用户名: 密码: 验证码:
纳米流体的辐射特性及其在太阳能热利用中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源和环境问题的日益严重,传统化石能源的大量使用所带来的环境危害也得到了越来越多的关注。太阳能作为可再生清洁能源蕴藏着巨大能量,是最丰富的可再生资源,并且分布广泛,清洁无污染。因而对太阳能的开发利用,太阳能材料及相关技术的开发在全世界范围都引起了广泛的重视。太阳能热发电技术即以太阳能作为热源产生蒸汽驱动汽轮机的热发电技术。
     纳米流体是指将尺度在100nm以下的微小颗粒均匀稳定的分散在基液中形成的稳定的悬浊液。关于纳米流体强化传热特性研究者们已开展了大量的相关研究工作,而本文主要着眼于纳米流体的辐射特性及其在太阳能热利用中的应用,尤其是在聚光式太阳能集热器中的应用。
     本文首先采用两步法制备了多种油基纳米流体样品,通过机械搅拌、超声震荡,以及添加分散剂等方法改善流体中颗粒的分散性和流体的稳定性。采用马尔文激光粒度仪对流体中团聚体的等效粒径进行测量以表征颗粒的分散程度。
     在制备得到较为稳定的纳米流体样品基础上,对流体样品的辐射特性开展了实验和理论的研究工作。试验方面,本文采用分光光度计测试了不同材料、不同尺度、不同浓度纳米颗粒的添加,以及不同厚度液层等参数对流体样品表征透射率的影响。理论方面,本文通过比对独立散射近似(Isotropic scattering approximation),有效场近似(Effective field approximation),半晶体近似(Quasicrystaline Approximation), Fedorov and Viskanta's基于米氏理论的优化模型(FV),以及Yin and Pilon's基于近场近似和远场近似的优化模型(YP)等五个近似模型对计算掺杂介质的有效散射因数和有效吸收因数的适用性,在考虑颗粒对辐射的吸收和散射的同时,考虑基液对辐射的部分吸收所带来的影响,并为了适用于散射波之间存在干涉效应的浓度较高的掺杂介质辐射特性计算,本文优化并提出了QCA’模型用以计算纳米流体工质的辐射特性参数。
     依据直接吸收概念,本文设计并搭建了纳米流体直接吸收式太阳能集热器模型实验台。在计算得到纳米流体工质的辐射特性参数基础上,求解辐射传递方程,分析了纳米流体样品中的辐射传递。通过耦合介质内的热传导,以及边界上的热对流,本文建立了纳米流体直接吸收式太阳能集热器的能量平衡模型。并依据模型分析了采用不同循环工质、不同入口流速、不同入射辐射强度,以及不同几何尺寸等不同工况参数对集热器内温度分布、出口温度,及光热转换效率的影响。在模型分析的同时,通过实验验证了采用纳米流体工质对集热器光热转换效率的提升,采用纳米流体直接吸收式太阳能集热器获得了品位相对更高的中低温热源。
Alternative energy is attracting a growing interest in solving the problems of global energy and environment, including nuclear, wind and solar energy. Solar energy is clean, abundant, and widely distributed, and solar power technologies have a great progress in recent years.
     Nanofluid is an engineered colloidal suspension of nanoparticles in a base fluid. Convective transport and effective thermophysical properties of nanofluids have been extensively studied in the last decade. As to the radiative properties, it is shown that nanofluids can strongly absorb or spectral selectively absorb solar radiations. Nanofluids are expected to apply in fields of automotive industry, disease treatment, cooling of electrical devices, solar energy and etc.
     The nanofluids were prepared though a two-step method in this thesis, e.g. TiO2, Al2O3, Ag, Cu, SiOa, graphite and carbon nanotubes, were added directly into Texaherm oil for preparing stable suspension colloids. In preparation, the mixtures were mechanically stirred, sonication, and oleic acid (OA), cetyltrimethyl ammonium bromide(CTAB) and hexamethyl disiloxane (HMDSO) were added as dispersing agents with SN ratio0.1-1. The equivalent diameters of the agglomerated clusters were detected by Malvern Zetasizer Nano ZS90to evaluate the stabilities of the nanofluids samples.
     The radiative properties of nanofluids are numerically and experimentally investigated. For nanofluids, scattering and absorbing of electromagnetic waves by nanoparticles, as well as light absorption by the matrix/fluid wherein the nanoparticles are suspended, should be considered. Five models for predicting apparent radiative properties of nanoparticulate media were compared and evaluated their applicability. Using spectral absorption and scattering coefficients predicted by different models, the apparent transmittance of a nanofluid layer was computed, including multiple reflecting interfaces bounding the layer, and compare the model predictions with experimental results in literatures and measured using SHIMADZU UV3150ultraviolet and visible spectrophotometer. Finally, a new method to calculate the spectral radiative properties of dense nanofluids were proposed for the radiative properties of nanofluids, which shows a quantitatively good agreement with the experimental results.
     Hunt introduced the small particle heat exchange receiver (SPHER) for solar-thermal electric power generation in1978, by dispersing small absorbing particles into a gaseous working fluid, and showed that this device offered an effective improvement. A nanofluid solar collector experimental model based on direct absorption collection (DAC) concepts was built to analyze influences of working fluids and operation conditions on system performances. By solving the radiative transfer equation (RTE) combined with conduction and convection heat transfer equations, system efficiencies and temperature distributions of the collector were modeled, whose results were well agreed with those of experiments. The study indicated that nanofluids were almost "black" on absorbing solar radiation even for low-content nanofluids, providing high outlet temperatures and system efficiencies.
引文
1. BP, Statistical Review of World Energy 2011.2012, BP.
    2. IEA, Energy Statistics Manual-Chinese version.2011.
    3. 王仲颖,任东明,and高虎,中国可再生能源产业展报告.2012:化学工业出版社.
    4. 刘慧,太阳能光伏发电技术发展概述.现在农业,2007.12.
    5. 陈德明,太阳能热利用技术概况.物理,2007.11:p.840.
    6. 赵利勇.太阳能利用技术与发展.能源与环境,2007.04.
    7. 洪若瑜,磁性纳米粒和磁性流体的制备与应用.2009:化学工业出版社.
    8. 许并社,纳米材料及应用技术.2003:化学工业出版社.
    9. Prasad, P. N., Application of Nanomaterials and Nanotechnology in Renewable Energy. Optics & Optoelectronic Technology,2012.10:p. 1.
    10. Neumann,O., et al., Solar Vapor Generation Enabled by Nanoparticles. ACS Nano,2013.7.
    11. 宣益民and李强,纳米流体能量传递理论与应用.2010:科学出版社.
    12. Akoh, H., et al., Magnetic properties of ferromagnetic ultra fine particles prepared by a vacuum evaporation on running oil substrate. J. Cryst. Growth,1978.45.
    13. M., W., B. S. Murty, and B. G. unther. Preparation of metal nanosuspensionsby high-pressure dc-sputtering on running liquids. Nanocrystalline and Nanocomposite Materials Ⅱ 1997.457.
    14. J.A.Eastman, et al., Anomalously inereased effeetive thermal conductivities of ethylene glycol - based nanofluids containing copper nanopartieles. Applied Physics Letters,2001.78:p.718-720.
    15. Lo, C.-H., T.-T. Tsung, and L.-C. Chen, Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system Journal of Crystal Growth,2005.277.
    16. Wang, X., X. Xu, and S.U. S. Choi, Thermal conductivity of nanoparticle-f fluid mixture. Journal of Thermophysics and Heat Transfer 1999.13.
    17. Murshed, S. M. S., K. C. Leong, and C. Yang, Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of Thermal Sciences,2005.44.
    18. Ghadimi, A., R. Saidur, and H. S. C. Metselaar, A Review of Nnanofluid Stability Properties and Characterization in Stationary Conditions. Int. J. Heat Mass Trans.,2011.54.
    19. Kimoto, K., et al., An electron microscope study on fine metal particles prepared by evaporation in argon gas at low pressure. Jpn. J. Appl. Phys.,1963.2.
    20. Granqvist, C. G. and R. A. Buhrman. Ultra fine metal particles. J. Appl. Phys.,1976.47.
    21. Gleiter, H., Nanocrystalline materials. Prog. Mater. Sci.,1989. 33.
    22. Suslick, K. S., M. Fang, and T. Hyeon, Sonochemical Synthesis of Iron Colloids J. Am. Chem. Soc.,1996.118(11960).
    23. 李玲,表面活性剂与纳米技术.2004:化学工业出版社.
    24. Duangthongsuk, W. and S. Wongwises, Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance. Exp. Therm. Fluid Sci.,2010.34.
    25. Zhu, H., et al., Preparation and thermal conductivity of suspensions of graphite nanoparticles. Carbon,2007.45.
    26. Hong, K. S., T. K. Hong, and H. S. Yang, Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl. Phys. Lett.,2006.88(3).
    27. Wang, X.-j., D.-s. Zhu, and S. yang, Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem. Phys. Lett.,2009.470.
    28. Chandrasekar, M., S. Suresh, and A. C. Bose, Experimental investigations and theoretical determination of thermal conductivity and viscosity of A1203/water nanofluid. Exp. Therm. Fluid Sci.,2010.34.
    29. Lee, D., J.-W. Kim, and B. G. Kim, A new parameter to control heat transport in nanofluids:surface charge state of the particle in suspension. J. Phys. Chem.,2006.
    30. Oh, D.-W., et al., Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3omega method. Int. J. Heat Fluid Flow 2008.29.
    31. Patel, H., et al., A micro-convection model for thermal conductivity of nanofluids. Pramana,2005.65.
    32. Kumar, P.N.D.S., T. Peter, and R. Wilfried, Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer 2003.125.
    33. Asirvatham, L. G., et al., Experimental study on forced convective heat transfer with low volume fraction of CuO/water nanofluid. Energies 2009.2.
    34. Chung, S. J., et al., Characterization of ZnO nanoparticle suspension in water:Effectiveness of ultrasonic dispersion, Powder Technol.,2009.194.
    35. Zhao, J., study of Nano fluids'Radiation Properties and its Utilization in Photovoltaic/Thermal System in Department of Energy Engineering.2009, Zhejiang University:Hangzhou.
    36. Chang, H., et al., Process optimization and material properties for nano fluid manufacturing,. Int. J. Adv. Manuf. Technol.,2007. 34.
    37. Hwang, Y., et al., Production and dispersion stability of nanoparticles in nano fluids. Powder Technol.,2008.186.
    38. S.Lee, et al., Measuring thermal conduetivity of fiuid seoniaining oxide nanoPartieles. Joumal ofHeatTransfer,1999.121.
    39. 王补宣,李春辉,and彭晓峰,纳米颗粒悬浮液稳定性分析.应用基础与工程科学学报,2003.11.
    40. Chopkar, M., P. K. Das, and I. Manna, Synthesis and characterization of nano H uid for advanced heat transfer applications. Scr. Mater.,2006.55.
    41. Paulus, U. A., et al., New PtRu Alloy Colloids as Precursors for Fuel Cell Catalysts. J. Catal.,2000.195.
    42. B nnemann, H., W. Brijoux, and R. Brinkmann.1999.
    43. B nnemann, H., et al., Monodisperse copper-and silver-nanocolloids suitable for heat-conductive fluids. Appl. Organomet. Chem.,,2005.19.
    44. A., S.-G., et al., Low dimensional Systems and Nanostructures. Physica E,2005.27.
    45. J., M.J.. et al., J. Chem. Phys.,2002.116(15).
    46. I., K. A., et al., Theor. Exp. Chem.,2003.39(1).
    47. A. L., G., et al., J. PHYS. Chem. B.,2005.109.
    48. Y., X. and L. Q., J. Heat Fluid Flow 2000.21.
    49. K., K. and K. C, Kor-Austr. Rheol. J.,2005.17:p.35.
    50. Hwang, Y., et al., Stability and thermal conductivity characteristics of nanofluids. Thermochim. Acta,2007.455.
    51. Zhu, D., et al., Dispersion behavior and thermal conductivity characteristics of A1203-H2O nanofluids. Curr. Appl Phys.,2009. 9.
    52. Yu, W., et al., Enhancement of thermal conductivity of kerosene-based Fe304 nanofluids prepared via phase-transfer method. Colloids Surface A:Physicochem. Eng. Aspects,2010.355.
    53. Ding, Y., et al., Forcedconvective heat transfer of nanofluids. Adv. Powder Technol.,2007.18:p.813.
    54. Madni, I., et al., Mixed surfactant system for stable suspension of multiwalled carbon nanotubes. Colloids Surface A:Physicochem. Eng. Aspects,2010.358.
    55. Sato, M., et al. Thermal performance of self-rewetting fluid heat pipe containing dilute solutions of polymercapped silver nanoparticles synthesized by microwave-polyol process. in Proceedings of the ITP2009.2009.
    56. Lee, J., Convection Performance of Nanofluids for Electronics Cooling.2009, Stanford University.
    57. Garnett, J. C. M., Philos. Trans. R. Soc. London.1904. Ser. A 203.
    58. Bruggeman, D. A. G., Ann. Phys.,1935. Leipzig 24.
    59. Rio, J. A. d., R. W. Zimmerman, and R. A. Dawe, Solid State Commun. 1998.106.
    60. Rio, J. A. d. and S. Whitaker, Transp. Porous Media,2000.39.
    61. Navid, A. and L. Pilon, Effect of Polarization and Morphology on the Optical Properties of Absorbing Nanoporous Thin Films. Thin Solid Films,2008.516(12).
    62. Braun, M. M. and L. Pilon, Thin Solid Films,2006.496(505).
    63. Modest, M. F., Radiation Heat Transfer, ed. J. J. Corrigan and J. M. Morriss.1993:McGorw-Hill.
    64. Schuster, A., Radiation through a foggy atmosphere. Astrophysical Journal 1905.21.
    65. K., S., Uber das gleichgeewicht der sonnenatmospharen, (Equilibrion of the Sun's Atmosphere. Akad. Wiss. Gottingen, Math-Phys. K1. Nachr.,1906.195.
    66. M., C. C. and S. W. Churchill, Numerical Solution of Problems in Multiple Scattering of Electromagnetic Radiation. Journal of Physical Chemistry,1960.59.
    67. Shih, T. M. and Y. N. Chen, A discretized-Intensity Method Proposed fir Two-Dimentional Systems Enclosing Radiative and Conductive Media. Numerical Heat Transfer,1983.6.
    68. S., E.A., THE INTERNAL CONSTITUTION OF THE STARS.1959, NEW YORK: DOVER PUBLICATIONS.
    69. G., S. N., New method of computation of radiation heat transfer in combustion chambers.1979, Imperia College of Science and Technology:London.
    70. M. C. W. van Rossum, T. M. N., Multiple Scattering of Classical Waves:Microscopy, Mesoscopy, and Diffusion. Reviews of Modern Physics,1999.71(1):p.313-371.
    71. Kocifaj, M., Approximate Analytical Scattering Phase Function Dependent on Microphysical Characteristics of Dust Particles. Applied Optics.50(17):p.2493-2499.
    72. J.H. Page, H. P. S.,1. P. Jones. P. Sheng, D. A. Weitz, Classical Wava Propagation in Strongly Scattering Media. Physia A,1997.241:p. 64-71.
    73. H. Sato, M. C. F., Seismic Wave Propagation and Scattering in the Heterogenous Earth.1998:AIP Press.
    74. Ishimaru, A., Wave Propagation and Scattering in Random Media. 1999:John Wiley & Sons.
    75. Mie, G., Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann. Phys.,1908.25(3):p.377-445.
    76. S. Fraden, G. M., Multiple Light Scattering from Concentrated. Interacting Suspensions. Physical Review Letters,1990.65(4):p. 512-515.
    77. B. A.vanTiggelen, A. L., A. Tip, Multiple-Scattering Effects for the Propagation of Light in 3D. J. Phys,:Condens. Matter 1990.2:p. 7653-7677.
    78. Foldy, L. L., The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers. Physical Review,1945.67(3-4):p.107-119.
    79. Lax, M., Multiple Scattering of Waves. II. The Effective Field in Dense Systems. Physical Review,1952.85(4):p.621-629.
    80. Prasher, R., Thermal radiation in dense nano- and microparticulate media Journal of Applied Physics,2007.102(7):p.9.
    81. Lebedev, A. N., et al., Opticak extinction by spherical particles in an absorbing medium:application to composite absorbing films. Eur. Phys. J. D,1999.6:p.365.
    82. Fu, Q. and W. Sun, Mie Theory for Light Scattering by a Spherical Particle in an Absorbing Medium. Applied Optics,2001.40(9):p. 1354-1361.
    83. Sudiarta, I.W. and P. Chylek, Mie scattering efficiency of a spherical particle embedded in an absorbing medium. J. Quant. Spectrosc. Radiat. Transf.,2001.70.
    84. Sudiarta, I.W. and P. Chylek, Mie scattering formalism for spherical particles enbee|dded in an absorbing medium. J. OPt. Soc. Am. A,2001.18.
    85. Mundy, W. C., J. A. Roux, and A.M. Smith, Mie scattering by spheres in an absorbing medium. J. Opt. Soc. Am.,1974.64:p.1593-1597.
    86. Link, S. and M. A. El-Sayed, Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem.,2000.19.
    87. Khlebtsov, N., L. Trachuk, and A. Meinikov, The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium. Optics Spectrosc.,2005.98.
    88. Sani, E., et al., Potential of carbon nanohorn-based suspensions for solar thermal collectors. Solar Energy Mater. Solar Cells, 2011.95.
    89. Mercatelli, L., et al., Absorption and scattering properties of carbon nanohorn-based nano fluid for direct sunlight absorbers. Nanoscale Res. Lett.,2011.6.
    90. Mercatelli, L., et al., Scattering and absorption properties of carbon nanohorn-based nanofluids for solar energy applications. J. Euro. Optical Soc.,2011.6.
    91. Mercatelli, L., et al., Carbon nanohorn-based nano fl uids: characterization of the spectral scattering albedo. Nanoscale Res. Lett.,2012.7.
    92. Saidur, R., et al., Evaluation of the effect of nano fluid-based absorbers on direct solar collector. Int. J. Heat Mass Transfer, 2012.55.
    93. Lenert, A. and E. N. Wang, Optimization of nano fluid volumetric receivers for solar thermal energy conversion. Solar Energy,2011.
    94. Lenert, A., Nanofluid-based receivers for high-temperature, high-fl ux direct solar collectors..2010, Massachusetts Institute of Technology.
    95. Colangelo, G., et al., Results of experimental investigations on the heat conductivity of nanofluids based on diathermic oil for high temperature applications. Appl. Energy,2012.97.
    96. Kameya. Y. and K. Hanamura, Enhancement of solar radiation absorption using nanoparticle suspension. Solar Energy,2011.85.
    97. Gan, Y. and L. Qiao, Optical properties and radiation-enhanced evaporation of nano fluid fuels containing carbon-based nanostructures. Energy Fuels 2012.26.
    98. Hunt, A. J., Small Particle Heat Exchangers.1978, Lawrence Berkeley Laboratory.
    99. Cobble, M. H., Irradiation into semi transparent solids and the solar trap effect Journal of the Franklin Institute,1964.278:p. 11.
    100. Arai, N., Y. Itaya, and M. Hasatani, Development of a volume heat trap type solar collector using a fine-particle semi transparent liguid suspension (FPSS) as a heat vehicle and heat storage medium Solar Energy,1984.32:p.8.
    101. Hull, P. G. and A. J. Hunt, A reciprocating solar-heated engine utilizing direct absorption by small particles. Journal of Solar Energy Engineering,1984.106:p.6.
    102. Beard, J. T., et al., Design and operation influences on thermal performance of "Solaris" solar collector Journal of Engineering for Power,1978.100:p.9.
    103. Huang, B. J., T. Y. Wung, and S. Nuh, Thermal analysis of black liquid cylindrical parabolic collector Solar Energy,1979.22:p. 4.
    104. Chang, M. J. and J. A. Roux, Parabolic Solar Collector With Glass Pipe and Black Fluid. Journal of Solar Energy Engineering 1986. 108.
    105. Tyagi, H., P. Phelan, and R. Prasher, Predicted Efficiency of a Low-Temperature Nanofluid-Based Direct Absorption Solar Collector. Journal of Solar Energy Engineering,2009.131:p.041004-1.
    106. Otanicar, T. P., et al., Nano fluid-based direct absorption solar collector. Journal of Renewable and Sustainable Energy,2010.2: p.13.
    107. Taylor, R. A., et al., Applicability of Nano fluids in High Flux Solar Collectors. Journal of Renewable and Sustainable Energy, 2011.3.
    108. He, Y., et al., Experimental study on the light-heat conversion characteristics of nanofluids. Nanosci. Nanotechnol. Lett.,2011. 3.
    109. Li, Y., et. al., Investigation on heat transfer performances of nanofluids in solar col lector. Mater. Sci. Forum 2011.694.
    110. Khullar, V., et al. Solar energy harvesting using nanoflulds-based concentrating solar collector., in Proceedings of MNHMT2012 3rd Micro/Nanoscale Heat & Mass Transfer International conference of renewable energy scale-up development and the third energy technical forum in far-yangtze river triangle area.2012. Atlanta, Georgia, USA.
    111. Yousefi, T., et al., An experimental investigation on the effect of A1203-H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 2012.39.
    112. Yousefi, T., et al., An experimental investigation on the effect of MCNT-H20 nanofluid on the efficiency of flat-plate solar collector. Exp. Therm. Fluid Sci.,2012.39.
    113. Kern, E.G. and M. C. Russell., Combined photovoltaic and Thermal Hybrid Collector Systems, in Institute of Electrical and Electronics Engineers Photovoltaic Specialists Conference.1978: Washington DC, USA.
    114. Hendrie S. D, Photovoltaic/thermal collector development program-final report.1982, Lincoln laboratory.
    115. P., R., Analytical Predictions of liquid and air photovoltaic/thermal, flat-plate collector performance. Journal of Solar Energy Engineering,1981.103.
    116. J., P., Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water Energy Conversion and Management,1994.35.
    117. T., B. and L.O. M., Model calculations on a flat-plate solar heat collector with integrated solar cells. Solar Energy,1995.55.
    118. Shin, D. and D. Banerjee, Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int. J. Heat Mass Transfer,2011.54.
    119. Wua, S., et al., Numerical simulation on thermal energy storage behavior of Cu/parafin nanofluids PCMs. Energy Procedia 2012.31.
    120. Elmir, M., R. Mehdaoui, and A. Mojtabi, Numerical simulation of cooling a solar cell by forced convection in the presence of a nanofluid. Energy Procedia 2012.18.
    121. Fan, H., R. Singh, and A. Akbarzadeh, Electric power generation from thermoelectric cells using a solar dish concentrator. J. Electron. Mater.,2011.40.
    122. Gnanadason, M. K., et al., Effect of nanofluids in a vacuum single basin solar still. I. J. AERS,2011.1.
    123. al.,0. M. e., International Journal of Heat and Mass Transfer,2013. 57.
    124. Otanicar, T. P. and J. Golden, Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. Environ. Sci. Technol.,2009.43.
    125. 王平,王辉涛,低温余热发电有机朗肯循环.2010:科学出版社.
    126. P, D. Y., Parametric optimization and comparative study pf organic Rankine cycle (ORC). Energy Conversion and Management,2008.
    127. 贺红明,利用LNG物理火用的朗肯循环研究.2007:上海:上海交通大学.
    128. tau, L. B., C. K. hsiang, and W. C. chuan, Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy,2004. 29.
    129. Angelino, G. and P. C. D. Palino, Multicomponent working fluids for organic rankine cycles. Energy,1998.23.
    130. Donghong, W., L. Xuesheng, and L. Zhen, Performance analysis and optimazition of organic rankine cycle for waste heat recovery. energy Conversion and Management,2007.48.
    131. P, M.F. and M. L. L, Applied Thermal Engineering,2008.28:p. 1015.
    132. 马尔文激光粒度仪MS2000中文版原理培训.
    133. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles.1983:Wiley-Interscience.
    134. Prasher, R., Modification of Planck blackbody emissive power and intensity in part iculate media due to multiple and dependent scattering. Journal of Heat Transfer,2005.127(8):p.8.
    135. Fedorov, A. G. and R. Viskanta, Radiative transfer in a semi transparent glass foam blanket Physics and Chemistry of Glasses 2000.41(3):p.127-135.
    136. Taylor, R. A., et al., Nanofluid optical property characterization: towards efficient direct absorption solar collectors. NANOSCALE RESEARCH LETTERS,2011.6(1):p.225.
    137. Hale, G. M. and M. R. Querry, Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Applied Optics,1973.12(3):p. 555-563.
    138. A. G., F. and R. Viskanta, Radiative transfer in a semi transparent glass foam blanket. Phys. Chem. Glasses,2000.41.
    139. Fedorov, A. G. and R. Viskanta, Radiation Characteristics of Glass Foam. J. AM. Ceram. Soc.,2000.83(11).
    140. Varady, M. J. and A. G. Fedorov, Combined Radiation and Conduction in Glass Foams. Journal of Heat Transfer,2002.124:p.7.
    141. Otanicar, T., et al., Impact of Size and Scattering Mode on the Optimal Solar Absorbing Nanofluid.2009, Proceedings of the ASME 3rd International Conference on Energy Sustainability:San Francisco.
    142. D., D. W., Optical properties of solar-absorbing oxide particles suspended in a molten salt heat transfer fluid. Solar Energy,1978. 20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700