用户名: 密码: 验证码:
偏心环空注水泥顶替界面边界及形状描述模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注水泥顶替界面边界描述了环空钻井液的滞留位置,顶替界面形状反映了迟流引起的两相流体掺混程度,钻井液的滞留和迟流都会造成环空封隔能力的降低,因此通过分析注水泥顶替界面的边界及形状优化顶替参数从而降低偏心环空钻井液的滞留和迟流程度是获得良好固井质量的关键。现有注水泥顶替理论无法描述偏心环空边壁附近顶替界面的位置,并且没有考虑两相流体的密度差产生的驱动力沿周向角和半径的变化对顶替界面形状的影响,针对这一问题本文进行了偏心环空注水泥顶替界面边界及顶替界面形状描述模型研究,主要研究内容包括:
     (1)选取赫巴流变模式作为钻井液和水泥浆流变模式的描述模型,分析了赫巴流体在偏心环空中的流动特征,得到了偏心环空赫巴流体区域整体滞留范围,建立了赫巴流体在偏心环空不同周向角和半径处的流速分布模型;
     (2)采用顶替界面微元力学分析的方法,建立了偏心环空注水泥顶替界面边界位置计算模型,阐明了偏心环空钻井液滞留机理,揭示了偏心环空套管和井壁处钻井液滞留的规律;建立了偏心环空井壁和套管处钻井液零滞留条件计算模型,为固井环空零滞留顶替钻井液、水泥浆性能以及顶替参数的调整提供了理论依据;
     (3)考虑了顶替界面上两相流体的密度差所产生的驱动力沿周向角和半径的变化,建立了考虑扩散效应时的顶替流体浓度分布模型和不考虑扩散效应时的动态顶替界面形状描述模型,反映了顶替流体沿环空轴向和周向的二维流动特性,能够准确描述不同时刻固井顶替界面在环空中的整体形态;
     (4)分析了环空周向流作用下固井稳定顶替界面的形成机理,根据稳定顶替时顶替界面上流函数的分布特征和流体运动方程建立了套管居中及偏心条件下稳定顶替界面形状描述模型,揭示了直井及斜井稳定顶替界面形状的变化规律,得出了套管偏心度、井斜角与顶替流体密度差之间的合理匹配关系,并通过数值模拟方法进行了验证。
     本文通过偏心环空注水泥顶替界面边界及顶替界面形状的研究揭示了环空钻井液的滞留机理和迟流规律,完善了固井二维顶替界面形状描述模型,丰富了注水泥顶替理论;得出了套管偏心度、井斜角与顶替流体密度差之间的合理匹配关系,为偏心环空注水泥顶替参数的优化设计提供了理论依据,有助于延长油气井的使用寿命,提高分层注采压裂等增产措施的实施效果。
During cementing, the displacement interface boundary describes the retention positionof annular drilling fluid and the displacement interface shape reflects the intermixing extent oftwo-phase fluids caused by late-flow. There is no doubt that the retention and late-flow ofdrilling fluid can result in the decrease of annular isolation ability. Therefore, decreasing theretention and late-flow extent of drilling fluid by optimizing the displacing parameters on thebasis of analyzing displacement interaface boundary and shape is the premise to obtain goodcementing quality. Unfortunately, the present cementing theory can’t involve the study ofdisplacement interface position on the annular walls. Moreover, it can’t take the effect ofdriving force generated by density difference which changes with azimuthal angle and annularradius on the dispalcement interface shape into consideration. In order to solve the problem,this paper conducts a research on the calculation model of displacement interface boundaryand shape during cementing in eccentric annulus, which mainly includes that:
     (1) Herschel-Bulkely model is chosen to describe the rheological behavior of annularslurry and drilling fluid. Then the flow characteristics of Herschel-Bulkely fluid in theeccentric annulus is analyzed. Finally, the overall range of drilling fluid retention is obtainedand the distribution model for fluid flow rate in different azimuthal angle and annular radius isestablished.
     (2) A model for calculating the boundary position of drilling fluid retention layer isestablished with the method of mechanism analysis on displacement interface element, whichreveals the mechanism of drilling fluid retention during slurry displacing in eccentric annulus.On the basis of the model, the distribution in different azimuthal angle of drilling fluidretention on casing and well walls is obtained. In order to insure the drilling fluid to beadequately displaced, the non-retention model is established, which provides a theoreticalbasis for the adjustment of drilling fluid and slurry rheological parameters and displacingparameters that can achieve non-retention with no doubt.
     (3) By taking the change of driving force generated by the height difference betweentwo-phase fluids along annular azimuthal angle and radius, the calculation model includingdiffusion effect for displacing fluid concentration and the description model excluding diffusion effect for displacement interface shape are established respectively. Obviously, thetwo models indicates the flow behavior of displacing fluid in the azimuthal and axialdirections, therefore, which can the overall shape of displacement interface in the annulus atdifferent time.
     (4) The formation mechanism of steady displacement interface under the effect ofazimuthal flow is analyzed. Moreover, the description models for steady displacementinterface in concentric and eccentric annulus are established respectively. The two models canillustrate the change rule of steady displacement interface shape in the vertical and deviatedwells. Finally, the matching relationship between casing eccentricity, deviation angle anddensity difference is obtained. Besides, it is verified by the numerical simulation results.
     The retention mechanism and late-flow law of annular drilling fluid are revealed bystudying on the displacement interface boundary and shape during cementing in eccentricannulus. As a result, it improves the two-dimensional description model for displacementinterface shape and enriches the cementing theory to some extent. Furthermore, the matchingrelationship between casing eccentricity, derivation angle and density difference is obtained inthis paper, which provides a theory basis for the optimization design of displacing parameterswith no doubt. Obviously, the improvement of cementing quality is beneficial for prolongingthe oil and gas wells life-span and enhancing the implementation effect of zonal fracturing.
引文
[1]王玉武,莫继春,李杨等.纤维与胶乳改善油井水泥石动态力学性能实验[J].钻井液与完井液,2005,22(2):26-28
    [2]罗霄,姚晓,张亮等.水乳树脂改善油井水泥石力学性能研究[J].石油天然气学报,2010,32(3):285-289
    [3]李早元,郭小阳,杨远光.改善油井水泥石塑性及室内评价方法研究[J].天然气工业,2004,24(2):55-58
    [4]赵琥,宋茂林,郭晓军等.防窜增强剂对深水低温水泥石三轴力学性能的影响[J].钻井液与完井液,2012,29(1):66-68
    [5]奚宏军. DZF-1增韧水泥浆体系的研究[D].吉林大学,2013
    [6]李早元,郭小阳.橡胶粉对油井水泥石力学性能的影响[J].石油钻探技术,2008,36(6):52-55
    [7]付建红,黄贵生,杨志彬等.水平井套管扶正器合理安放位置计算[J].西南石油大学学报,2008,30(6):89-90
    [8]丁保刚,李国庆,姜文勇等.套管居中设计与校核[J].石油钻探技术,2009,37(1):58-61
    [9]张景富,李成林,王忠福等.套管弹性旋流扶正器的旋流规律及应用[J].石油学报,1997,18(1):111-115
    [10]周少华.基于ANN和GT的固井质量预测及施工参数优化设计研究[D].大庆石油学院,2008
    [11]杨继毅.套管粘砂提高固井质量的机理探讨[J].石油钻探技术,2001,29(5):48-49
    [12]张宇,田旭,张辉等.泥饼固化提高固井二界面胶结强度的微观分析[J].油田化学,2012,29(2):146-150
    [13]顾军,秦文政. MTA方法固井二界面整体固化胶结实验[J].石油勘探与开发,2010,37(2):226-231
    [14]舒秋贵,罗德明,焦建芳等.泥页岩层不规则井眼环空注水泥顶替理论与技术[J].钻采工艺,2012,35(4):29-31
    [15]刘成贵.非常规油气水平井固井关键技术研究与应用[J].石油钻采工艺,2013,35(2):48-51.
    [16]刘世彬,郑锟,张弛等.川渝地区深井超深井固井水泥浆防污染试验[J].天然气工业,2010,30(8):51-54
    [17]李静,郭小阳,杨香艳等.隔离液合理选材设计以改善与水泥浆相容性实验探索[J].钻井液与完井液,2007,24(4):43-46
    [18]刘伟,陶谦,丁士东.页岩气水平井固井技术难点分析与对策[J].石油钻采工艺,2012,34(3):40-43
    [19]赵常青,冯彬,刘世彬等.四川盆地页岩气井水平井段的固井实践[J].天然气工业,2012,32(9):61-65
    [20]闫联国,周玉仓.彭页HF-1页岩气井水平段固井技术[J].石油钻探技术,2012,40(4):47-51
    [21]辜涛,李明,魏周胜等.页岩气水平井固井技术研究进展[J].钻井液与完井液,2013,30(4):75-80
    [22] Williams H,Khatri D,Vaughan M,et al. Particle size distribution-engineered cementingapproach reduces need for polymeric extenders in haynesville shale horizontal reachwells[R].SPE147330-MS,2011.
    [23]陶世平,段保平,赵志强.油气井固井注水泥顶替理论的研究[J].吐哈油气,2007,12(3):254-257
    [24] WIIsonWN, CarpenterRB, BradshawRD. Conversioll of Mud To Cement. SPE20454,1990
    [25] MING QUAN SONG,et al.Slag MTC Techniques Solve Cementing Problems inComplex Wells[J].SPE64758,2000
    [26] LADVA HKJ, et al.The Cement-to-Formation Interface in Zonal Isolation[J]. SPE88016,2004
    [27]程荣超,步玉环,王瑞和.高炉矿渣改善固井水泥界面胶结性能研究[J].天然气工业,2007,,27(2):63-66
    [28]李家芬,苏长明,杨振杰,等.提高固井界面胶结强度的钻井液研究与应用[J].石油钻探技术,2007,35(5):72-75.
    [29]张玉广,李新宏,高玉堂等.养护时间和泥饼改性剂对固井二界面胶结强度的影响[J].油田化学,2010,27(2):124-127
    [30]杨振杰,李家芬,苏长明等.使用优质钻井液提高固井二界面胶结质量[J].钻井液与完井液,2006,23(2):70-75
    [31]顾军,高德利,石凤歧等.论固井二界面封固系统及其重要性[J].钻井液与完井液,2005,22(2):7-10
    [32]顾军,高兴原,刘洪.油气井固井二界面封固系统及其破坏模型[J].天然气工业,2006,26(7):834-837
    [33]顾军,杨卫华,秦文政,等.固井二界面封隔能力评价方法研究[J].石油学报,2008,29(3):451-454.
    [34]郭辛阳,步玉环,沈忠厚等.井下复杂温度条件对固井界面胶结强度的影响[J].石油学报,2010,31(5):834-837
    [35]顾军,李新宏,先花等.油井水泥浆与多功能钻井液泥饼界面离子扩散阻碍机理[J].石油学报,2013,34(2):359-364
    [36]郭辛阳,步玉环,李娟,等.变温条件下泥饼对二界面胶结强度的影响[J].钻井液与完井液,2010,27(1):55-57.
    [37]刘浩亚.固井二界面水泥浆-泥饼胶结网络结构作用机制研究[D].中国地质大学,2012
    [38]刘崇建,黄柏宗,徐同台等.油气井注水泥理论与应用[M].北京:石油工业出版社,2001
    [39]彭明旺,夏宏南,陶谦等.利用壁面剪应力提高固井水泥浆顶替效率的研究与应用[J].断块油气田,2006,13(6):68-70
    [40]陈志学,寇明富,于文华等.水泥浆在井壁上的剪应力对固井质量的影响研究[J].石油钻探技术,2004,32(2):27-29
    [41]沈勇,康世柱,王刚等.乌东1井大环空井眼固井实践[J].钻井液与完井液,2010,27(5):81-83
    [42] R.H.Mclean etc. DisplacementMechanics in PrimaryCementing. JPT,1967:251~260
    [43] Parker, P.N.,Ladd, B. J.,Ross,W.N., andWah,l W.W.,An Evaluation of a PrimaryCementing Technique Using Low Displacement Rates,SPE1234,1965.
    [44] Parker, P.N. Cementing Successful atLow DisplacementRates,WorldOil J,1969,93.
    [45]陈家琅,刘永建.固井偏心环空最窄间隙的极限允许宽度[J].大庆石油学院学报,1987,11(4):17-22
    [46] R.C.HautandR. J.Crook. Primary Cementing: The Mud Displacement Process. SPE8253,1979
    [47] R. C.Haut and R. J. Crook. Primary Cementing: Optimizing for MaximumDispkcement.World oi,l Nov.1980pp.1828-1834.
    [48] R.C.Haut and R. J.Crook. Laboratory Investigation of Light Weight, Low-ViscosityCementing Spacer Fluids. JPT,1982
    [49]刘崇建,刘孝良,刘乃震等.提高小井眼水泥浆顶替效率的研究[J].天然气工业,2003,23(2):46-49
    [50]郑毅,刘爱平.环空流动壁面剪应力对固井质量的影响[J].探矿工程,2003,(3):38-41
    [51]刘爱萍,邓金根.委内瑞拉Caracoles油田固井技术[J].天然气工业,2005,25(9):67-69
    [52]王纯全,徐峰. YH5H井壁面剪应力理论固井实践[J].钻采工艺,2007,30(6):125-126
    [53]邓建民.固井钻井液零滞留临界静切力计算方法[J].天然气工业,2008,28(5):72-73
    [54]邓建民,王永洪,贾晓斌等.注水泥流体密度与流变参数匹配的计算方法[J].石油钻探技术,2011,39(5):45-48
    [55]杨宝林,顾军,郑涛等.泥饼厚度对固井二界面胶结强度的影响[J].钻井液与完井液,2009,26(1):42-46
    [56]祁文明,田群山,吴天师等.深井高密度水泥浆防污染技术研究与应用[J].西部探矿工程,2011,(10):90-93
    [57] Szabo P, Hassager O. Displacement of one Newtonian fluid by another: density effects inaxial annular flow. International.Journal Multiphase Flow,1997(1):113-129
    [58] Eduardo S, Dutra S, Monica F.Liquid displacement during oil well cementing operations.Annual transactions of the Nordic Rheology Society,2004(1):93-100
    [59] Dutra E S S, Martins A L, Miranda C R, et al. Dynamic of fluids substitution whiledrilling and completion long horizontal section well.SPE94623,2005:1-8
    [60]高永海,孙宝江,刘东清等.环空水泥浆顶替界面稳定性数值模拟研究[J].石油学报,2005,26(5):119-122
    [61]高永海,,孙宝江,赵欣欣等.前置液流变性对顶替界面稳定性影响的数值模拟[J].中国石油大学学报(自然科学版),2007,31(6):51-54
    [62] Muhammad Zulqarnain.“Simulations of the primary cement placement in annulargeometries during well completion using computional fluid dynamics(CFD)”, MscThesis, The Craft and Hawkins Department of Petroleum Engineering, Louisiana StateUniv, USA,2012.
    [63]王斌斌,王瑞和,步玉环.不同流态下水泥浆环空顶替的数值模拟研究[J].钻井液与完井液,2010,27(3):76-83
    [65]李娟.不同流态的顶替效率的数值模拟研究[D].中国石油大学,2009
    [66]杨建波,邓建民,冯予淇等.低速注水泥时密度差对顶替效率影响规律的数值模拟研究[J].石油钻探技术,2008,36(5):62-65
    [66] Pk S,YERUBANDI K B. Slim-Well Completions: A3D Numerical Approach forDisplacement to Design Effective Cementing Fluids[C]. SPE132480,2010
    [67] P.E.Aranha, C.R.Miranda, J.V.M.Magalhaes, etal..Dynamic Aspects Governing CementPlug Placement in Deepwater Wells[C]. SPE140144,2011
    [68]李明忠,王成文,王长权等.大斜度井偏心环空注水泥顶替数值模拟研究[J].石油钻探技术,2012,40(5):40-44
    [69]张松杰,薛亮,汪志明等.密度差对水平井固井顶替影响规律数值模拟研究[J].钻采工艺,2012,35(6):15-17
    [70]张松杰,薛亮,汪志明等.正密度差对水平井偏心环空顶替影响规律研究[J].科学技术与工程,2013,13(4):1011-1015
    [71] M.A.Tehrani, S.H.Bittleston and P.J.G.Long. Flow instabilities during annulardisplacement of one non-Newtonian fluid by another[J]. Experiments in Fluids,1993:246-256
    [72] R.H.Mclean, MEMBER AIME,C.W.MANRY et al.Displacement mechanics in primarycementing[J].Journal of petroleum technology,1967:251-260
    [73]杨建波,邓建民,黎泽寒等.低速注水泥过程中密度差对顶替效率的影响[J].石油钻探技术,2007,35(5):79-82.
    [74] Miranda.C.R., Carvalho.K.T., Vargas.A.A. et al.Minimizing fluid contamination duringoilwell operations.Offshore Mediterranean conference. Ravena,2007.
    [75] Pedro Esteves Aranha,Cristiane Richard de Miranda,et al. A comprehensive theorticaland experimental study on fluid displacement for oilwell cementing operations[C].SPE150276, SPE Deepwater Drilling and Completions Conference held inGalveston,Texas,USA,20-21June2012
    [76] Malekmohammadi S.; Carrasco-Teja M.; Storey S., Frigaard I.A.; Artinez D.M. Anexperimental study of laminar displacement flows in narrow vertical eccentric annuli. J.Fluid Mech.,2010,649,371-398
    [77]张兴国,许树谦,陈若铭等.紊流顶替和接触时间对顶替效率的影响[J].西部探矿工程,2005,(2):74-76
    [78]郑永刚.定向井层流注水泥顶替的机理[J].石油学报,1995,16(4):133-139
    [79]廖华林,李根生,张树坤.小眼井层流注水泥顶替机理分析[J].石油钻探技术,2003,31(6):30-32
    [80]郑永刚.宾汉流体定向井注水泥顶替机理[J].石油钻采工艺,1994,16(6):16-23
    [81]郑永刚,方铎,郝俊芳.水平井注水泥的理论与实验研究[J].水动力学研究与进展,1996,11(1):19-23
    [82]郑永刚.非牛顿流体流动理论及其在石油工程中的应用[M].北京:石油工业出版社,1999
    [83]贺成才.小井眼固井一维顶替流理论研究[J].石油钻采工艺,2002,24(3):5-7
    [84]陈绪跃,樊洪海,纪荣艺等.四参数流变模式及其在固井水泥浆中的应用[J].石油钻探技术,2013,41(5):76-81
    [85]李静,林承焰,王言峰.非牛顿流体顶替机理研究综述[J]钻井液与完井液,2009,26(1):75-77.
    [86]王瑞和,李明忠,王成文等.油气井注水泥顶替机理研究进展[J].天然气工业,2013,33(5):69-76.
    [87] Bittleston S.H.; Ferguson J.; Frigaard I.A. Mud removal and cement placement duringprimary cementing of an oil well: Laminar non-Newtonian displacements in an eccentricannular Hele-Shaw cell. Journal of Engineering Mathematics,2002,(43):229-253
    [88] Pelipenko S.; Frigaard I.A. Mud removal and cement placement during primarycementing of an oil wellPart2; steady-state displacements. Journal of EngineeringMathematics,2004,(48):1-26
    [89] Pelipenko S.; Frigaard I.A. Two-dimensional computational simulation of eccentricannular cementing displacements. IMA Journal of Applied Mathematics,2004,69,557-583
    [90] I.A.Frigaard, S. Pelipenko. Effective and Ineffective Strategies for Mud Removal andCement Slurry Design[C]. SPE80999,2003
    [91] Pelipenko S.; Frigaard I.A. Visco-plastic fluid displacements in near vertical narroweccentric annuli: prediction of travelling-wave solutions and interfacial in-stability.Journal of Fluid Mechanics,2004,1-35
    [92] I.A.Frigaard, S. Pelipenko. Effective and Ineffective Strategies for Mud Removal andCement Slurry Design[C]. SPE80999,2003
    [93] Frigaard I.A.; Pelipenko S. Effect of density difference on displacement efficiency duringlow-rate cementing. Petroleum Drilling Techniques,2007,35,79-82
    [94] Miguel A.; Moyers-Gonzalez M.A.; Frigaard I.A. Kinematic instabilities in two-layereccentric annular fows,part1: Newtonian fuids. J Eng Math,2007,62,103-131
    [95] Moyers-Gonzalez M.A.; Frigaard I.A. Kinematic instabilities in two-layer eccentricannular fows, part2: shear-thinning and yield-stress effects. J Eng Math,2009,65,25-52
    [96] Carrasco-Teja M.; Frigaard I.A.; Seymour B.R.; Storey S. Viscoplastic fuiddisplacements in horizontal narrow eccentric annuli: stratifcation and travelling wavesolutions. J. Fluid Mech.,2008,605,293-327
    [97] Carrasco-Teja M.; Frigaard I.A.; Seymour B. Cementing horizontal wells: Completezonal isolation without casing Rotation. CIPC/SPE Gas Technology Symposium2008Joint Conference,2008,2-6.114955
    [98]Carrasco-Teja M.,Frigaard I.A. Seymour B. Non-Newtonian fuid displacements inhorizontal narrow eccentric annuli:ef ects of slow motion of the inner cylinder[J]. J.Fluid Mech.(2010), vol.653, pp.137–173
    [99]M. Moyers-Gonzalez a, K. Alba b, S.M. Taghavic, I.A. Frigaard. A semi-analyticalclosure approximation for pipe fows of two Herschel–Bulkley fuids with a stratifedinterface [J]. Journal of Non-Newtonian Fluid Mechanics (2013), pp.49–67
    [100] S. M. Taghavi, K. Alba, T. Seon et al. Miscible displacement fows in near-horizontalducts at low Atwood number [J]. J. Fluid Mech.(2012), vol.696, pp.175–214
    [101]蒲晓林,黄林基,罗兴树,等.深井高密度水基钻井液流变性、造壁性控制原理[J].天然气工业,200l,21(6):48-51
    [102]尹文斌.钻井液水力参数优化设计及软件的研制[D].中国地质大学,2005
    [103]卢明.高密度钻井液流变性及水力学计算[D].中国石油大学,2010
    [104]胡茂焱,尹文斌,郑秀华等.钻井液流变参数计算软件的开发及流变模式的优化[J].钻井液与完井液,2005,22(1):28-30
    [105]杨香艳.一种新型水基广谱前置液体系研究与应用[D].西南石油学院,2004
    [106]朱宽亮,王富华,徐同台等.抗高温水基钻井液技术研究与应用现状及发展趋势(∏)[J].钻井液与完井液,2009,26(6):56-64
    [107]王治国,徐璧华,陈超等.复杂井眼条件下扶正器对套管下入摩阻的影响研究[J].钻采工艺,2014,37(1):27-30
    [108]杨广国,陶谦,刘伟等.页岩气井固井套管居中与下入能力研究[J].石油机械,2012,40(10):26-30
    [109]李明忠,王瑞和,王成文.层流顶替钻井液滞留层厚度研究[J].水动力学研究与进展,2013,28(5):531-537
    [110]张铎远.浆体性能及井眼条件对顶替效率的影响研究[D].中国石油大学,2007
    [111]罗玉财.固井顶替效率数学模型及应用[D].东北石油大学,2012
    [112]侯卓识.水平井固井顶替钻井液滞留模型研究[D].东北石油大学,2012
    [113]汪海阁,刘希圣,丁岗.水平井段偏心环空中非牛顿流体层流流场的研究[J].石油大学学报(自然科学版),1993,17(5):26-34
    [114]G. C.Howard and J. B. Clark. Factors to be Considered in Obtaining ProperCementing ofCasing.D. P. P.API,1948,257~272.
    [115]Sauer,C.W.1987,Mud displacement during cementing:A state of the art, journal ofpetroleum technology,pp.1091-1101
    [116]Lockyear,C.F.and Hibbert,A.P.1989.Integrated primary cementing study defines keyfactors for field success.J.Pet.Tech.41(12):1320-1325
    [117]Jakobsen,J.,Sterri,N.,Saasen,A.,Aas,B.,Kjosnes,I.,Vigen,A.,1991.Displacement ineccentric annuli during primary cementing in deviated wells,Proc.SPE ProductionOperations Symposium,paper SPE21686
    [118] MCPHERSON S A. Cementation of horizontal wellbores[J].SPE62893
    [119] K. Alba, S. M. Taghavi, and I. A. Frigaard. Miscible density-stable displacement flowsin inclined tube [J]. PHYSICS OF FLUIDS24,123102(2012):1-11
    [120]单高军.钻井液类型及性能与固井质量的关系研究[D].西南石油大学,2005
    [121]张兴国,许树谦,苏洪生等.泥浆触变性对顶替效率的影响[J].西部探矿工程,2005,(1):74-75.
    [122]李早元,郭小阳,杨远光.固井前钻井液性能调整及前置液紊流低返速顶替固井技术[J].钻井液与完井液,2004,21(4):31-33
    [123] S.D.Brady,Texaco,P.P.Drecq et al. Recent Technological Advances Help Solve CementPlacement Problems in the Gulf of Mexico[C].1992IADCISPE Drilling Conferenceheld in New Orleans, Louisiana, February18-21,1992,SPE23927
    [124]郑永刚.偏心环空旋转套管流场及对注水泥顶替效率的影响[J].西部探矿工程,1994,6(2):33-37.
    [125]郑永刚,郝俊芳,王治平.活动套管提高注水泥顶替效率的理论分析[J].天然气工业,1994,14(2):48-50
    [126]王显诚,丁保刚,王丽峰等.旋转套管对固井质量的影响[J].石油钻探技术,1995,23(1):47-49.
    [127]丁士东,高德利,于东.不同套管-井眼组合下旋转套管速度分析研究[J].石油钻探技术,2006,34(6):33-35.
    [128]步玉环,郭胜来,马明新等.复杂井眼条件下旋转套管速度对固井质量的影响[J].石油学报,2011,32(3):529-533.
    [129]郑友志,刘伟,余才焌等.旋转套管固井工艺技术在LG-A井的应用[J].天然气工业,2010,30(4):74-76.
    [130]M. Carrasco-Teja, I. A. Frigaard. Displacement flows in horizontal, narrow, eccentricannuli with a moving inner cylinder[J]. PHYSICS OF FLUIDS21,073102(2009):1-20
    [131]李早元,杨绪华,郭小阳等.固井前钻井液地面调整及前置液紊流低返速顶替固井技术[J].天然气工业,2005,25(1):93-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700