用户名: 密码: 验证码:
金银纳米材料的化学法制备以及光学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有表面等离子体共振(SPR)吸收特性,金、银纳米材料在艺术加工、生物医学、传感探测、表面增强活性基底、激光惯性约束聚变等领域具有重要的应用价值。本论文中,我们系统研究了金、银纳米材料的可控制备以及其光学特性。论文的主要内容如下:
     1.通过采用单宁酸作为还原剂和形貌控制剂,设计了一个绿色合成线路。该线路在室温的条件下,简单、一步、绿色合成大小可调的银纳米片。该合成过程是一个无种子过程,没有加入任何其他的表面活性剂和形貌控制剂,实现了纳米粒子的形貌控制生长。通过改变单宁酸的浓度以及溶液的PH值等实验参数,银纳米片的形貌以及SPR峰可以得到好的调控。并且该绿色合成法可以扩展到其他二维纳米粒子的制备。另外,我们采用双还原法,即NaBH4和H202体系,制备出三角形银纳米片,之后以此为种子,采用多轮生长法控制三角形银纳米片的生长。之后将银纳米片组装在石英玻璃基底上。采用紫外-可见吸收光谱研究了溶液相中以及基底上纳米粒子的吸收光谱。最后研究了银纳米片薄膜以及银纳米球状纳米粒子薄膜的拉曼增强效应。
     2.我们采用对环境友好的葡萄糖作为还原剂和形貌控制剂,在碱性的条件下利用水热法制备出银泡沫。通过改变葡萄糖的浓度,溶液的PH值和反应的温度等实验参数,得到银泡沫。据我们所知,这是国际上首次采用如此方法制备银泡沫。该方法有以下几个优点:方法简单,实验过程为一步;该实验为无种子过程,反应过程中不需要引入其他表面活性剂和形貌控制剂;该绿色法可以扩展到其他三维贵金属纳米材料的制备。我们之前制备出的银泡沫可以作为一种有效的SERS基底,其拉曼增强因子可达到3.5×1012。通过3D-FDTD模拟计算,我们可知链直径、链长、间距、链夹角以及针尖结构均能影响SERS增强因子。实验和理论工作表明银泡沫能够提供大量的“热点”,该材料是一种非常有效的SERS基底。
     3.通过热处理石英玻璃基底上的Ag+/PVA/PVP混合物薄膜,我们提出了一种简单且低成本的方法实现了大面积制备银纳米环。通过控制AgNO3/PVA/PVP混合物的摩尔比,薄膜是否还原以及混合物薄膜的旋涂次数,我们实现银纳米环的制备。并且通过实验测量与理论模拟,我们得到了银纳米环的耦合共振吸收峰以及四极矩共振吸收峰。采用R6G作为探针分子和FDTD SOLUTION作为计算软件,系统的研究了银纳米环的SERS特性。
     4.我们报道了采用二氧化硅小球为模板制备出单分散性好,Au、Ag原子含量可调的中空Au/Ag双金属纳米球。并且我们首次研究了该中空双金属纳米小球薄膜的SERS活性。我们发现中空双金属纳米小球薄膜的SERS活性非常好,并且稳定性高。研究表明该新型复合材料的SERS性能优异,它将在SERS领域具有广泛的应用前景。另外,我们提出采用一种简单且有效的多轮置换法制备树枝状Ag-Pd双金属纳米材料。相比于一步置换法,多轮置换法能更有效的控制合金的组分以及形态。通过控制置换反应的次数以及反应的温度能得到不同形貌以及不同组分的Ag-Pd双金属纳米材料。这些树枝状Ag-Pd双金属纳米材料能展示强的SERS活性,并且不同形貌的Ag-Pd双金属纳米材料展示着不同的SERS活性。
     5.我们通过一种简单的水热合成法,系统的改变水热温度、pH值和前驱体溶液中Zn源的初始浓度,在石英玻璃基底上制备出高均一性的ZnO纳米棒阵列。以此为基底,我们制备出ZnO纳米棒@Au纳米颗粒复合阵列的以及其对三聚氰胺的检测,分析了其复合结构的光致发光特性,并得到该结构对三聚氰胺的最低检测线。另外,我们提出了采用物理溅射的方法实现在ZnO纳米棒阵列表面溅射银纳米粒子,得到ZnO@Ag核壳纳米棒阵列。并且我们详细的研究了PATP有机分子在ZnO@Ag核壳纳米棒阵列上的SERS增强效应。重点研究了ZnO@Ag核壳纳米棒阵列体系中核ZnO对电荷转移诱导SERS增强效应的贡献。通过与银活性基底相比,复合体系中ZnO的引入有效的促进电荷从金属到有机分子的转移,从而引起更强的拉曼信号。
Noble metal nanostructures take on surface plasmon resonance (SPR) absorption under irradiation of incident light, thus show various potential applications in the fields of embellishment, biomedical sciences, sensing detection, Surface Enhanced Raman Scattering (SERS) substrates, laser induced inertial confinement fusion and so on. In this thesis, we have prepared the Au and Ag nanoparticles, and we have studied these properties such as optical, electrical and eatalytic properties. Some important results obtained are deseribed as follows:
     1. We describe a green protocol using tannic acid, a polyphenolic plant extract, as both the reducing and stabilizing agent. In this seedless process, the silver nanoplates have been prepared via the reduction of AgNO3by Tannic acid (TA) at room-temperature. This synthesis was a seedless process, without any other surfactant or capping agent to direct the anisotropic growth of the nanoparticles. The shape of the silver particles and the optical in-plane dipole plasmon resonance bands of these nanoplates could be controlled by varying the experimental parameters such as TA concentration and the pH of solution. Furthermore, this "green" method utilized in this thesis can be extended to fabricate other2D metal nanostructures. The double reduction system consisted of NaBH4and hydrogen peroxide which was used to prepare triangular silver nanoplates, and the as-prepared nanoplates were made to keep on growing through multi-stage growth of Ag ions by trisodium citrate. The UV-vis spectrum of the triangular silver nanoparticle self-assembled film (TSNF) is markedly different from that of the colloid of silver nanoparticles. It was found that the SERS enhancement ability of the TSNF is remarkable, and slightly lower than that of the spherical silver nanoparticle film (SSNF). Both electromagnetic mechanism (EM) and chemical mechanism (CM) were attributed as the reason for the difference in the SERS enhancement ability between the TSNF and the SSNF.
     2. We describe a green protocol using glucose, as both the reducing and stabilizing agent. On the basis of the alkaline pH (10) of the glucose solution under solvothermal conditions, we can first synthesize stable silver NPs and then induce their linear welding into the nanowires leading to self-supporting3D silver spongelike networks. As we know, we have not been aware of reports on silver spongelike networks structured used such method. The advantages of the method are:(a) it is a simple route with just one step,(b) it is a seedless process, and does not need any other surfactant or capping agent to direct the growth of the silver spongelike frameworks,(c) this "green" method utilized in this thesis can be extended to fabricate other3D noble metals spongelike frameworks architectures. The electric field enhancement of the silver spongelike networks has been described to be a systematic investigation by using three-dimensional finite-difference time-domain (3D-FDTD) simulation. Surface enhanced Raman scattering (SERS) measurements have indicated that the junction regions, the hollow nanostructured and the sharp nanotips of the broken ligaments in the silver spongelike networks act as electromagnetic "hot-spots". The3D-FDTD calculations have indicated that the silver spongelike networks may exhibit a high quality SERS characteristic because of the Ag chain length, chain diameters, chains gap, chains angle and sharp nanotips. A maximum enhancement factor of3.5×1012can be obtained with the silver spongelike networks. As potential nanoantennas, silver spongelike networks can offer an effective method to optimize plasmon coupling for synthesizing devices.
     3. We provide a convenient and low cost way for the large-area self-organized synthesis of Ag nanorings through heat treatment of Ag+/PVA/PVP composite film on quartz glass. Because of templates and sophisticated apparatus are not necessary, the way provided here can be an important complement to existing methods for the fabrication of rings. In addition, the as-prepared special structural features with nanoparticle-attached Ag nanorings have been applied in SERS properties with Rhodamine6G (R6G) as the probe molecules. Using the3D-FDTD simulation, the theoretical examination of the local EM properties lets us to evaluate the contributions of nanoring and nanoparticle-attached Ag nanorings to the experimentally obtained SERS intensities. Via simulations, we provide that the weak enhancement can be remarkably improved through nanoparticle-attached Ag nanorings and availably utilizing transversely polarized light. In addition to we provide strong lateral coupling induced at the adjacent site between small Ag nanoparticles and nanoring.
     4. We report a facile silica colloidal templating method to synthesize Au/Ag bimetallic hollow nanospheres with fine monodispersity and controllable atom ratio of Ag and Au. As we know, we have not been aware of reports on Au/Ag bimetallic hollow nanospheres structured for SERS applications. The application of these Au/Ag bimetallic hollow nanospheres bimetallic structured films as SERS substrates is first investigated by using R6G as a probe molecule. We show that the as-prepared Au/Ag bimetallic hollow nanospheres structured films are extremely efficient SERS substrates in terms of high Raman intensity enhancement, excellent stability, and reproducibility. We report the preparation of Ag-Pd bimetallic dendrites by employing multi-stage galvanic replacement reaction (MGRR), which is a simple yet effective and versatile tool. Compared to one-stage reaction approach, multi-stage reaction is more favorable for compositional and modality control. We propose that these charged surface layers control galvanic charge transfer by controlling the stage of galvanic replacement reaction and reaction temperature at the deposition front. These bimetallic dendrites films exhibit high SERS activity and may have potential applications in investigation of "in situ" Pd catalytic reactions using SERS. This difference in the behaviors of the SERS activity is consistent with a strong influence of the changing morphology of the structures. The resulting nanostructures can be engineered to possess tailored, hierarchical morphologies and compositions that present new opportunities for systematically studying the optical catalytic properties of bimetallic NPs.
     5. We report a facile seed-assisted hydrothermal to synthesize ZnO nanorod arrays on quartz glass through changing the hydrothermal temperature, pH and initial concentration of Zn source in precursor solution. The large-scale arrays of vertically aligned ZnO-NRs decorated with Au-NPs were synthesized using ZnO nanorod arrays. This hybrid substrate manifests high SERS sensitivity to melamine and a detection limit as low as1.0×10-1010M (1.26μg L-1). A maximum enhancement factor of1.0×109can be obtained with the ZnO NF-Au film. The ZnO@Ag core-shell nanorods arrays were synthesized through physical sputtering method. We have studied the SERS enhancement effect of the ZnO@Ag core-shell nanorods array using PATP organic molecules as probe molecule. The result demonstrates for the first time that directional charge transfer between nanoscale metal and semiconductor tunneling through the interconnecting molecules may be examined by SERS.
引文
[1]易早.固基银膜材料的制备-形貌控制及性质分析[硕士学位论文].湖南:中南大学,2010:1-15.
    [2]韦建军.自悬浮定向流法制备金属与合金纳米微粒及其结构物性的研究[博士学位论文].四川:四川大学原子与分子物理研究所,2003:10-39.
    [3]周民.贵金属纳米粒子的可控合成与表征[博士学位论文].山东:山东大学化学系,2006:8-14.
    [4]张志焜,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000:20-25.
    [5]李俊寿.新材料概论[M].北京:国防工业出版社,2004.
    [6]顾秉林,王喜坤.固体物理学[M].北京:清华大学出版社,1989:35-66.
    [7]Bohren C F, Huffillan D R. Absorption and scattering of light by small Partieles [M]. NewYork:JohnWiley,1983.
    [8]Kreibig U, Vollmer M. Optical properties of metal clusters [M]. NewYork: Springer,1995.
    [9]Hall H E.固体物理学[M].刘志远,张增顺,译.北京:高等教育出版社,1983:102-113.
    [10]Shalaev V M, Kawata S. Nanophotonics with surface plasmons (Advances in Nano-Opties and Nano-Photonics) [M]. Amsterdam:Elsevier,2007.
    [11]Yu J, Patel S A, Dickson R M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters [J]. Angew Chem Int Ed Engl 2007,46(12):2028-2030
    [12]Yu J, Choi S, Richards CI, et al. Live cell surface labeling with fluorescent Ag nanocluster conjugates [J]. Photochem Photobiol 2008,84(6):1435-1439
    [13]Yu J, Choi S, Dickson RM. Shuttle-based fluorogenic silver-cluster biolabels [J]. Angew Chem Int Ed Engl 2009,48(2):318-320.
    [14]Horky M, Kotala V, Anton M, et al. Nucleolus and apoptosis [J]. Ann N Y Acad Sci 2002,973:258-264
    [15]Lin S Y, Chen N T, Sum S P, et al. Ligand exchanged photoluminescent gold quantum dots fimctionalized with leading peptides for nuclear targeting and intracellular imaging [J]. Chem Commun 2008,39:4762-4764
    [16]Lin C A J, Yang T Y, Lee C H, et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications [J]. ACS Nano 2009,3(2):395-401.
    [17]Muhammed M A, Verma P K, Pal S K, et al. Bright, NTR-Emitting Au23 from Au25:Characterization and Applications Including Biolabeling [J]. Chemistry 2009,15(39):10110-10120.
    [18]Wu X, He X,Wang K, et al. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo[J]. Nanoscale 2010,2:2244-2249.
    [19]Alivisatos A P, Johnsson K P, Peng X Q et al. Organization of "nanocrystal molecules" using DNA [J]. Nature 1996,382:609-611
    [20]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscQpic materials [J]. Nature 1996,382: 607-609.
    [21]Yeh H C, Sharma J, Han J J, et al. A DNA-silver nanocluster probe that fluoresces upon hybridization [J]. Nano Lett 2010,10(8):3106-3110.
    [22]张金中,Rozanova Nadejda.基于金属纳米材料的癌症光热切除疗法[J],Science in China Series B:Chemistry 2009,52(10):1559-1575.
    [23]Huang X, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J]. J Am Chem Soc 2006,128(6):2115-2120.
    [24]Gobin A M, Lee M H, Halas N J, et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy [J]. Nano Lett.,2007, 7(7):1929-1934.
    [25]Wang C G, Chen J J, Irudayaraj J, et al. Gold Nanorod/Fe3O4 Nanoparticle "Nano-Pearl-Necklaces" for Simultaneous Targeting, Dual-Mode Imaging, and Photothermal Ablation of Cancer Cells [J]. Angew Chem,2009,48(15): 2759-2763.
    [26]Li Z, Huang P, Zhang X, et al. RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy [J]. Mol. Pharm., 2009,7(1):94-104.
    [27]Rashid M H, Bhattacharjee R R, Mandal T K. Organic Ligand-Mediated Synthesis of Shape-Tunable Gold Nanoparticles:An Application of Their Thin Film as Refractive Index Sensors [J]. J. Phys. Chem. C,2007,111(5): 9684-9693.
    [28]Marinakos S M, Chen S H, Chilkoti A. Plasmonic Detection of a Model Analyte in Serum by a Gold Nanorod Sensor [J]. Anal. Chem.,2007,79(6):5278-5283.
    [29]Xia Y, Zhang Y, Pan S S, et al. A selectively coated photonic crystal fiber based surface plasmon resonance sensor [J]. J. Opt.2010,12:015005.
    [30]Huo S J, Xue X K, Li Q X, et al. Seeded-growth approach to fabrication of silver nanoparticle films on silicon for electrochemical ATR surface-enhanced IR absorption spectroscopy [J]. J. Phys. Chem. B.2006,110(51):25721-25728.
    [31]Lakowicz J R, Ray K, Chowdhury M, et al. Plasmon-controlled fluorescence:a new paradigm in fluorescence spectroscopy [J]. Analyst.2008,133(10): 1308-1346.
    [32]Brolo A G, Germain P, Hager G. Investigation of the adsorption of L-cysteine on a polycrystalline silver electrode by surface-enhanced Raman scattering(SERS) and surface-enhanced second harmonic generation(SESHG) [J]. J. Phys. Chem. B.2002,106(23):5982-5987.
    [33]Baldelli S, Eppler A S, Anderson E, et al. Surface enhanced sum frequency generation of carbon monoxide adsorbed on platinum nanoparticle arrays [J]. Journal of Chemical Physics.2000,113(13):5432-5438.
    [34]Campion A, Kambhampati P. Surface-enhanced Raman scattering [J]. Chemical Society Reviews.1998,27(4):241-250.
    [35]Moskovits M. Surface-enhanced spectroscopy [J]. Reviews of Modern Physics. 1985,57:783-826.
    [36]Aikens C M, Madison L R, Schatz G C, et al. Raman spectroscopy:The effect of field gradient on SERS [J]. Nature Photonics 2013,7:508-510.
    [37]Alberto M. Gold nanoparticles afloat [J]. Nature Materials 2012,11:8-13.
    [38]Tang H, Meng G W, Huang Q, et al. Urchin-like Au-nanoparticles@Ag-nanohemisphere arrays as active SERS-substrates for recognition of PCBs[J]. RSC Adv.2014,4:19654-19657.
    [39]Mohammadali T, Alexandre S, Nastaran K Z, et al. Optical Properties of Silver and Gold Tetrahedral Nanopyramid Arrays Prepared by Nanosphere Lithography [J]. J. Phys. Chem. C,2013,117 (28):14778-14786.
    [40]Yi Z, Xu X B, Wu X. et al. Silver nanoplates:controlled preparation, self-assembly, and applications in surface-enhanced Raman scattering. Appl Phys A (2013) 110:335-342.
    [41]Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature,2010,464(7287):392-5.
    [42]Tian Z Q, Ren B, Li J F, et al. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy [J]. Chem Commun,2007, (34):3514-34.
    [43]Li W Y, Pedro H C C, Lu X M, et al. Dimers of silver nanospheres:facile synthesis and their use as hot spots for surface-enhanced Raman scattering [J]. Nano Letters,2008,9(1):485-490.
    [44]Li W, CamargoP H C, Au L, et al. Etching and dimerization:a simple and versatile route to dimers of silver nanospheres with a range of sizes [J]. Angewandte Chemie International Edition,2010,49(1):164-8.
    [45]Lim D K, Jeon K S, Hwang J H, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap [J]. Nature Nanotechnology,2011,6(7):452-60.
    [46]Yun Y J, Park G, Ah C S, et al. Fabrication of versatile nanocomponents using single-crystalline Au nanoplates [J]. Appl. Phys. Lett.,2005,87(1):233-238.
    [47]Kulcsar G, AlMawlawi D, Budnik F W, et al. Intense Picosecond X-Ray Pulses from Laser Plasmas by Use of Nanostructured "Velvet" Targets [J]. Phys. Rev. Lett.,2000,84(22):5149-5152.
    [48]Nishikawa T, Nakano H, Oguri K, et al. Nanocylinder-array structure greatly increases the soft X-ray intensity generated fromfemtosecond-laser-produced plasma [J]. Appl. Phys. B,2001,73(2):185-188.
    [49]Rajeev P P, Taneja P, Ayyub P, et al. Metal Nanoplasmas as Bright Sources of Hard X-Ray Pulses [J]. Phys. Rev. Lett.,2003,90(11):115002-115006.
    [50]唐永建,张林,吴卫东,等.ICF靶材料和靶制备技术研究进展[J].强激光与粒子束,2008,20(11):1827-1840.
    [51]楚广,唐永建,罗江山,等.ICF物理实验用纳米Cu块体靶材的制备研究[J].强激光与粒子束,2005,17(12):1829-1834.
    [52]楚广,罗江山,刘伟,等.纳米Cu固体材料的X射线衍射与正电子湮没研究[J].强激光与粒子束,2006,18(1):160-164.
    [53]吴栋,韦建军,唐永建,等.物理掺杂用纳米Fe粉的制备与结构表征[J].强激光与粒子束,2008,20(2):244-246.
    [54]韦建军,唐永建,吴卫东.Cu-A1系纳米金属间化合物的制备[J].四川大学学报(工程科学版),2008,40(4):105-108
    [55]韦建军,吴栋,唐永建,等.单相纳米金属间化合物A1Ni的制备及其结构表征[J].原子能科学技术,2008,42(11):965-968.
    [56]李喜波,唐永建,雷海乐,等.银团簇纳米颗粒的制备及其光吸收谱性质[J].强激光与粒子束.2006,6:2091-2095.
    [57]楚广,唐永建,楚士晋,等.纳米A1粉的结构和性能表征[J],含能材料.2006,14(3):227-230.
    [58]Li C M, Lei H L, Tang Y J, et al. Production of copper nanoparticles by the flow-levitation method [J]. Nanotechnology.2004,15:1866-1869.
    [59]Balzani V, Credi A, Venturi M. The bottom-up approach to molecular-level devices and machines [J]. Chemistry:A European Journal,2002,8(24): 5524-5532.
    [60]Zhang S G Fabrication of novel biomaterials through molecular self-assembly [J]. Nature Biotechnology,2003,21(10):1171-1178.
    [61]Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis [J]. Nature,2005,437(7055):121-124.
    [62]Davies A J. The Finite Element Method [M].1980. Oxford:Clarendon Press.
    [63]Motita N. Integral Equation Methods for Electromagnetic [M].1991. ArteehH ouse:Boston London.
    [64]Hafner C. The 3d Electromagnetic Wave Simulator [M].1993. Chichester:Wiley.
    [65]Girard C, Bouju X. Coupled electromagnetic modes between a corrugated surface and a thin probe tip [J]. J. Chem. Phys.,1991,95(3):2056-2064.
    [66]Xu X B, Yi Z, Li X B, et al. Tunable Nanoscale Confinement of Energy and Resonant Edge Effect in Triangular Gold Nanoprisms [J]. J. Phys. Chem. C 2013, 117:17748-17756.
    [67]Boris N K, Vitaly A K, Mikhail Y, et al. Surface-Enhanced Raman Scattering Substrates Based on Self-Assembled PEGylated Gold and Gold-Silver Core-Shell Nanorods [J]. J. Phys. Chem. C 2013,117:23162-23171.
    [68]Xu X B, Yi Z, Li X B, et al. Discrete Dipole Approximation Simulation of the Surface Plasmon Resonance of Core/Shell Nanostructure and the Study of Resonance Cavity Effect [J]. J. Phys. Chem. C 2012,116:24046-24053
    [69]王跃科.表面等离子体分束器和亚波长金属阵列中的几种新颖效应[博士学位论文].黑龙江:哈尔滨工业大学,2010:10-39.
    [70]Santana A C, Rocha T C R, Santos P S, et al. Size-dependent SERS enhancement of colloidal silver nanoplates:the case of 2-amino-5-nitropyridine [J]. J. Raman Spectrosc.2009,2:183-190.
    [71]Nelayah J, Kociak M, Geuquet N, et al. Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms [J]. Nano Lett.2010,3:902-907.
    [72]Lee J H, Mahmoud M A, Sitterle V, et al. Facile preparation of highly-scattering metal nanoparticle-coated polymer microbeads and their surface plasmon resonance [J]. J. Am. Chem. Soc.2009,14:5048-5049.
    [73]Lee B H, Hsu M S, Hsu Y C, et al. A facile method to obtain highly stable silver nanoplate colloids with desired surface plasmon resonance wavelengths [J]. J. Phys. Chem. C.2010,114:6222-6227.
    [74]Rocha T C R, Zanchet D. Structural defects and their role in the growth of Ag triangular nanoplates [J]. J. Phys. Chem. C.2007,111:6989-6993.
    [75]Jia H Y, Zeng J B, An J, et al. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate [J]. Thin Solid Films.2008,516: 5004-5009.
    [76]Liu G Q, Cai W P, Liang C H. Trapeziform Ag nanosheet arrays induced by electrochemical deposition on Au-coated substrate [J]. Crystal Growth & Design, 2008,8:2748-2752.
    [77]Washio I, Xiong Y J, Yin Y D, et al. Reduction by the end groups of poly (vinyl pyrrolidone):A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates [J]. Adv. Mater.2006,18:1745-1749.
    [78]Lu Q, Lee K J, Lee K B, et al. Investigation of shape controlled silver nanoplates by a solvothermal process [J]. Journal of Colloid and Interface Science,2010,1: 8-17.
    [79]Chen D, Li L, Liu J S, et al. Synthesis and self-assembly of monodisperse silver-nanocrystal-doped silica particles [J]. Journal of Colloid and Interface Science,2007,2:351-355.
    [80]Liang H P, Wan L J, Bai C L, et al. Gold hollow nanospheres:Tunable surface plasmon resonance controlled by interior-cavity sizes [J]. J. Phys. Chem. B.2005, 109:7795-7800.
    [81]Moulton C M, Braydich-Stolle K L, Nadagouda N M, et al. Synthesis, characterization and biocompatibility of "green" synthesized silver nanoparticles using teapolyphenols [J]. Nanoscale.2010,2:763-770.
    [82]Tan Y N, Lee J Y, Wang D IC. Uncovering the design rules for peptide synthesis of metal nanoparticles [J]. J. AM. CHEM. SOC.2010,132:5677-5686.
    [83]Kim J, Rheem Y W, Yoo B, et al. Peptide-mediated shape-and size-tunable synthesis of gold nanostructures [J]. Acta Biomaterialia,2010,6:2681-2689.
    [84]Li X H, Wang J, Zhang Y X, et al. Surfactantless synthesis and the surface-enhanced raman spectra and catalytic activity of differently shaped silver nanomaterials [J]. Eur. J. Inorg. Chem.2010,5:1806-1812.
    [85]Wei D W, Qian W P. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent [J]. Colloids and Surfaces B:Biointerfaces.2008,2: 136-142.
    [86]Shin Y, Bae I T, Exarhos G J. "Green" approach for self-assembly of platinum nanoparticles into nanowires in aqueous glucose solutions [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects 2009,348:191-195.
    [87]Nakamura Y, Tsuji S, Tonogai Y. Method for analysis of tannic acid and its metabolites in biological samples:application to tannic acid metabolism in the rat [J]. J. Agric. Food Chem.,2003,1:331-339.
    [88]Yoosaf K, Ipe B I, Suresh C H, et al. In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media [J]. J. Phys. Chem. C,2007,111:12839-12847.
    [89]Hagerman A E, Riedl K M, Jones G A, et al. High molecular weight plant polyphenolics (tannins) as biological antioxidants [J]. J. Agric. Food Chem., 1998,46:1887-1892.
    [90]Raveendran P, Goyal A, Blatchford M A, et al. Stabilization and growth of silver nanocrystals in dendritic polyol dispersions [J]. Mater. Lett.2006,60:897-900.
    [91]Tian X L, Li J, Pan S L. Facile synthesis of single-crystal silver nano wires through a tannin-reduction process [J]. J Nanopart Res.2009,11:1839-1844.
    [92]Sivaraman S K, Elango I, Kumar S, et al. A green protocol for room temperature synthesis of silver nanoparticles in seconds [J]. CURRENT SCIENCE.2009,7: 1055-1059.
    [93]Dutta A, Dolui S K. Tannic acid assisted one step synthesis route for stable colloidal dispersion of nickel nanostructures [J]. Applied Surface Science,2011, 257:6889-6896.
    [94]Chen H M, Hsin C F, Liu R S et al. Synthesis and characterization of multi-pod-shaped gold/silver nanostructures [J]. J. Phys. Chem. C,2007,111: 5909-5914.
    [95]Bulut E, Mahmut O. Rapid, facile synthesis of silver nanostructure using hydrolyzable tannin [J]. Ind. Eng. Chem. Res.2009,48:5686-5690.
    [96]Dadosh T. Synthesis of uniform silver nanoparticles with a controllable size [J]. Mater. Lett,2009,63:2236-2238.
    [97]Slot J W, Geuze H J. A new method of preparing gold probes for multiple-labeling cytochemistry [J]. Eur J Cell Biol.1985,1:87-93.
    [98]Jin R, Cao Y, Mirkin C A. Photoinduced conversion of silver nanospheres to nanoprisms [J]. Science,2001,294:1901-1903.
    [99]McDonald M, Mila I, Scalbert A. Precipitation of metal ions by plant polyphenols:optimal conditions and origin of precipitation [J]. J. Agric. Food Chem,1996,44:599-606.
    [100]Tian X L, Wang W H, Cao G Y. A facile aqueous-phase route for the synthesis of silver nanoplates [J]. Mater. Lett,2007,2:130-133.
    [101]Xu F G, Guo C L, Sun Y J, et al. Facile fabrication of single crystal gold nanoplates with micrometer lateral size [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2010,353:125-131.
    [102]Xiong Y, McLellan J M, Chen J, et al. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties [J]. J. Am. Chem. Soc.2005,127:17118-17127.
    [103]Shashi P D, L. Manu, S. Mika, Tansy fruit mediated greener synthesis of silver and gold nanoparticles [J]. Process Biochemistry.2010,45:1065-1071.
    [104]Kelly K L, Coronado E, Zhao L L. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment [J]. J. Phys. Chem. B,2003,3:668-677.
    [105]Qin Y Q, Ji X H, Jing J, et al. Size control over spherical silver nanoparticles by ascorbic acid reduction [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2010,372:172-176.
    [106]Dong X Y, Ji X H, Jing J, et al. Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate [J]. J. Phys. Chem. C,2010,114:2070-2074.
    [107]Maillard M, Huang P, Brus L. Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+] [J]. Nano Lett,2003,11:1611-1615.
    [108]Huanga N M, Lim H N, Radiman S, et al. Sucrose ester micellar-mediated synthesis of Ag nanoparticles and the antibacterial properties [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects 2010,353:69-76.
    [109]Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature 2003,424,824-830.
    [110]Khan A, Rahman K, Hyun M T, et al. Multi-nozzle electrohydrodynamic inkjet printing of silver colloidal solution for the fabrication of electrically functional microstructures [J]. Appl Phys A 2011,104,1113-1120.
    [111]Juan L V E, Igor I S, Wu C W, et al. Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere [J]. J. AM. CHEM. SOC.2009,131:3462-3463.
    [112]Gonzalez E, Arbiol J, Puntes V F. Carving at the nanoscale:sequential galvanic exchange and Kirkendall growth at room temperature [J]. Science 2011,334: 1377-1380.
    [113]Zhang W C, Wu X L, Kan C X, et al. Surface-enhanced Raman scattering from silver nanostructures with different morphologies [J]. Appl Phys A 2010,100: 83-88.
    [114]Shanmukh S, Jones L, Driskell J, et al. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate [J]. Nano Lett.2006,6 (11):2630-2636.
    [115]Yi Z, Zhang J B, Chen Y, et al. Triangular Au-Ag framework nanostructures prepared by multi-stage replacement and their spectral properties [J]. Trans. Nonferrous Met. Soc. China 2011,21:2049-2055.
    [116]Yi Z, Li X B, Xu X B, et al. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects 2011,392:131-136.
    [117]Prasad B L V, Stoeva S I, Sorensen C M, et al. Digestive ripening of thiolated gold nanoparticles:the effect of alkyl chain length [J]. Langmuir 2002,18 (20): 7515-7520.
    [118]Pastoriza-Santos I, Liz-Marzan L M. Colloidal silver nanoplates:State of the art and future challenges [J]. J. Mater. Chem.,2008,18:1724-1737
    [119]Hu J W, Chen S, Johnson R P, et al. Surface-Enhanced Raman Scattering on Uniform Pd and Pt Films:From Ill-Defined to Structured Surfaces [J]. J. Phys. Chem. C,2013,117 (47):24843-24850.
    [120]Fang Z Y, Fan L R, Lin C F, et al. Plasmonic coupling of bow tie antennas with Ag nanowire [J]. Nano Lett.,2011,11 (4):1676-1680
    [121]Fendler J H. Chemical self-assembly for electronic applications [J]. Chem. Mater,2001,13 (10):3196-3210
    [122]Kagan C R, Murray C B, Nirmal M, et al. Electronic energy transfer in CdSe quantum dot solids [J]. Phys. Rev. Lett.1996,76:1517.
    [123]Zhang X Y, Hu A M, Zhang T, et al. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties [J]. ACS Nano,2011,5 (11):9082-9092.
    [124]Siiman O, Burshteyn A. Preparation, Microscopy, and Flow Cytometry with Excitation into Surface Plasmon Resonance Bands of Gold or Silver Nanoparticles on Aminodextran-Coated Polystyrene Beads [J]. J. Phys. Chem. B,2000,104 (42):9795-9810.
    [125]Aslan K, Lakowicz J R, Geddes C D. Rapid deposition of triangular silver nanoplates on planar surfaces:application to metal-enhanced fluorescence [J]. J. Phys. Chem. B,2005,109 (13):6247-6251.
    [126]Millstone J E, Hurst S J, Metraux G S, et al. Colloidal gold and silver triangular nanoprisms [J]. Small 2009,5:646-664.
    [127]Metraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness [J]. Adv. Mater.2005,4:412-415.
    [128]Xue C, Mirkin C A. pH-Switchable Silver Nanoprism Growth Pathways [J]. Angew. Chem.2007,119:2082-2484.
    [129]Jiang X C, Chen C Y, Chen W M. Role of citric acid in the formation of silver nanoplates through a synergistic reduction approach [J]. Langmuir,2010,26 (6): 4400-4408.
    [130]Zhang Q, Hu Y X, Guo S R, et al. Seeded growth of uniform Ag nanoplates with high aspect ratio and widely tunable surface plasmon bands [J]. Nano Lett.,2010,10 (12):5037-5042.
    [131]Yi Z, Zhang J B, Niu G, et al. In-situ growth of silver nanostructure on quartz glass substrates [J]. J. Cent. South Univ.2012,19:312-318.
    [132]Yi Z, Xu X B, Li X B, et al. Facile preparation of Au/Ag bimetallic hollow nanospheres and its application in surface-enhanced Raman scattering [J]. Applied Surface Science 2011,258:212-217.
    [133]Mock J J, Smith D R, Schultz S. Interparticle coupling effects on plasmon resonances of nanogold particles [J]. Nano Letters,2003,3 (8):1087-1090
    [134]Ciou S H, Cao Y W, Huang H C, et al. SERS enhancement factors studies of silver nanoprism and spherical nanoparticle colloids in the presence of bromide ions [J]. J. Phys. Chem. C,2009,113 (22):9520-9525.
    [135]Peng M F, Gao J, Zhang P P, et al. Reductive self-assembling of Ag nanoparticles on germanium nanowires and their application in ultrasensitive surface-enhanced Raman spectroscopy [J]. Chem. Mater.,2011,23 (14): 3296-3301.
    [136]Chen K Y, Lee A T, Hung C. C, et al. Transport and Trapping in Two-Dimensional Nanoscale Plasmonic Optical Lattice [J]. Nano Lett.2013,13: 4118-4122.
    [137]Fu Y, Lakowicz J R. Enhanced Single-Molecule Detection using Porous Silver Membrane [J]. J. Phys. Chem. C 2010,114:7492-7495.
    [138]Biener J, Wittstock A, Zepeda-Ruiz L A, et al. Surface-chemistry-driven actuation in nanoporous gold [J]. Nat. Mater.2009,847-51.
    [139]Fujita T, Qian L H, Inoke K, et al. Geometric effect on surface enhanced Raman scattering of nanoporous gold:Improving Raman scattering by tailoring ligament and nanopore ratios [J]. Appl. Phys. Lett.2008,92:251902.
    [140]Fu E G, Caro M, Zepeda-Ruiz L A, et al. Surface effects on the radiation response of nanoporous Au foams [J]. Appl. Phys. Lett.2012,101:191607.
    [141]Zhao W, Fierro V, Zlotea C, et al. Activated carbons doped with Pd nanoparticles for hydrogen storage [J]. Int. J. Hydrogen Energy,2012,37: 5072-5080.
    [142]Luo Z X, Yang W S, Peng A D, et al. Net-like assembly of Au nanoparticles as a highly active substrate for surface-enhanced Raman and infrared spectroscopy [J]. J. Phys. Chem. A 2009,113:2467-2472.
    [143]He J, Kunitake T, Watanabe T. Porous and nonporous Ag nanostructures fabricated using cellulose fiber as a template [J]. Chem. Commun.2005,3: 795-796.
    [144]Raveendran P, Fu J, Wallen S L. Completely "Green" Synthesis and Stabilization of Metal Nanoparticles [J]. J. Am. Chem. Soc.2003,125 (46): 13940-13941.
    [145]Walsh D, Arcelli L, Ikoma T, et al. Dextran templating for the synthesis of metallic and metal oxide sponges. Nat. Mater.2003,2:386-390.
    [146]Yu D, Yam V W W. Controlled Synthesis of Monodisperse Silver Nanocubes in Water [J]. J. Am. Chem. Soc.2004,126 (41):13200-13201.
    [147]Mehta S K, Chaudhary S, Gradzielski M. Time dependence of nucleation and growth of silver nanoparticles generated by sugar reduction in micellar media [J]. J. Colloid Interface Sci.2010,2:447-453.
    [148]Sun Y, Xia Y. Metal nanostructures with hollow interiors [J]. Adv. Mater.2003, 5:641-646.
    [149]Wang M H, Li Y J, Xie Z X, et al. Fabrication of large-scale one-dimensional Au nanochain and nanowire networks by interfacial self-assembly [J]. Mater. Chem. Phys.2010,119:153-157.
    [150]Liu J C, Sutton J, Roberts C B. Synthesis and extraction of monodisperse sodium carboxymethylcellulose-stabilized platinum nanoparticles for the self-assembly of ordered arrays [J]. J. Phys. Chem. C,2007,111 (31): 11566-11576.
    [151]Wu N, Fu L, Su M, et al. Interaction of fatty acid monolayers with cobalt nanoparticles [J]. Nano. Lett.2004,4 (2):383-386.
    [152]Tian C F, Ding C H, Liu S Y, et al. Nanoparticle Attachment on Silver Corrugated-Wire Nanoantenna for Large Increases of Surface-Enhanced Raman Scattering [J]. ACS Nano.2011,5:9442-9449.
    [153]Kim K, Choi J Y, Lee H B, et al. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: Effects of size of Ag nanoparticles and the excitation wavelength [J]. J. Chem. Phys.2011,135:124705-124714.
    [154]Yang S M, Jang S J D, Choi G, et al. Nanomachining by Colloidal Lithography [J]. Small 2006,2:458-475.
    [155]Yang Z L, Li Y, Li Z P, et al. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles [J]. J. Chem. Phys.2009,130: 234705-234713.
    [156]Yuen, C, Zheng W, Huang Z W. Optimization of extinction efficiency of gold-coated polystyrene bead substrates improves surface-enhanced Raman scattering effects by post-growth microwave heating treatment [J]. J. Raman Spectrosc.2010,41:374-380.
    [157]Wen X L, Xi Z, Jiao X J, et al. Plasmonic Coupling Effect in Ag Nanocap-Nanohole Pairs for Surface-Enhanced Raman Scattering [J]. Plasmonics 2013,8:225-231.
    [158]Zhou W, Odom T W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions [J]. Nature Nanotechnology 2011,6:423-427.
    [159]Farcau C, Astilean S. Mapping the SERS Efficiency and Hot-Spots Localization on Gold Film over Nanospheres Substrates [J]. J. Phys. Chem. C 2010,114: 11717-11722.
    [160]Lee A, Andrade G F S, Ahmed A, et al. Probing Dynamic Generation of Hot-Spots in Self-Assembled Chains of Gold Nanorods by Surface-Enhanced Raman Scattering [J]. J. Am. Chem. Soc.2011,133:7563-7570.
    [161]Yi Z, Xu X B, Zhang K B, et al. Green, one-step and template-free synthesis of silver spongelike networks via a solvothermal method [J]. Mater. Chem. Phys. 2013,139:794-801.
    [162]The simulations were performed by the FDTD Solutions trademark software. http//:www.lumerical.com
    [163]Palik E D. Handbook of optical constants of solids III. Academic, New York. (1998)
    [164]Yi Z, Chen S, Chen Y, et al. Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering [J]. Thin Solid Films 2012,520:2701-2707.
    [165]Yi Z, Tan X L, Niu G, et al. Facile preparation of dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil for application as a SERS-substrate [J]. Appl. Surf. Sci.2012,258:5429-5437.
    [166]Qian L H, Inoue A, Chen M W. Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold [J]. Appl. Phys. Lett. 2008,92:093113-093116.
    [167]Taflove A, Hagness S C. Computational Electrodynamics:The Finite-Difference Time-Domain Method,3rd. ed.; Artech House, Inc.:Norwood, MA,2005.
    [168]Dawson P, Duenas J A, Boyle M G, et al. Combined Antenna and Localized Plasmon Resonance in Raman Scattering from Random Arrays of Silver-Coated, Vertically Aligned Multiwalled Carbon Nanotubes [J]. Nano Lett.2011,11: 365-371.
    [169]Fang Y R, Li Z P, Huang Y Z, et al. Branched Silver Nanowires as Controllable Plasmon Routers [J]. Nano Lett.2010,10:1950-1954.
    [170]Shao L, Woo K C, Chen H J, et al. Angle- and Energy-Resolved Plasmon Coupling in Gold Nanorod Dimers [J]. ACS Nano 2010,6:3053-3062.
    [171]Cortie M B, Stokes N, McDonagh A. Plasmon resonance and electric field amplification of crossed gold nanorods [J]. Photonics and Nanostructures-Fundamentals and Applications 2009,7:143-152.
    [172]Zhang W H, Cui X D, Yeo B S, et al. Nanoscale Roughness on Metal Surfaces Can Increase Tip-Enhanced Raman Scattering by an Order of Magnitude [J]. Nano Lett 2007,7:1401-1405.
    [173]Warburton R J, Schaflein C, Haft D, et al. Optical emission from a charge-tunable quantum ring [J]. Nature 2000,405:926-929.
    [174]Choi H W, Jeon C W, Liu C, et al. InGaN nano-ring structures for high-efficiency light emitting [J]. Phys. Lett.2005,86:21101.
    [175]Sun F Q, Yu J C, Wang X C. Construction of Size-Controllable Hierarchical Nanoporous TiO2 Ring Arrays and Their Modifications [J]. Chem. Mater. 2006,18 (16):3774-3779.
    [176]Guo L, Liang F, Wang N, et al. Preparation and characterization of ring-shaped Co nanomaterials [J]. Chem. Mater.,2008,20 (16):5163-5168.
    [177]Granados D, Garc'ia J M. In(Ga)As self-assembled quantum ring formation by molecular beam epitaxy [J]. Appl. Phys. Lett.2003,82:2401.
    [178]Hobbs K L, Larson P R, Lian G D, et al. Fabrication of Nanoring Arrays by Sputter Redeposition Using Porous Alumina Templates [J]. Nano Lett.2004,4(1):167-171.
    [179]Kelf T A, Tanaka Y, Matsuda O, et al. Ultrafast vibrations of gold nanorings [J]. Nano Lett.2011,11:3893-3898.
    [180]Liu J H, Zhang X L, Yu M, et al. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds [J]. Small,2012,8:310-316.
    [181]Zhao S, Roberge H, Yelon A, et al. New application of AAO template:(?) Arnold for nanoring and nanocone Arrays [J]. J. Am. Chem. Soc.2006,128: 12352-12353.
    [182]He J H, Toyoki K. Formation of silver nanoparticles and nanocraters on silicon wafers [J]. Langmuir 2006,22:7881-7884.
    [183]Yi Z, Zhang J B, He H, et al. Convenient synthesis of silver nanoplates with adjustable size through seed mediated growth approach [J]. Trans. Nonferrous Met. Soc. China 2012,22:865-872.
    [184]Dong B, Bai X, Yu W, et al. Silver nanotorus and nanoparticles on silica wafer: optical properties and investigation of PVA in the formation process [J]. J Mater Sci:Mater Electron.2011,22:64-71.
    [185]Gordon N, Yue Z R, Sharifeh M, et al. Synthesis and characterization of silver-nanoparticle-impregnated fiberglass and utility in water disinfection [J]. Nanotechnology,2009,20:495705.
    [186]Du Y K, Yang P, Mou Z G, et al. Thermal decomposition behaviors of PVP coated on platinum nanoparticles [J]. Journal of applied polymer.2006,99: 23-26.
    [187]Liu S D, Yang Z, Liu R P, et al. High Sensitivity Localized Surface Plasmon Resonance Sensing Using a Double Split NanoRing Cavity [J]. J. Phys. Chem. C 2011,115:24469-24477.
    [188]Wu S Y, Chang W M, Tseng H Y, et al. Geometry for Maximizing Localized Surface Plasmon Resonance of Au Nanorings with Random Orientations [J]. Plasmonics 2011,6:547-555.
    [189]Gu Y J, Xu S P, Li H B, et al. Waveguide-enhanced surface plasmons for ultrasensitive SERS detection [J]. J. Phys. Chem. Lett.2013,4:3153-3157.
    [190]Kleinman S L, Ringe E, Valley N, et al. Single-Molecule Surface-Enhanced Raman Spectroscopy of Crystal Violet Isotopologues:Theory and Experiment [J]. J. Am. Chem. Soc.2011,133:4115-4122.
    [191]Aizpurua J, Hanarp P, Sutherland D, et al. Optical Properties of Gold Nanorings [J]. Phys. Rev. Lett.2003,90:057401-057404.
    [192]Clark, A. W. Cooper, J. M. Nanogap ring antennae as plasmonically coupled SERRS substrates. Small 2011,7:119-125.
    [193]Gong H M, Zhou L, Su X R, et al. Illuminating Dark Plasmons of Silver Nanoantenna Rings to Enhance Exciton-Plasmon Interactions [J]. Adv. Funct. Mater.2009,19:298-303.
    [194]Banaee M G, Crozier K B. Gold nanorings as substrates for surface-enhanced Raman scattering [J]. Opt Lett 2010,35:760-762.
    [195]Amy A M, Michele L J, Nadia B, et al.2D Correlation Analysis of the Continuum in Single Molecule Surface Enhanced Raman Spectroscopy [J]. J. Am. Chem. Soc.,2005,127 (20):7292-7293.
    [196]Peter N, S(?)ren H, Albrektsen O, et al. Fabrication of Large-Area Self-Organizing Gold Nanostructures with Sub-10 nm Gaps on a Porous Al2O3 Template for Application as a SERS-Substrate [J]. J. Phys. Chem. C,2009,113 (32):14165-14171.
    [197]Ashwin G, Svetlana V B, Premasiri W R, et al. Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing [J]. Nano Lett.,2009,9,11:3922-3929.
    [198]Cindy T C, Miguel R, Steve B, et al. Polarization Anisotropy of Multiple Localized Plasmon Resonance Modes in Noble Metal Nanocrescents [J]. J. Phys. Chem. C 2014,118 (2):1167-1173.
    [199]Kevin G S, Juan C S. Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy [J]. J. Phys. Chem. C 2011,115:1403-1409.
    [200]Meier M, Wokaun A. Enhanced fields on large metal particles:dynamic depolarization [J]. Opt. Lett.1983,8:581-583.
    [201]Liu Z L, Zhao B, Guo C L, et al. Novel hybrid electrocatalyst with enhanced performance in alkaline media:hollow Au/Pd core/shell nanostructures with a raspberry surface [J]. J. Phys. Chem. C,2009,113(38):16766-16771.
    [202]Guzel R, Ustundag Z, Eksi H, et al. Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules [J]. J. Colloid Interface Sci.2010,351:35-42.
    [203]Xia Y T, Lu W S, Jiang L. Fabrication of color changeable polystyrene spheres decorated by gold nanoparticles and their label-free biosensing [J]. Nanotechnology 2010,21:85501.
    [204]Guo S J, Fang Y X, Dong S J, et al. High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst:spongelike Au/Pt core/shell nanomaterial with hollow cavity [J]. J. Phys. Chem. C,2007,111(45): 17104-17109.
    [205]Gong X Z, Yang Y, Huang S M. A Novel Side-Selective Galvanic Rea ction and Synthesis of Hollow Nanoparticles with an Alloy Core [J]. J. Phys. Chem. C, 2010,114 (42):18073-18080.
    [206]Zhang Z S, Yang Z J, Liu X L, et al. Multiple plasmon resonances of Au/Ag alloyed hollow nanoshells [J]. Scripta Materialia.2010,63:1193-1196.
    [207]Yang K H, Liu Y C, Yu C C. Electrochemically prepared surface-enhanced Raman scattering-active silver substrates with improved stabilities [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2011,1: 383.
    [208]Bao J, Liang Y, Xu Z, et al. Facile synthesis of hollow nickel submicrometer spheres [J]. Adv. Mater.2003,15:1832-1835.
    [209]Leatherdale C A, Bawendi M G Observation of solvatochromism in CdSe colloidal quantum dots [J]. Phys. Rev. B.2001,63:165315.
    [210]Liu C, Liu Q G, Hu X T. SPR phase detection for measuring the thickness of thin metal films [J]. Optics Express,2014,22(7):7574-7580.
    [211]Schwartzberg A M, Olson T Y, Talley C E, et al. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres [J]. J. Phys. Chem. B, 2006,110(40):19935-19944.
    [212]Samuel L K, Renee R F, Anne-Isabelle H, et al. Creating, characterizing, and controlling chemistry with SERS hot spots [J]. Phys. Chem. Chem. Phys.,2013, 15:21-36
    [213]Hsiangkuo Y, Andrew M F, Christopher G K, et al. Spectral characterization and intracellar detection of Surface-Enhanced Raman Scattering (SERS)-encoded plasmonic gold nanostars [J]. Journal of Raman Spectroscopy 2013,44(2): 234-239.
    [214]Haynes C L, McFarland A D, Zhao L, et al. Nanoparticle Optics:The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays [J]. J. Phys. Chem. B 2003,107(30):7337-7342.
    [215]Moskovitsa M. Persistent misconceptions regarding SERS [J]. Phys. Chem. Chem. Phys.,2013,15:5301-5311
    [216]Sarah M S, Eric J T, Katherine A W. SERS Orientational Imaging of Silver Nanoparticle Dimers [J]. J. Phys. Chem. Lett.,2011,2 (21):2711-2715.
    [217]Freeman R G, Hommer M B, Grabar K C, et al. Ag-clad Au nanoparticles:novel aggregation, optical, and surface-enhanced Raman scattering properties [J]. J. Phys. Chem.,1996,100(2):718-724.
    [218]Liu Y C, Yang S J, Improved surface-enhanced Raman scattering based on Ag-Au bimetals prepared by galvanic replacement reactions [J]. Electrochim Acta. 2007,52:1925-1931.
    [219]Wang Z J, Pan S L, Krauss T D, et al. The structural basis for giant enhancement enabling single-molecule Raman scattering [J]. Proc. Natl. Acad. Sci. U.S.A.2003,100:8638.
    [220]Samuel A T, Shah S I, Yan H, et al. Methanol Reaction on Pt-Au Clusters on TiO2(110):Methoxy-Induced Diffusion of Pt [J]. J. Phys. Chem. C.2013,117, (51):26998-27006
    [221]Hyun Y K, Graeme H. CO Adsorption-Driven Surface Segregation of Pd on Au/Pd Bimetallic Surfaces:Role of Defects and Effect on CO Oxidation [J]. ACS Catalysis,2013,3(11):2541-2546.
    [222]Barroso F, Tojo C. Designing Bimetallic Nanoparticle Structures Prepared from Microemulsions [J]. J. Phys. Chem. C.2013,117(34):17801-17813.
    [223]Lu Y Z, Rutian J, Chen W. Highly efficient hydrogen storage with Pd-Ag nanotubes [J]. Nanoscale,2011,3:2476-2480.
    [224]He W W, Wu X C, Liu J B, et al. Design of AgM bimetallic alloy nanostructures (M= Au, Pd, Pt) with tunable morphology and peroxidase-like activity [J]. Chem. Mater.,2010,22 (9):2988-2994.
    [225]Lee C L, Tseng C M, Wu R B, et al. Catalytic characterization of hollow silver/palladium nanoparticles synthesized by a displacement reaction [J]. Electrochimica Acta.2009,54:5544-5547.
    [226]Wang D, Li T, Liu Y, et al. Large-Scale and Template-Free Growth of Free-Standing Single-Crystalline Dendritic Ag/Pd Alloy Nanostructure Arrays [J]. Cryst.Growth Des.2009,9 (10):4351-4355.
    [227]Lee C L, Tseng C M, Wu C C, et al. Porous Ag-Pd triangle nanoplates with tunable alloy ratio for catalyzing electroless copper deposition [J]. Colloids and Surfaces A:Physicochem. Eng. Aspects.2009,352:84-87.
    [228]Cook S C, Padmos J D, Zhang P. Surface structural characteristics and tunable electronic properties of wet-chemically prepared Pd nanoparticles [J]. J. Chem. Phys.2008,128:154705.
    [229]Coulthard I, Sham T K. Charge redistribution in Pd-Ag alloys from a local perspective. Phys. Rev. Lett.1996,77:4824.
    [230]Benjamin W, Thurston H, Sun Y G, et al. Polyol synthesis of silver nanoparticles:use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons [J]. Nano Letters,2004,4 (9): 1733-1739.
    [231]Hsu S W, Kathy O, Gao B, et al. Polyelectrolyte-Templated Synthesis of Bimetallic Nanoparticles [J]. Langmuir.2011,27 (13):8494-8499.
    [232]Jiao Y, Zhu H J, Wang X F, et al. A simple route to controllable growth of ZnO nanorod arrays on conducting substrates [J]. Cryst Eng Comm,2010,12(18): 940-946.
    [233]Shan G Y, Wang S, Fei X F, et al. Heterostructured ZnO/Au Nanoparticles-Based Raman Scattering for Protein Detection [J]. J. Phys. Chem. B 2009,113(3):1468-1472.
    [234]Kim H J, Sung K, An K S, et al. ZnO Nanowhiskers on ZnO Nanaopartiele-Deposited Si(111) by MOCVD [J]. J. Mater. Chem.,2004,14(23): 3396-3397.
    [235]Zhang Z X, Yuan H J, Zhou J J, et al. Growth Meehanism, Photoluminescence, and Field-Emission Properties of ZnO Nanoneedle Arrays [J]. J. Phys. Chem. B, 2006,110(17):8566-8569.
    [236]Zheng M J, Zhang L D, Li G H, et al. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique [J]. Chemical Physics Letters,2002,363(1-2):123-128.
    [237]Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions [J]. Adv. Mater.,2003,15(5):464-466.
    [238]Li Q C, Kumar V, Li Y, et al. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions[J]. Chem. Mater.,2005,17(5):1001-1006.
    [239]Djurisic A B, Leung Y H. Optical properties of ZnO nanostructures [J]. Small, 2006,2(8-9):944-961.
    [240]Tur T B, Jeen G S, Wang Y H, et al. Photoluminescence of polycrystalline ZnO under different annealing conditions [J]. J. Appl. Phys.,2003,94 (20):5787-5790
    [241]Anukorn P, Titipun T, Somchai T. Microwave-assisted synthesis of ZnO nanostructure flowers [J]. Mater. Lett.,2009,63(13):1224-1226
    [242]陈安宇,焦义,刘春伟,崔子健,郭浔.采用增强拉曼检测技术对牛奶中三聚氰胺的检测.中国卫生检验杂志2009,8:1710-1712.
    [243]Mauer L J, Chernyshova A A, Hiatt A, et al. Melamine detection in infant formula powder using near-and mid-infrared spectroscopy [J]. Journal of Agricultural and Food Chemistry,2009,57(10):3974-3980.
    [244]Xia J G, Zhou N Y, Liu Y J, et al. Simultaneous determination of melamine and related compounds by capillary zone electrophoresis [J]. Food Control,2010,21 (6):912-918.
    [245]Zeng H J, Yang R, Wang Q W, et al. Determination of melamine by flow injection analysis based on chemiluminescence system [J]. Food Chemistry,2011, 127(2):842-846.
    [246]Ansoon K, Steven J B, R. Stanley W, et al. Melamine Sensing in Milk Products by Using Surface Enhanced Raman Scattering [J]. Anal. Chem.2012,84: 9303-9309.
    [247]Chen L M, Liu Y N. Surface-Enhanced Raman Detection of Melamine on Silver-Nano-particle-Decorated Silver/Carbon Nanospheres:Effect of Metal Ions [J]. ACS Appl. Mater. Interfaces 2011,3:3091-3096.
    [248]Gittins D I, Caruso F. Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media [J] Angew Chem Int Ed,2001,40(16):3001-3007.
    [249]Saji T K, Ji H O, Young R D, et al. Surface-Plasmon-Enhanced Band Emission of ZnO Nanoflowers Decorated with Au Nanoparticles [J]. Chem. Eur. J.2012,18: 7467-7472.
    [250]Cheng C W, Sie E J, Liu B, et al. Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles [J]. Appl. Phys. Lett. 2010,96:071107.
    [251]Im J, Singh J, Soares J W, et al. Synthesis and Optical Properties of Dithiol-Linked ZnO/Gold Nanoparticle Composites [J]. J. Phys. Chem. C,2011, 115 (21):10518-10523.
    [252]Jang Y H, Yang S Y, Jang Y J, et al. Ultrahigh Density Arrays of Toroidal ZnO Nanostructures by One-Step Cooperative Self-Assembly Processes:Mechanism of Structural Evolution and Hybridization with Au Nanoparticles [J]. Chem. Eur. J. 2011,17:2068-2076.
    [253]Wang Q, Geng B, Wang S. ZnO/Au Hybrid Nanoarchitectures:Wet-Chemical Synthesis and Structurally Enhanced Photocatalytic Performance [J]. Environ. Sci. Technol.2009,43 (23):8968-8973.
    [254]Nicoleta E M, Mircea O, Vasile C, et al. FTIR, FT-Raman, SERS and DFT study on melamine [J]. Vibrational Spectroscopy 2012,62:165-171.
    [255]Matthew W M, Kelsey L L, Rakesh C M, et al. Scanning Angle Raman Spectroscopy of Poly(3-hexylthiophene)-Based Films on Indium Tin Oxide, Gold, and Sapphire Surfaces [J]. ACS Appl. Mater. Interfaces 2013,5:8686-8693.
    [256]Sun Z H, Zhao B, Lombardi J R. ZnO nanoparticle size-dependent excitation of surface Raman signal from adsorbed molecules:Observation of a charge-transfer resonance [J]. Appl. Phys. Lett.2007,91:221106.
    [257]Zhao X, Zhang B, Ai K, et al. Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy [J]. J. Mater. Chem.2009,19:5547-5553.
    [258]Song W, Han X, Chen L, et al. Fabrication of surface-enhanced Raman scattering-active ZnO/Ag composite microspheres [J]. J. Raman Spectrosc.2010, 41:907-1325.
    [259]Pacholski C, Kornowski A, Weller H. Site-Specific Photodeposition of Silver on ZnO Nanorods [J]. Angew. Chem.2004,116:4878-4881.
    [260]Chen P, Gu L, Xue X, et al. Facile synthesis of highly uniform ZnO multipods as the supports of Au and Ag nanoparticles [J]. Mater. Chem. Phys.2010,122: 41-48.
    [261]Tang H B, Meng G W, Huang Q, et al. Arrays of Cone-Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface-Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls [J]. Adv. Funct. Mater.2012,22:218-224.
    [262]孙志华.基于ZnO基底的表面增强拉曼光谱研究[博士学位论文].北京:吉林大学,2008:59-66.
    [263]Tao A R, Yang P. Polarized Surface-Enhanced Raman Spectroscopy on Coupled Metallic Nanowires [J]. J. Phys. Chem. B,2005,109 (33):15687-15690.
    [264]Levy-Clement C, Tena-Zaera R, Ryan M A, et al. CdSe-sensitized p-CuCN/nanowire n-ZnO heterojunctions [J]. Adv. Mater.2005,17:1512-1515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700