-358.
    [114]韩昌瑞,白世伟,张波.正交各向异性岩体钻孔周围应力分布的应力变分法分析[J].岩土力学,2007,28(12):2593-2597.
    [115]卢运虎,陈勉,袁建波,等.各向异性地层中斜井井壁失稳机理[J].石油学报,2013,34(3):563-568.
    [116]李军,柳贡慧,陈勉.正交各向异性地层井壁围岩应力新模型[J].岩石力学与工程学报,2011,30(12):2481-2485.
    [117]李军.复杂地应力条件下套管损坏机制与实时监测实验研究[D].北京:中国石油大学,2005.
    [118]李根生,刘丽,黄中伟,等.水力射孔对地层破裂压力的影响研究[J].中国石油大学学报(自然科学版),2006,30(5):42-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700